Results of a retrospective analysis of use of high-dose intravenous human normal immunoglobulin for the treatment of immune-dependent encephalopathy with a clinical picture of autism spectrum disorders in children with genetic deficiency...
Ключові слова:
імунодіагностика, імунотерапія, невропсихіатричні розлади, діти, діагностика, терапіяКороткий опис
Розлади аутистичного спектру (РАС) – це група гетерогенних нейропсихіатричних порушень, які є варіабельними за фенотипом і клінічно характеризуються дефіцитом соціальних взаємодій, порушенням комунікації та стереотипною поведінкою. Наразі відбувається стрімке зростання частоти цієї важкої патології в дитячій популяції, причини чого досі не достатньо зрозумілі. Як зазначають, Hughes H.K. зі спів. у систематичному огляді з проблеми РАС, в США за період з 1972 по 2014 рік частота зареєстрованих випадків зазначеної нейропсихіатричної патології зросла з 1 випадку на 10 тисяч осіб (0,01 %) до 1 випадку на 57 дітей (2 %), тобто – у 200 разів, що не можна пояснити лише підвищенням якості виявлення цієї патології сучасною медициною.
На даний момент накопичені докази участі імунних механізмів у патогенезі РАС у дітей, що може відкрити шлях для апробації імунотерапевтичних втручань при цій важкій і поширеній хворобі. Так, продемонстровано зв’язок РАС з певними локусами антигенів гістосумісності HLA, так само, як це відзначається і в ряду аутоімунних і алергічних синдромів людини. У дітей з РАС описані різні форми імунодефіцитів, а дослідження, присвячені деяким первинним імунним дисфункціям, вказують на підвищений ризик розвитку аутизму в таких випадках. Існують непоодинокі повідомлення про появу РАС у дорослих і дітей після перенесених епізодів нейроінфекцій, переважно — опортуністичної природи. У дітей з РАС виявляють різні автоантитіла до мозкових автоантигенів, які не утворюються у здорових осіб. Більше того, результати ряду клінічних досліджень вказують на користь від застосування імунотерапії в окремих пацієнтів з РАС. Усі ці вагомі аргументи змушують звернути увагу на роль імунозалежних механізмів у патогенезі РАС у людей.
Посилання
Amman, M. G., Singh, N. N., Stewart, A. W., Field, C. J. (1985). Psychometric characteristics of the aberrant behavior checklist. Journal of Mental Deficiency, 89, 492–502.
Baris, S., Ercan, H., Cagan, H. H. (2011). Efficacy of intravenous immunoglobulin treatment in children. with common variable immunodeficiency. Immunol, 21 (7), 514–521.
Billiau, A. D., Witters, P., Ceulemans, B., Kasran, A., Wouters, C., & Lagae, L. (2007). Intravenous Immunoglobulins in Refractory Childhood‐Onset Epilepsy: Effects on Seizure Frequency, EEG Activity, and Cerebrospinal Fluid Cytokine Profile. Epilepsia, 48 (9), 1739–1749. https://doi.org/10.1111/j.1528-1167.2007.01134.x
Binstock, T. (2001). Intra-monocyte pathogens delineate autism subgroups. Medical Hypotheses, 56 (4), 523–531. https://doi.org/10.1054/mehy.2000.1247
Boris, M., Goldblatt, A., Edelson, S. M. (2005). Improvement in children with autism treated with intravenous gamma globulin. Journal of Nutritional & Environmental Medicine, 15 (4), 169–176. https://doi.org/10.1080/13590840600681827
Bradstreet, J., Singh, V. K., El-Dahr, J. (1999). High dose intravenous immunoglobulin improves symptoms in children with autism. The international symposium on autism. Atnhem.
Buchwald, B., Ahangari, R., Weishaupt, A., Toyka, K. V. (2002). Intravenous immunoglobulins neutralize blocking antibodies in Guillain‐Barré syndrome. Annals of Neurology, 51 (6), 673–680. https://doi.org/10.1002/ana.10205
Cabanlit, M., Wills, S., Goines, P., Ashwood, P., Van de Water, J. (2007). Brain‐Specific Autoantibodies in the Plasma of Subjects with Autistic Spectrum Disorder. Annals of the New York Academy of Sciences, 1107 (1), 92–103. https://doi.org/10.1196/annals.1381.010
Chez, M. G., Guido-Estrada, N. (2010). Immune Therapy in Autism: Historical Experience and Future Directions with Immunomodulatory Therapy. Neurotherapeutics, 7 (3), 293–301. https://doi.org/10.1016/j.nurt.2010.05.008
Ciric, B., Van Keulen, V., Paz Soldan, M., Rodriguez, M., Pease, L. R. (2004). Antibody-mediated remyelination operates through mechanism independent of immunomodulation. Journal of Neuroimmunology, 146 (1-2), 153–161. https://doi.org/10.1016/j.jneuroim.2003.11.002
Connery, K., Tippett, M., Delhey, L. M., Rose, S., Slattery, J. C., Kahler, S. G. et al. (2018). Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Translational Psychiatry, 8 (1). https://doi.org/10.1038/s41398-018-0214-7
Cowan, J., Cameron, D. W., Knoll, G., Tay, J. (2015). Protocol for updating a systematic review of randomised controlled trials on the prophylactic use of intravenous immunoglobulin for patients undergoing haematopoietic stem cell transplantation. BMJ Open, 5 (8), e008316. https://doi.org/10.1136/bmjopen-2015-008316
Croen, L. A., Matevia, M., Yoshida, C. K., Grether, J. K. (2008). Maternal Rh D status, anti-D immune globulin exposure during pregnancy, and risk of autism spectrum disorders. American Journal of Obstetrics and Gynecology, 199 (3), 234.e1-234.e6. https://doi.org/10.1016/j.ajog.2008.04.044
DelGiudice-Asch, G., Simon, L., Schmeidler, J., Cunningham-Rundles, C., Hollander, E. (1999). Brief report: a pilot open clinical trial of intravenous immunoglobulin in childhood autism. Journal of Autism and Developmental Disorders, 29 (2), 157–160. https://doi.org/10.1023/a:1023096728131
Donati, D., Akhyani, N., Fogdell-Hahn, A., Cermelli, C., Cassiani-Ingoni, R., Vortmeyer, A. et al. (2003). Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology, 61 (10), 1405–1411. https://doi.org/10.1212/01.wnl.0000094357.10782.f9
Engman, M., Sundin, M., Miniscalco, C., Westerlund, J., Lewensohn‐Fuchs, I., Gillberg, C., Fernell, E. (2015). Prenatal acquired cytomegalovirus infection should be considered in children with autism. Acta Paediatrica, 104 (8), 792–795. Portico. https://doi.org/10.1111/apa.13032
Finberg, R. W., Newburger, J. W., Mikati, M. A., Heller, A. H., Burns, J. C. (1992). Effect of high doses of intravenously administered immune globulin on natural killer cell activity in peripheral blood. The Journal of Pediatrics, 120 (3), 376–380. https://doi.org/10.1016/s0022-3476(05)80900-x
Frye, R. E. (2015). Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy & Behavior, 47, 147–157. https://doi.org/10.1016/j.yebeh.2014.08.134
Ghaziuddin, M., Al-Khouri, I., Ghaziuddin, N. (2002). Autistic symptoms following herpes encephalitis. European Child & Adolescent Psychiatry, 11 (3), 142–146. https://doi.org/10.1007/s00787-002-0271-5
Guo, B.-Q., Li, H.-B., Ding, S.-B. (2020). Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta-analysis. Psychiatry Research, 291, 113283. https://doi.org/10.1016/j.psychres.2020.113283
Gupta, S. (1999). Treatment of children with autism with intravenous immunoglobulin. Journal of Child Neurology, 14 (3), 203–205. https://doi.org/10.1177/088307389901400314
Handen, B. L., Melmed, R. D., Hansen, R. L., Aman, M. G., Burnham, D. L., Bruss, J. B., McDougle, C. J. (2009). A Double-Blind, Placebo-Controlled Trial of Oral Human Immunoglobulin for Gastrointestinal Dysfunction in Children with Autistic Disorder. Journal of Autism and Developmental Disorders, 39 (5), 796–805. https://doi.org/10.1007/s10803-008-0687-y
Heuer, L., Ashwood, P., Schauer, J., Goines, P., Krakowiak, P., Hertz‐Picciotto, I. et al. (2008). Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Research, 1 (5), 275–283. https://doi.org/10.1002/aur.42
Hiroshi, H., Seiji, K., Toshihiro, K., Nobuo, K. (2003). An adult case suspected of recurrent measles encephalitis with psychiatric symptoms. Seishin Shinkeigaku Zasshi, 105 (10), 1239–1246.
Hughes, H. K., Mills Ko, E., Rose, D., Ashwood, P. (2018). Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00405
Jyonouchi, H., Geng, L., Streck, D. L., Toruner, G. A. (2012). Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. Journal of Neuroinflammation, 9 (1). https://doi.org/10.1186/1742-2094-9-4
Kamei, A., Ichinohe, S., Onuma, R., Hiraga, S., Fujiwara, T. (1997). Acute disseminated demyelination due to primary human herpesvirus-6 infection. European Journal of Pediatrics, 156 (9), 709–712. https://doi.org/10.1007/s004310050695
Kooij, S. J., Bejerot, S., Blackwell, A., Caci, H., Casas-Brugué, M., Carpentier, P. J. et al. (2010). European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD. BMC Psychiatry, 10 (1). https://doi.org/10.1186/1471-244x-10-67
Li, Y., Qiu, S., Shi, J., Guo, Y., Li, Z., Cheng, Y., Liu, Y. (2020). Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatrics, 20 (1). https://doi.org/10.1186/s12887-020-02330-3
Maltsev, D., Natrus, L. (2020). The Effectiveness of Infliximab in Autism Spectrum Disorders Associated with Folate Cycle Genetic Deficiency. Psychiatry, Psychotherapy and Clinical Psychology, 3, 583–594. https://doi.org/10.34883/pi.2020.11.3.015
Maltsev, D. (2021). Efficacy of Rituximab in Autism Spectrum Disorders Associated with Genetic Folate Cycle Deficiency with Signs of Antineuronal Autoimmunity. Psychiatry, Psychotherapy and Clinical Psychology, 3, 472–486. https://doi.org/10.34883/pi.2021.12.3.010
Maltsev, D. V. (2019). Efficiency of a high dose of intravenous immunoglobulin in children with autistic spectrum disorders associated with genetic deficiency of folate cycle enzymes. Journal of Global Pharma Technology, 11 (5), 597–609. Available at: https://www.jgpt.co.in/index.php/jgpt/article/view/2492
Maltsev, D. (2020). Features of folate cycle disorders in children with ASD. Bangladesh Journal of Medical Science, 19 (4), 737–742. https://doi.org/10.3329/bjms.v19i4.46634
Marchezan, J., Winkler dos Santos, E. G. A., Deckmann, I., Riesgo, R. dos S. (2018). Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy. Neuroimmunomodulation, 25 (5-6), 300–319. https://doi.org/10.1159/000492225
Marques, F., Brito, M. J., Conde, M., Pinto, M., Moreira, A. (2014). Autism Spectrum Disorder Secondary to Enterovirus Encephalitis. Journal of Child Neurology, 29 (5), 708–714. https://doi.org/10.1177/0883073813508314
Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., Guastella, A. J. (2014). Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Molecular Psychiatry, 20 (4), 440–446. https://doi.org/10.1038/mp.2014.59
Melamed, I. R., Heffron, M., Testori, A., Lipe, K. (2018). A pilot study of high‐dose intravenous immunoglobulin 5% for autism: Impact on autism spectrum and markers of neuroinflammation. Autism Research, 11 (3), 421–433. https://doi.org/10.1002/aur.1906
Shaik Mohammad, N., Sai Shruti, P., Bharathi, V., Krishna Prasad, C., Hussain, T., Alrokayan, S. A. et al. (2016). Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatric Genetics, 26 (6), 281–286. https://doi.org/10.1097/ypg.0000000000000152
Monge Galindo, L., Pérez Delgado, R., López Pisón, J., Lafuente Hidalgo, M., Ruiz del Olmo Izuzquiza, I., Peña Segura, J. L. (2010). Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period. Revista de Neurología, 50 (6), 341–348. https://doi.org/10.33588/rn.5006.2009448
Mostafa, G. A., AL-ayadhi, L. Y. (2011). Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. Journal of Neuroinflammation, 8 (1), 39. https://doi.org/10.1186/1742-2094-8-39
Nicolson, G. L., Gan, R., Nicolson, N. L., Haier, J. (2007). Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus‐6 coinfections in the blood of patients with autistic spectrum disorders. Journal of Neuroscience Research, 85 (5), 1143–1148. https://doi.org/10.1002/jnr.21203
Niederhofer, H., Staffen, W., Mair, A. (2002). Immunoglobulins as an Alternative Strategy of Psychopharmacological Treatment of Children with Autistic Disorder. Neuropsychopharmacology, 28 (5), 1014–1015. https://doi.org/10.1038/sj.npp.1300130
Perlmutter, S. J., Leitman, S. F., Garvey, M. A., Hamburger, S., Feldman, E., Leonard, H. L., Swedo, S. E. (1999). Therapeutic plasma exchange and intravenous immunoglobulin for obsessive-compulsive disorder and tic disorders in childhood. The Lancet, 354 (9185), 1153–1158. https://doi.org/10.1016/s0140-6736(98)12297-3
Pinillos Pisón, R., Llorente Cereza, M. T., López Pisón, J., Pérez Delgado, R., Lafuente Hidalgo, M., Martínez Sapiñá, A., Peña Segura, J. L. (2009). Congenital infection by cytomegalovirus. A review of our 18 years' experience of diagnoses. Revista de Neurología, 48 (7), 349–353. https://doi.org/10.33588/rn.4807.2008391
Plebani, A., Duse, M., Tiberti, S., Avanzini, M. A., Monafo, V., Menegati, E. et al. (1988). Intravenous gamma-globulin therapy and serum IgG subclass levels in intractable childhood epilepsy. Monogr. Allergy, 23, 204–215.
Plioplys, A. V. (1998). Intravenous Immunoglobulin Treatment of Children With Autism. Journal of Child Neurology, 13 (2), 79–82. https://doi.org/10.1177/088307389801300207
Price, C. S., Thompson, W. W., Goodson, B., Weintraub, E. S., Croen, L. A., Hinrichsen, V. L. et al. (2010). Prenatal and Infant Exposure to Thimerosal From Vaccines and Immunoglobulins and Risk of Autism. Pediatrics, 126 (4), 656–664. https://doi.org/10.1542/peds.2010-0309
Pu, D., Shen, Y., Wu, J. (2013). Association between MTHFR Gene Polymorphisms and the Risk of Autism Spectrum Disorders: A Meta‐Analysis. Autism Research, 6 (5), 384–392. https://doi.org/10.1002/aur.1300
Puangpetch, A., Suwannarat, P., Chamnanphol, M., Koomdee, N., Ngamsamut, N., Limsila, P., Sukasem, C. (2015). Significant Association of HLA-BAlleles and Genotypes in Thai Children with Autism Spectrum Disorders: A Case-Control Study. Disease Markers, 2015, 1–7. https://doi.org/10.1155/2015/724935
Rai, V. (2016). Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metabolic Brain Disease, 31 (4), 727–735. https://doi.org/10.1007/s11011-016-9815-0
Reinert, P., Moulias, R., Goust, J. M. (1972). Demonstration of cellular immunity deficiency limited to measles virus in 20 cases of subacute sclerosing leukoencephalitis. Archives Francaises de Pediatrie, 29 (6), 655–665.
Rossignol, D. A., Frye, R. E. (2021). A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. Journal of Personalized Medicine, 11 (6), 488. https://doi.org/10.3390/jpm11060488
Ruiz, J. E., Kwak, J. Y. H., Baum, L., Gilman‐Sachs, A., Beaman, K. D., Kim, Y. B., Beer, A. E. (1996). Intravenous Immunoglobulin Inhibits Natural Killer Cell Activity In Vivo in Women With Recurrent Spontaneous Abortion. American Journal of Reproductive Immunology, 35 (4), 370–375. https://doi.org/10.1111/j.1600-0897.1996.tb00496.x
Russo, A., Krigsman, A., Jepson, B., Wakefield, A. (2009). Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology, 2, 85–94. https://doi.org/10.2147/ceg.s6051
Sadeghiyeh, T., Dastgheib, S. A., Mirzaee-Khoramabadi, K., Morovati-Sharifabad, M., Akbarian-Bafghi, M. J., Poursharif, Z. et al. (2019). Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian Journal of Psychiatry, 46, 54–61. https://doi.org/10.1016/j.ajp.2019.09.016
Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., Rezaei, N. (2019). A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of Psychiatric Research, 115, 90–102. https://doi.org/10.1016/j.jpsychires.2019.05.019
Santaella, M. L., Varela, Y., Linares, N., Disdier, O. M. (2008). Prevalence of autism spectrum disorders in relatives of patients with selective immunoglobulin A deficiency. Puerto Rico Health Sciences Journal, 27 (3), 204–208.
Schneider, C. K., Melmed, R. D., Barstow, L. E., Enriquez, F. J., Ranger-Moore, J., Ostrem, J. A. (2006). Oral Human Immunoglobulin for Children with Autism and Gastrointestinal Dysfunction: A Prospective, Open-Label Study. Journal of Autism and Developmental Disorders, 36 (8), 1053–1064. https://doi.org/10.1007/s10803-006-0141-y
Singh, V. K., Lin, S. X., Newell, E., Nelson, C. (2002). Abnormal measles-mumps-rubella antibodies and CNS autoimmunity in children with autism. Journal of Biomedical Science, 9 (4), 359–364. https://doi.org/10.1007/bf02256592
Singh, V. K., Lin, S. X., Yang, V. C. (1998). Serological Association of Measles Virus and Human Herpesvirus-6 with Brain Autoantibodies in Autism. Clinical Immunology and Immunopathology, 89 (1), 105–108. https://doi.org/10.1006/clin.1998.4588
Singh, V. K., Warren, R. P., Odell, J. D., Warren, W. L., Cole, P. (1993). Antibodies to Myelin Basic Protein in Children with Autistic Behavior. Brain, Behavior, and Immunity, 7 (1), 97–103. https://doi.org/10.1006/brbi.1993.1010
Strunk, T., Gottschalk, S., Goepel, W., Bucsky, P., Schultz, C. (2002). Subacute leukencephalopathy after low‐dose intrathecal methotrexate in an adolescent heterozygous for the MTHFR C677T polymorphism. Medical and Pediatric Oncology, 40 (1), 48–50. https://doi.org/10.1002/mpo.10192
Torrente, F., Ashwood, P., Day, R., Machado, N., Furlano, R. I., Anthony, A. et al. (2002). Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Molecular Psychiatry, 7 (4), 375–382. https://doi.org/10.1038/sj.mp.4001077
Warren, R. P., Odell, J. D., Warren, W. L., Burger, R. A., Maciulis, A., Daniels, W. W., Torres, A. R. (1997). Brief report: immunoglobulin A deficiency in a subset of autistic subject. Journal of Autism and Developmental Disorders, 27(2), 187–192. https://doi.org/10.1023/a:1025895925178
Wasilewska, J., Kaczmarski, M., Stasiak-Barmuta, A., Tobolczyk, J., Kowalewska, E. (2012). Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old. Archives of Medical Science, 2, 324–331. https://doi.org/10.5114/aoms.2012.28561
Wynn, J. L., Seed, P. C., Cotten, C. M. (2010). Does IVIg administration yield improved immune function in very premature neonates? Journal of Perinatology, 30 (10), 635–642. https://doi.org/10.1038/jp.2009.197
Yektaş, Ç., Alpay, M., Tufan, A. E. (2019). Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatric Disease and Treatment, 15, 2213–2219. https://doi.org/10.2147/ndt.s212361
##submission.downloads##
Сторінки
Опубліковано
Категорії
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
