Improvement of the method of linear-quadratic control of azimuthal drivers of the combined propulsion complex

Автори

National University "Odessa Maritime Academy", Україна
https://orcid.org/0000-0003-4873-5236
National University "Odessa Maritime Academy", Україна
https://orcid.org/0000-0002-4992-7697
National University "Odessa Maritime Academy", Україна
https://orcid.org/0000-0002-0709-0542
International Humanitarian University, Україна
https://orcid.org/0000-0001-5941-5372
National University "Odessa Maritime Academy", Україна
https://orcid.org/0000-0002-0822-0003
National University "Odessa Maritime Academy", Україна
https://orcid.org/0000-0001-7342-1031

Ключові слова:

комбінований пропульсивний комплекс, підрулюючий пристрій, лінійно-квадратичне керування, моделювання

Короткий опис

Розробка прибережного шельфу (добуток природних копалин, будівництво вітряних та приливних електростанцій, пелагічне рибальство тощо) передбачає розвиток високотехнологічних наукомістких галузей морської індустрії, які передбачають будівництво та експлуатацію суден, призначених для проведення розвідувально-бурових, підйомно-транспортних та вантажно-розвантажувальних робіт в різних експлуатаційних умовах (так званий офшорний флот).

Проведено всебічний моніторинг деградаційних ефектів на лініях гребних потоків рушіїв із ідентифікацією відповідних маркерів на перетинах енергетичних потоків. Розроблено стратегії всережимного регулювання потужності, моменту та частоти обертання електродвигунів азимутальних підрулюючих пристроїв (АПП), розташованих у кормовій частині комбінованого пропульсивного комплексу (КПК). Запропоновано методи побудови багатокритеріальних трирівневих стратегій управління розподілом потужності у суднових енергетичних установках (СЕУ) КПК. З урахуванням цього в рамках дослідження вирішено наступні задачі:
– на основі аналізу поведінки КПК та зусиль АПП у поєднанні з дослідженнями конструктивних особливостей суден подібного класу визначено математичну модель, що описує поведінку КПК із АПП у кормовій частині;
– на основі аналізу принципів моделювання та лінеаризації систем управління АПП та існуючих методів визначено форми простору станів та відстежено вплив збурюючих сил на характеристики контролера;
– проведене фізичне моделювання багатофункціонального КПК з АПП у кормовій частині;
– математичну модель адаптовано до алгоритму роботи контролеру та системи управління із відповідним тестуванням контролера за допомогою імітаційного моделювання.

Проведена параметрична оптимізація лінійно-квадратичного керування АПП КПК дозволила підвищити ефективність функціонування СЕУ КПК.

Посилання

Budashko, V., Nikolskyi, V., Onishchenko, O., Khniunin, S. (2016). Decision support system’s concept for design of combined propulsion complexes. Eastern-European Journal of Enterprise Technologies, 3 (8 (81)), 10–21. https://doi.org/10.15587/1729-4061.2016.72543

Budashko, V. V. (2017). Design of the three-level multicriterial strategy of hybrid marine power plant control for a combined propulsion complex. Electrical Engineering & Electromechanics, 2, 62–72. https://doi.org/10.20998/2074-272x.2017.2.10

Budashko, V. (2017). Formalization of design for physical model of the azimuth thruster with two degrees of freedom by computational fluid dynamics methods. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 40–49. https://doi.org/10.15587/1729-4061.2017.101298

Budashko, V. V. (2016). Increasing control’s efficiency for the ship’s two-mass electric drive. Electrical Engineering & Electromechanics, 4, 34–42. https://doi.org/10.20998/2074-272x.2016.4.05

Budashko, V., Sandler, A., Khniunin, S. (2023). Improving the method of linear-quadratic control over a physical model of vessel with azimuthal thrusters. Eastern-European Journal of Enterprise Technologies, 1 (2 (121)), 49–71. https://doi.org/10.15587/1729-4061.2023.273934

Myrhorod-Karpova, V., Hvozdeva, I., Budashko, V. (2022). Multiparameter Approximation Model of Temperature Conditions of Marine Diesel Generator Sets, Based on Markov Chain Monte Carlo. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 16 (4), 779–784. https://doi.org/10.12716/1001.16.04.20

Budashko, V., Golikov, V. (2017). Theoretical-applied aspects of the composition of regression models for combined propulsion complexes based on data of experimental research. Eastern-European Journal of Enterprise Technologies, 4 (3 (88)), 11–20. https://doi.org/10.15587/1729-4061.2017.107244

Budashko, V., Sandler, A., Glazeva, O. (2024). Improvement of the Predictive Control Method for the High-Level Controller. 2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv, 294–297. https://doi.org/10.1109/tcset64720.2024.10755561

Hvozdeva, I., Myrhorod, V., Budashko, V., Shevchenko, V. (2020). Problems of Improving the Diagnostic Systems of Marine Diesel Generator Sets. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Slavske, 350–354. https://doi.org/10.1109/tcset49122.2020.235453

Budashko, V., Shevchenko, V. (2018). Synthesis of the Management Strategy of the Ship Power Plant for the Combined Propulsion Complex. 2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). Kyiv, 106–109. https://doi.org/10.1109/msnmc.2018.8576266

Budashko, V., Hvozdeva, I., Onishchenko, O., Shevchenko, V., Kudelkin, R. (2020). Improvement of the operation for electromechanical system under non-permanent loading. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Slavske, 35–39. https://doi.org/10.1109/tcset49122.2020.235588

Budashko, V. (2020). Thrusters Physical Model Formalization with regard to Situational and Identification Factors of Motion Modes. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). Istanbul, 1–6. https://doi.org/10.1109/icecce49384.2020.9179301

Budashko, V., Obniavko, T., Onishchenko, O., Dovidenko, Y., Ungarov, D. (2020). Main Problems of Creating Energy-efficient Positioning Systems for Multipurpose Sea Vessels. 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). Kyiv, 106–109. https://doi.org/10.1109/msnmc50359.2020.9255514

Budashko, V., Shevchenko, V. (2021). The synthesis of control system to synchronize ship generator assemblies. Eastern-European Journal of Enterprise Technologies, 1 (2 (109)), 45–63. https://doi.org/10.15587/1729-4061.2021.225517

Budashko, V., Shevchenko, V. (2021). Solving a task of coordinated control over a ship automated electric power system under a changing load. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 54–70. https://doi.org/10.15587/1729-4061.2021.229033

Budashko, V. Diagnosis of the Technical Condition of High-Tech Complexes by Probabilistic Methods [Text] / V. Budashko, I. Hvozdeva, V. Shevchenko, V. Myrhorod, A. Sandler, O. Glazeva // 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Slavske, 22-26 Feb. 2022, Ukraine: IEEE TCSET 2022. – P. 7-14. Doi: https://doi.org/10.1109/TCSET49122.2020.235588

Budashko, V., Sandler, A., Shevchenko, V. (2022). Optimization of the control system for an electric power system operating on a constant-power hyperbole. Eastern-European Journal of Enterprise Technologies, 1 (8 (115)), 6–17. https://doi.org/10.15587/1729-4061.2022.252172

Budashko, V., Sandler, A., Shevchenko, V. (2022). Diagnosis of the Technical Condition of High-tech Complexes by Probabilistic Methods. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 16 (1), 105–111. https://doi.org/10.12716/1001.16.01.11

Sir Elkhatem, A., Naci Engin, S. (2022). Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control. Alexandria Engineering Journal, 61 (8), 6275–6292. https://doi.org/10.1016/j.aej.2021.11.057

Furmanik, M., Konvičný, D., Rafajdus, P. (2023). Low-Speed Sensorless Control for Six-Phase PMSM Based on Magnetic Anisotropy. Transportation Research Procedia, 74, 892–899. https://doi.org/10.1016/j.trpro.2023.11.222

Budashko, V., Sandler, A., Khniunin, S., Bogach, V. (2024). Design of the predictive management and control system for combined propulsion complex. Eastern-European Journal of Enterprise Technologies, 5 (2 (131)), 90–102. https://doi.org/10.15587/1729-4061.2024.313627

van Goor, P., Hamel, T., Mahony, R. (2023). Constructive Equivariant Observer Design for Inertial Navigation. IFAC-PapersOnLine, 56 (2), 2494–2499. https://doi.org/10.1016/j.ifacol.2023.10.1229

Hemalatha, N., Venkatesan, S., Kannan, R., Kannan, S., Bhuvanesh, A., Kamaraja, A. S. (2024). Sensorless speed and position control of permanent magnet BLDC motor using particle swarm optimization and ANFIS. Measurement: Sensors, 31, 100960. https://doi.org/10.1016/j.measen.2023.100960

Sagin, S. V., Semenov, O. V. (2016). Motor Oil Viscosity Stratification in Friction Units of Marine Diesel Motors. American Journal of Applied Sciences, 13 (2), 200–208. https://doi.org/10.3844/ajassp.2016.200.208

Lang, X., Mao, W. (2020). A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements. Ocean Engineering, 209, 107494. https://doi.org/10.1016/j.oceaneng.2020.107494

Maidana, R. G., Kristensen, S. D., Utne, I. B., Sørensen, A. J. (2023). Risk-based path planning for preventing collisions and groundings of maritime autonomous surface ships. Ocean Engineering, 290, 116417. https://doi.org/10.1016/j.oceaneng.2023.116417

Myrhorod, V., Hvozdeva, I., Budashko, V. (2020). Multi-parameter Diagnostic Model of the Technical Conditions Changes of Ship Diesel Generator Sets. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). Kremenchuk, 1–4. https://doi.org/10.1109/paep49887.2020.9240905

Sagin, S. V., Solodovnikov, V. G. (2017). Estimation of Operational Properties of Lubricant Coolant Liquids by Optical Methods. International Journal of Applied Engineering Research, 12 (19), 8380–8391.

Myrhorod, V., Gvozdeva, I., Budashko, V. (2022). Approximation - markov models of changes in the technical condition parameters of power and energy installations in long-term operation. Aerospace Technic and Technology, 4, 73–79. https://doi.org/10.32620/aktt.2022.4sup2.11

Nikolskyi, V., Budashko, V., Khniunin, S., Nikolskyi, M. (2018). Parametrization and identification of energy flows in the ship propulsion complex. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). Slavske, 288–294. https://doi.org/10.1109/tcset.2018.8336205

Sandler, A., Budashko, V. (2022). Improving tools for diagnosing technical condition of ship electric power installations. Eastern-European Journal of Enterprise Technologies, 5 (5 (119)), 25–33. https://doi.org/10.15587/1729-4061.2022.266267

Budashko, V. V. (2021). Prospektive globale wissenschaftliche Trends: Modern technologies and concepts of researching for ship power plants of combined propulsion complexes. ScientificWorld-NetAkhatAV, 7 (7), 152. https://doi.org/10.30890/2709-2313.2021-07-07

Sandler, A., Budashko, V., Khniunin, S., Bogach, V. (2023). Improving the mathematical model of a fiber-optic inclinometer for vibration diagnostics of elements in the propulsion system with sliding bearings. Eastern-European Journal of Enterprise Technologies, 5 (5 (125)), 24–31. https://doi.org/10.15587/1729-4061.2023.289773

Boyko, А., Budashko, V., Yushkov, Y., Boyko, N. (2016). Synthesis and research of automatic balancing system of voltage converter fed induction motor currents. Eastern-European Journal of Enterprise Technologies, 1 (2 (79)), 22–34. https://doi.org/10.15587/1729-4061.2016.60544

Sáez, D., Cipriano, A. (1998). Fuzzy Linear Quadratic Regulator Applied to the Real Time Control of an Inverted Pendulum. IFAC Proceedings Volumes, 31 (4), 155–160. https://doi.org/10.1016/s1474-6670(17)42150-1

Budashko, V. (2015). Implementation approaches during simulation of energy processes for a dynamically positioned ship. Electrical Engineering & Electromechanics, 6, 14–19.

Budashko, V. V., Iushkov, E. A. (2015). Mathematic modeling of all-range controllers speed of thrusters for ship power plants in combined propulsion complexes. Electronic Modelin, 37 (2), 101–113. Available at: http://nbuv.gov.ua/UJRN/elmo_2015_37_2_10

Sagin, S. V., Kuropyatnyk, O. A., Zablotskyi, Yu. V. Gaichenia, O. V. (2022). Supplying of Marine Diesel Engine Ecological Parameters. Naše More, 69 (1), 53–61. https://doi.org/10.17818/nm/2022/1.7

Budashko, V. V. (2020). Ship's power plants of combined propulsion complexes: concepts, technologies, researching. Оdesa: NU “OMA”, 136.

Nikolskyi, V., Budashko, V., Khniunin, S., Nikolskyi, M. (2018). Development of a Computer System of Technical Condition for the Electric Podded Azimuth Thrusters. Information technologies and computer modelling. Ivano-Frankivsk, 157–160.

##submission.downloads##

Опубліковано

листопада 11, 2025

Ліцензія

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Деталі щодо доступних видів видань: PDF

PDF

ISBN-13 (15)

978-617-8360-19-1

Як цитувати

Budashko, V., Glazeva, O., Sandler, A., Khniunin, S., Bogach, V., & Zhuravlov, Y. (2025). Improvement of the method of linear-quadratic control of azimuthal drivers of the combined propulsion complex. в I. Krasnikov (ред.), PROCESSES AND CONTROL SYSTEMS: SYNTHESIS, MODELING, OPTIMIZATION. Kharkiv: ПП "ТЕХНОЛОГІЧНИЙ ЦЕНТР". https://doi.org/10.15587/978-617-8360-19-1.ch3