Results of a retrospective analysis of use of high-dose intravenous human normal immunoglobulin for the treatment of immune-dependent encephalopathy with a clinical picture of autism spectrum disorders in children with genetic deficiency...

Authors

1 Research Institute of Experimental and Clinical Medicine; 2 Bogomolets National Medical University , Ukraine
https://orcid.org/0000-0002-6615-3072

Keywords:

immunodiagnostics, immunotherapy, neuropsychiatric disorders, children, diagnostics, therapy

Synopsis

Autism spectrum disorders (ASD) are a group of heterogeneous neuropsychiatric disorders that are variable in phenotype and are clinically characterized by deficits in social interactions, impaired communication, and stereotyped behavior. Currently, there is a rapid increase in the frequency of this severe pathology in the child population, the reasons for which are still not sufficiently understood. As noted by Hughes H.K. et al. in a systematic review on the problem of ASD, in the USA, for the period from 1972 to 2014, the frequency of registered cases of this neuropsychiatric pathology increased from 1 case per 10 thousand people (0.01 %) to 1 case per 57 children (2 %), that is, 200 times, which cannot be explained only by an increase in the quality of detection of this pathology by modern medicine.

There is now accumulating evidence that immune mechanisms are involved in the pathogenesis of ASD in children, which may open the way for testing immunotherapeutic interventions in this severe and common disease. Thus, the association of ASD with certain HLA histocompatibility antigen loci has been demonstrated, as is noted in a number of human autoimmune and allergic syndromes [49]. Various forms of immunodeficiencies have been described in children with ASD, and studies devoted to some primary immune dysfunctions indicate an increased risk of autism in such cases. There are frequent reports of the appearance of ASD in adults and children after episodes of neuroinfections, mainly of an opportunistic nature. Children with ASD have been shown to have various autoantibodies to brain autoantigens that are not produced in healthy individuals. Moreover, several clinical trials have suggested the benefit of immunotherapy in selected patients with ASD. All of these compelling arguments call for attention to the role of immune-mediated mechanisms in the pathogenesis of ASD in humans.

References

Amman, M. G., Singh, N. N., Stewart, A. W., Field, C. J. (1985). Psychometric characteristics of the aberrant behavior checklist. Journal of Mental Deficiency, 89, 492–502.

Baris, S., Ercan, H., Cagan, H. H. (2011). Efficacy of intravenous immunoglobulin treatment in children. with common variable immunodeficiency. Immunol, 21 (7), 514–521.

Billiau, A. D., Witters, P., Ceulemans, B., Kasran, A., Wouters, C., & Lagae, L. (2007). Intravenous Immunoglobulins in Refractory Childhood‐Onset Epilepsy: Effects on Seizure Frequency, EEG Activity, and Cerebrospinal Fluid Cytokine Profile. Epilepsia, 48 (9), 1739–1749. https://doi.org/10.1111/j.1528-1167.2007.01134.x

Binstock, T. (2001). Intra-monocyte pathogens delineate autism subgroups. Medical Hypotheses, 56 (4), 523–531. https://doi.org/10.1054/mehy.2000.1247

Boris, M., Goldblatt, A., Edelson, S. M. (2005). Improvement in children with autism treated with intravenous gamma globulin. Journal of Nutritional & Environmental Medicine, 15 (4), 169–176. https://doi.org/10.1080/13590840600681827

Bradstreet, J., Singh, V. K., El-Dahr, J. (1999). High dose intravenous immunoglobulin improves symptoms in children with autism. The international symposium on autism. Atnhem.

Buchwald, B., Ahangari, R., Weishaupt, A., Toyka, K. V. (2002). Intravenous immunoglobulins neutralize blocking antibodies in Guillain‐Barré syndrome. Annals of Neurology, 51 (6), 673–680. https://doi.org/10.1002/ana.10205

Cabanlit, M., Wills, S., Goines, P., Ashwood, P., Van de Water, J. (2007). Brain‐Specific Autoantibodies in the Plasma of Subjects with Autistic Spectrum Disorder. Annals of the New York Academy of Sciences, 1107 (1), 92–103. https://doi.org/10.1196/annals.1381.010

Chez, M. G., Guido-Estrada, N. (2010). Immune Therapy in Autism: Historical Experience and Future Directions with Immunomodulatory Therapy. Neurotherapeutics, 7 (3), 293–301. https://doi.org/10.1016/j.nurt.2010.05.008

Ciric, B., Van Keulen, V., Paz Soldan, M., Rodriguez, M., Pease, L. R. (2004). Antibody-mediated remyelination operates through mechanism independent of immunomodulation. Journal of Neuroimmunology, 146 (1-2), 153–161. https://doi.org/10.1016/j.jneuroim.2003.11.002

Connery, K., Tippett, M., Delhey, L. M., Rose, S., Slattery, J. C., Kahler, S. G. et al. (2018). Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Translational Psychiatry, 8 (1). https://doi.org/10.1038/s41398-018-0214-7

Cowan, J., Cameron, D. W., Knoll, G., Tay, J. (2015). Protocol for updating a systematic review of randomised controlled trials on the prophylactic use of intravenous immunoglobulin for patients undergoing haematopoietic stem cell transplantation. BMJ Open, 5 (8), e008316. https://doi.org/10.1136/bmjopen-2015-008316

Croen, L. A., Matevia, M., Yoshida, C. K., Grether, J. K. (2008). Maternal Rh D status, anti-D immune globulin exposure during pregnancy, and risk of autism spectrum disorders. American Journal of Obstetrics and Gynecology, 199 (3), 234.e1-234.e6. https://doi.org/10.1016/j.ajog.2008.04.044

DelGiudice-Asch, G., Simon, L., Schmeidler, J., Cunningham-Rundles, C., Hollander, E. (1999). Brief report: a pilot open clinical trial of intravenous immunoglobulin in childhood autism. Journal of Autism and Developmental Disorders, 29 (2), 157–160. https://doi.org/10.1023/a:1023096728131

Donati, D., Akhyani, N., Fogdell-Hahn, A., Cermelli, C., Cassiani-Ingoni, R., Vortmeyer, A. et al. (2003). Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology, 61 (10), 1405–1411. https://doi.org/10.1212/01.wnl.0000094357.10782.f9

Engman, M., Sundin, M., Miniscalco, C., Westerlund, J., Lewensohn‐Fuchs, I., Gillberg, C., Fernell, E. (2015). Prenatal acquired cytomegalovirus infection should be considered in children with autism. Acta Paediatrica, 104 (8), 792–795. Portico. https://doi.org/10.1111/apa.13032

Finberg, R. W., Newburger, J. W., Mikati, M. A., Heller, A. H., Burns, J. C. (1992). Effect of high doses of intravenously administered immune globulin on natural killer cell activity in peripheral blood. The Journal of Pediatrics, 120 (3), 376–380. https://doi.org/10.1016/s0022-3476(05)80900-x

Frye, R. E. (2015). Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy & Behavior, 47, 147–157. https://doi.org/10.1016/j.yebeh.2014.08.134

Ghaziuddin, M., Al-Khouri, I., Ghaziuddin, N. (2002). Autistic symptoms following herpes encephalitis. European Child & Adolescent Psychiatry, 11 (3), 142–146. https://doi.org/10.1007/s00787-002-0271-5

Guo, B.-Q., Li, H.-B., Ding, S.-B. (2020). Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta-analysis. Psychiatry Research, 291, 113283. https://doi.org/10.1016/j.psychres.2020.113283

Gupta, S. (1999). Treatment of children with autism with intravenous immunoglobulin. Journal of Child Neurology, 14 (3), 203–205. https://doi.org/10.1177/088307389901400314

Handen, B. L., Melmed, R. D., Hansen, R. L., Aman, M. G., Burnham, D. L., Bruss, J. B., McDougle, C. J. (2009). A Double-Blind, Placebo-Controlled Trial of Oral Human Immunoglobulin for Gastrointestinal Dysfunction in Children with Autistic Disorder. Journal of Autism and Developmental Disorders, 39 (5), 796–805. https://doi.org/10.1007/s10803-008-0687-y

Heuer, L., Ashwood, P., Schauer, J., Goines, P., Krakowiak, P., Hertz‐Picciotto, I. et al. (2008). Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Research, 1 (5), 275–283. https://doi.org/10.1002/aur.42

Hiroshi, H., Seiji, K., Toshihiro, K., Nobuo, K. (2003). An adult case suspected of recurrent measles encephalitis with psychiatric symptoms. Seishin Shinkeigaku Zasshi, 105 (10), 1239–1246.

Hughes, H. K., Mills Ko, E., Rose, D., Ashwood, P. (2018). Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00405

Jyonouchi, H., Geng, L., Streck, D. L., Toruner, G. A. (2012). Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. Journal of Neuroinflammation, 9 (1). https://doi.org/10.1186/1742-2094-9-4

Kamei, A., Ichinohe, S., Onuma, R., Hiraga, S., Fujiwara, T. (1997). Acute disseminated demyelination due to primary human herpesvirus-6 infection. European Journal of Pediatrics, 156 (9), 709–712. https://doi.org/10.1007/s004310050695

Kooij, S. J., Bejerot, S., Blackwell, A., Caci, H., Casas-Brugué, M., Carpentier, P. J. et al. (2010). European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD. BMC Psychiatry, 10 (1). https://doi.org/10.1186/1471-244x-10-67

Li, Y., Qiu, S., Shi, J., Guo, Y., Li, Z., Cheng, Y., Liu, Y. (2020). Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatrics, 20 (1). https://doi.org/10.1186/s12887-020-02330-3

Maltsev, D., Natrus, L. (2020). The Effectiveness of Infliximab in Autism Spectrum Disorders Associated with Folate Cycle Genetic Deficiency. Psychiatry, Psychotherapy and Clinical Psychology, 3, 583–594. https://doi.org/10.34883/pi.2020.11.3.015

Maltsev, D. (2021). Efficacy of Rituximab in Autism Spectrum Disorders Associated with Genetic Folate Cycle Deficiency with Signs of Antineuronal Autoimmunity. Psychiatry, Psychotherapy and Clinical Psychology, 3, 472–486. https://doi.org/10.34883/pi.2021.12.3.010

Maltsev, D. V. (2019). Efficiency of a high dose of intravenous immunoglobulin in children with autistic spectrum disorders associated with genetic deficiency of folate cycle enzymes. Journal of Global Pharma Technology, 11 (5), 597–609. Available at: https://www.jgpt.co.in/index.php/jgpt/article/view/2492

Maltsev, D. (2020). Features of folate cycle disorders in children with ASD. Bangladesh Journal of Medical Science, 19 (4), 737–742. https://doi.org/10.3329/bjms.v19i4.46634

Marchezan, J., Winkler dos Santos, E. G. A., Deckmann, I., Riesgo, R. dos S. (2018). Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy. Neuroimmunomodulation, 25 (5-6), 300–319. https://doi.org/10.1159/000492225

Marques, F., Brito, M. J., Conde, M., Pinto, M., Moreira, A. (2014). Autism Spectrum Disorder Secondary to Enterovirus Encephalitis. Journal of Child Neurology, 29 (5), 708–714. https://doi.org/10.1177/0883073813508314

Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., Guastella, A. J. (2014). Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Molecular Psychiatry, 20 (4), 440–446. https://doi.org/10.1038/mp.2014.59

Melamed, I. R., Heffron, M., Testori, A., Lipe, K. (2018). A pilot study of high‐dose intravenous immunoglobulin 5% for autism: Impact on autism spectrum and markers of neuroinflammation. Autism Research, 11 (3), 421–433. https://doi.org/10.1002/aur.1906

Shaik Mohammad, N., Sai Shruti, P., Bharathi, V., Krishna Prasad, C., Hussain, T., Alrokayan, S. A. et al. (2016). Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatric Genetics, 26 (6), 281–286. https://doi.org/10.1097/ypg.0000000000000152

Monge Galindo, L., Pérez Delgado, R., López Pisón, J., Lafuente Hidalgo, M., Ruiz del Olmo Izuzquiza, I., Peña Segura, J. L. (2010). Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period. Revista de Neurología, 50 (6), 341–348. https://doi.org/10.33588/rn.5006.2009448

Mostafa, G. A., AL-ayadhi, L. Y. (2011). Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. Journal of Neuroinflammation, 8 (1), 39. https://doi.org/10.1186/1742-2094-8-39

Nicolson, G. L., Gan, R., Nicolson, N. L., Haier, J. (2007). Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus‐6 coinfections in the blood of patients with autistic spectrum disorders. Journal of Neuroscience Research, 85 (5), 1143–1148. https://doi.org/10.1002/jnr.21203

Niederhofer, H., Staffen, W., Mair, A. (2002). Immunoglobulins as an Alternative Strategy of Psychopharmacological Treatment of Children with Autistic Disorder. Neuropsychopharmacology, 28 (5), 1014–1015. https://doi.org/10.1038/sj.npp.1300130

Perlmutter, S. J., Leitman, S. F., Garvey, M. A., Hamburger, S., Feldman, E., Leonard, H. L., Swedo, S. E. (1999). Therapeutic plasma exchange and intravenous immunoglobulin for obsessive-compulsive disorder and tic disorders in childhood. The Lancet, 354 (9185), 1153–1158. https://doi.org/10.1016/s0140-6736(98)12297-3

Pinillos Pisón, R., Llorente Cereza, M. T., López Pisón, J., Pérez Delgado, R., Lafuente Hidalgo, M., Martínez Sapiñá, A., Peña Segura, J. L. (2009). Congenital infection by cytomegalovirus. A review of our 18 years' experience of diagnoses. Revista de Neurología, 48 (7), 349–353. https://doi.org/10.33588/rn.4807.2008391

Plebani, A., Duse, M., Tiberti, S., Avanzini, M. A., Monafo, V., Menegati, E. et al. (1988). Intravenous gamma-globulin therapy and serum IgG subclass levels in intractable childhood epilepsy. Monogr. Allergy, 23, 204–215.

Plioplys, A. V. (1998). Intravenous Immunoglobulin Treatment of Children With Autism. Journal of Child Neurology, 13 (2), 79–82. https://doi.org/10.1177/088307389801300207

Price, C. S., Thompson, W. W., Goodson, B., Weintraub, E. S., Croen, L. A., Hinrichsen, V. L. et al. (2010). Prenatal and Infant Exposure to Thimerosal From Vaccines and Immunoglobulins and Risk of Autism. Pediatrics, 126 (4), 656–664. https://doi.org/10.1542/peds.2010-0309

Pu, D., Shen, Y., Wu, J. (2013). Association between MTHFR Gene Polymorphisms and the Risk of Autism Spectrum Disorders: A Meta‐Analysis. Autism Research, 6 (5), 384–392. https://doi.org/10.1002/aur.1300

Puangpetch, A., Suwannarat, P., Chamnanphol, M., Koomdee, N., Ngamsamut, N., Limsila, P., Sukasem, C. (2015). Significant Association of HLA-BAlleles and Genotypes in Thai Children with Autism Spectrum Disorders: A Case-Control Study. Disease Markers, 2015, 1–7. https://doi.org/10.1155/2015/724935

Rai, V. (2016). Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metabolic Brain Disease, 31 (4), 727–735. https://doi.org/10.1007/s11011-016-9815-0

Reinert, P., Moulias, R., Goust, J. M. (1972). Demonstration of cellular immunity deficiency limited to measles virus in 20 cases of subacute sclerosing leukoencephalitis. Archives Francaises de Pediatrie, 29 (6), 655–665.

Rossignol, D. A., Frye, R. E. (2021). A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. Journal of Personalized Medicine, 11 (6), 488. https://doi.org/10.3390/jpm11060488

Ruiz, J. E., Kwak, J. Y. H., Baum, L., Gilman‐Sachs, A., Beaman, K. D., Kim, Y. B., Beer, A. E. (1996). Intravenous Immunoglobulin Inhibits Natural Killer Cell Activity In Vivo in Women With Recurrent Spontaneous Abortion. American Journal of Reproductive Immunology, 35 (4), 370–375. https://doi.org/10.1111/j.1600-0897.1996.tb00496.x

Russo, A., Krigsman, A., Jepson, B., Wakefield, A. (2009). Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology, 2, 85–94. https://doi.org/10.2147/ceg.s6051

Sadeghiyeh, T., Dastgheib, S. A., Mirzaee-Khoramabadi, K., Morovati-Sharifabad, M., Akbarian-Bafghi, M. J., Poursharif, Z. et al. (2019). Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian Journal of Psychiatry, 46, 54–61. https://doi.org/10.1016/j.ajp.2019.09.016

Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., Rezaei, N. (2019). A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of Psychiatric Research, 115, 90–102. https://doi.org/10.1016/j.jpsychires.2019.05.019

Santaella, M. L., Varela, Y., Linares, N., Disdier, O. M. (2008). Prevalence of autism spectrum disorders in relatives of patients with selective immunoglobulin A deficiency. Puerto Rico Health Sciences Journal, 27 (3), 204–208.

Schneider, C. K., Melmed, R. D., Barstow, L. E., Enriquez, F. J., Ranger-Moore, J., Ostrem, J. A. (2006). Oral Human Immunoglobulin for Children with Autism and Gastrointestinal Dysfunction: A Prospective, Open-Label Study. Journal of Autism and Developmental Disorders, 36 (8), 1053–1064. https://doi.org/10.1007/s10803-006-0141-y

Singh, V. K., Lin, S. X., Newell, E., Nelson, C. (2002). Abnormal measles-mumps-rubella antibodies and CNS autoimmunity in children with autism. Journal of Biomedical Science, 9 (4), 359–364. https://doi.org/10.1007/bf02256592

Singh, V. K., Lin, S. X., Yang, V. C. (1998). Serological Association of Measles Virus and Human Herpesvirus-6 with Brain Autoantibodies in Autism. Clinical Immunology and Immunopathology, 89 (1), 105–108. https://doi.org/10.1006/clin.1998.4588

Singh, V. K., Warren, R. P., Odell, J. D., Warren, W. L., Cole, P. (1993). Antibodies to Myelin Basic Protein in Children with Autistic Behavior. Brain, Behavior, and Immunity, 7 (1), 97–103. https://doi.org/10.1006/brbi.1993.1010

Strunk, T., Gottschalk, S., Goepel, W., Bucsky, P., Schultz, C. (2002). Subacute leukencephalopathy after low‐dose intrathecal methotrexate in an adolescent heterozygous for the MTHFR C677T polymorphism. Medical and Pediatric Oncology, 40 (1), 48–50. https://doi.org/10.1002/mpo.10192

Torrente, F., Ashwood, P., Day, R., Machado, N., Furlano, R. I., Anthony, A. et al. (2002). Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Molecular Psychiatry, 7 (4), 375–382. https://doi.org/10.1038/sj.mp.4001077

Warren, R. P., Odell, J. D., Warren, W. L., Burger, R. A., Maciulis, A., Daniels, W. W., Torres, A. R. (1997). Brief report: immunoglobulin A deficiency in a subset of autistic subject. Journal of Autism and Developmental Disorders, 27(2), 187–192. https://doi.org/10.1023/a:1025895925178

Wasilewska, J., Kaczmarski, M., Stasiak-Barmuta, A., Tobolczyk, J., Kowalewska, E. (2012). Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old. Archives of Medical Science, 2, 324–331. https://doi.org/10.5114/aoms.2012.28561

Wynn, J. L., Seed, P. C., Cotten, C. M. (2010). Does IVIg administration yield improved immune function in very premature neonates? Journal of Perinatology, 30 (10), 635–642. https://doi.org/10.1038/jp.2009.197

Yektaş, Ç., Alpay, M., Tufan, A. E. (2019). Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatric Disease and Treatment, 15, 2213–2219. https://doi.org/10.2147/ndt.s212361

Downloads

Pages

170-189

Published

May 19, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-21-4

How to Cite

Results of a retrospective analysis of use of high-dose intravenous human normal immunoglobulin for the treatment of immune-dependent encephalopathy with a clinical picture of autism spectrum disorders in children with genetic deficiency. . (2025). In D. Maltsev, IMMUNODIAGNOSTICS AND IMMUNOTHERAPY OF NEUROPSYCHIATRIC DISORDERS IN CHILDREN (pp. 170–189). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-21-4.ch13