PROCESSES AND CONTROL SYSTEMS: SYNTHESIS, MODELING, OPTIMIZATION
Keywords:
ammonia production, secondary condensation, mathematical modelling of heat transfer processes, computer-integrated technology, software control, processes and control systems, modeling systems, railway transport, transport technologies, transport process management, tolerance, statistical regularity, norm of behavior of the system "bottleneck", combined propulsion complex, thruster, linear-quadratic control, modeling, local electrical systems, autonomous mode, renewable energy sources, intelligent control system, induction crucible melting, refractory wear mechanisms, furnace lining durability, 3D laser scanning systems, automated condition monitoring, continuous improvement methodology, digital profiling technologies, triz methodology, morphological analysis, method of control questions, method of focal objects, theory of inventive problem solving, functional–value analysis, slag formation optimisation, crucible geometry adjustment, cooling regime improvementSynopsis
The collective monograph focuses on the study of modeling methods, analytical assessment and optimization of complex technical systems in industry and energy. The presented materials cover the tasks of heat transfer, operational reliability, mobile control, distributed energy and predictive monitoring, forming a holistic scientific and applied basis for the implementation of engineering solutions in real production conditions. The monograph is aimed at systematizing methods that ensure increased efficiency of technological facilities through mathematical analysis, digital measurements and adaptive control.
The first section examines in detail the processes of secondary condensation in large-capacity ammonia synthesis units of the AM-1360 type. Special attention is paid to methods for experimental identification of thermophysical parameters that determine the operation of heat exchangers in unsteady modes. Refined mathematical models of heat transfer have been constructed and the influence of structural deviations on energy consumption parameters has been assessed. It is shown that the use of adaptive software control allows to adjust temperature profiles, reduce the load on refrigeration units and increase the resource of heat engineering equipment. The presented results can be taken into account during the modernization of technological lines of the chemical industry.
The second section is devoted to the analysis of the operational reliability of transport systems based on large sets of statistical data. A methodology for detecting latent deviations and "repeated anomalies" that are not recorded by standard control means is proposed. An assessment of negative statistics and time trends is carried out, which allow to establish potential areas of infrastructure degradation. The feasibility of the transition from reactive maintenance to preventive management is substantiated, when decisions are based not on the fact of failure, but on early signs of its occurrence. This approach creates the basis for the implementation of predictive diagnostics systems in transport.
The third section considers the issue of optimal regulation of azimuthal power plants of marine vessels. Based on parametric modeling, the influence of external disturbances and variable loads on the behavior of the ship complex was investigated. Adaptive controller structures were developed that ensure course stability, reduce energy consumption, and increase the accuracy of maneuvering operations. Criteria for selecting control laws for operating conditions where traditional PID methods lose their effectiveness were outlined. The results confirm the possibility of integrating new-type controllers into ship motion systems.
The fourth section is devoted to the architecture of autonomous microgrid-class electric power systems. The principles of coordination between generation, storage, and consumption of electricity using multi-agent subsystems are considered. Mechanisms for maintaining stability in the event of loss of connection to the centralized network are substantiated, and the issue of load balancing in abnormal modes is also considered. The presented models demonstrate the possibility of forming a flexible energy infrastructure capable of providing guaranteed power supply to technological equipment without involving dispatch control.
The fifth section presents approaches to predictive maintenance of metallurgical equipment using the example of the lining of induction crucible furnaces. The technology of 3D laser profiling is proposed for spatial reconstruction of the inner surface of the lining and determination of zones of marginal wear. Criteria for permissible deviation of geometry are established and a methodology for calculating the residual resource of the lining layer is developed. Practical results confirm that the transition to condition-based monitoring allows to reduce emergency downtime and economic losses associated with the destruction of working units. The summarized results of the monograph can be used during the design, adjustment and operation of automation systems, energy facilities and industrial units. The presented methods create the basis for the development of integrated control systems in which mathematical modeling is combined with digital monitoring and preventive intervention. The materials of the publication constitute a scientific contribution to the development of engineering practice, focused on increasing technological reliability and optimizing the life cycle of technical systems.
Chapters
References
Heidlage, M., Pfromm P. H. (2015). Novel Thermochemical Synthesis of Ammonia and Syngas from Natural Gas. 2015 AIChE Annual Meeting Proceedings. Available at: https://www.aiche.org/conferences/aiche-annual-meeting/2015/proceeding/paper/517b-novel-thermochemical-synthesis-ammonia-and-syngas-natural-gas
Dawson, C. J., Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36 (1), 14–22. https://doi.org/10.1016/j.foodpol.2010.11.012
Dybkjær, I. (2013). 100 years of ammonia synthesis technology. 58th Annual Safety in Ammonia Plants and Related Facilities Symposium. Available at: https://www.aiche.org/sites/default/files/docs/conferences/8096_ Ammonia2013_Committee_Flyer_v8_0.pdf
Noelker, K., Ruether, J. (2011). Low Energy Consumption Ammonia Production:Baseline Energy Consumption, Options for Energy Optimization. Nitrogen + Syngas Conference. Available at: https://www.scribd.com/document/317686530/Low-Energy-Consumption-Ammonia-Production-2011-paper-pdf
Babichenko, A. K., Toshynskyi, V. Y. (2009). Zastosuvannia matematychnoho modeliuvannia dlia diahnostyky pokaznykiv efektyvnosti protsesiv teplo-i masoobminu v absorberakh teplovykorystuiuchykh kholodylnykh ustanovok ahrehativ syntezu amiaku. Issues of Chemistry and Chemical Technology, 6, 107–111.
Ladaniuk, A. P., Ladaniuk, O. A., Boiko, R. O., Ivashchiuk, V. V., Kronikovskyi, D. O., Shumyhai, D. A.; Ladaniuk, A. P. (Ed.) (2015). Suchasni metody avtomatyzatsii tekhnolohichnykh obiektiv. Inter Lohistyk Ukraina, 408.
Wu, H., Wang, W., Ye, H. (2013). Robust state estimation for linear systems with parametric uncertainties and quantised measurements. International Journal of Systems Science, 46 (3), 526–534. https://doi.org/10.1080/00207721.2013.807387
Tovazhnianskyi, L. L., Loboiko, O. Ya., Hryn, H. I., Slabun, I. O., Vorozhbiian, M. I., Molchanov, V. I. et al.; Loboiko, O. Ya. (Ed.). Tekhnolohiia zviazanoho azotu. NTU “KhPI”, 536.
Fronk, B. M., Garimella, S. (2016). Condensation of ammonia and high-temperature-glide ammonia/water zeotropic mixtures in minichannels – Part I: Measurements. International Journal of Heat and Mass Transfer, 101, 1343–1356. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.049
Malyshev, V. V., Krietov, V. V., Hladka, T. M. (2015). Tekhnichna termodynamika ta teploperedacha. Universytet "Ukraina", 257.
Chen H.-F., Zhang J.-F. (1990). Stochastic Adaptive Control for ARMAX Systems with Unknown Orders, Time-Delay and Coefficients. IFAC Proceedings Volumes, 23 (8 (2)), 267–272. https://doi.org/10.1016/S1474-6670(17)52019-4
Ladaniuk, A. P, Reshetiuk, V. M., Kyshenko, V. D., Smitiukh, Ya. V. (2014). Innovatsiini tekhnolohii v upravlinni skladnymy biotekhnolohichnymy obiektamy ahropromyslovoho kompleksu. Tsentr uchbovoi literatury, 280.
Brandt, S. (2014). Data Analysis: Statistical and Computational Methods for Scientists and Engineers. Springer Cham, 523.
Hlon, O. V., Dubovoi, V. M. (2004). Modeliuvannia system keruvannia v umovakh nevyznachenosti. UNIVERSUM, 169.
Wit, E., van den Heuvel, E., Romeijn, J.-W. (2012). ‘All models are wrong...’: an introduction to model uncertainty. Statistica Neerlandica, "All Models are Wrong...", 66 (3), 217–236. https://doi.org/10.1111/j.1467-9574.2012.00530.x
Babichenko, A., Velma, V., Babichenko, J., Kravchenko, Y., Krasnikov, I. (2017). System analysis of the secondary condensation unit in the context of improving energy efficiency of ammonia production. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 18–26. https://doi.org/10.15587/1729-4061.2017.96464
Babichenko, A. K., Podustov, M. O., Kravchenko, Y. O., Babichenko, Y. A. (2019). Formation of the information array of the identifier of the adaptive control system of the ammonia production condensation unit with uncertainties. Bulletin of the National Technical University "KhPI", A series of "Information and Modeling", 13 (1338), 5–13. Available at: http://pim.khpi.edu.ua/article/view/2411-0558.2019.13.03
Mendenhall, W., Sincich T. L. (2003). A Second Course in Statistics: Regression Analysis. Sixth Edition. Pearson Education, 880.
Babichenko, A., Babichenko, J., Kravchenko, Y., Velma, S., Krasnikov, I., Lysachenko, I. (2018). Identification of heat exchange process in the evaporators of absorption refrigerating units under conditions of uncertainty. Eastern-European Journal of Enterprise Technologies, 1 (2 (91)), 21–29. https://doi.org/10.15587/1729-4061.2018.121711
Babichenko, A. (2010). Conformities to the law of heat exchange in the process of condensation of ammonia of products from circulation gas in viparnikakh of aggregates of synthesis. Integrated Technologies and Energy Conservation, 1, 47–53. Available at: https://www.kpi.kharkov.ua/archive/Наукова_періодика/ite/2010/2010_1.pdf
Babichenko, A., Podustov M., Kravchenko, Y. (2018). Systematic approach to creating an optimal structure and control system for the technological complex of secondary condensation of ammonia production. Accent Graphics Communications & Publishing, 145–155.
Babichenko, A. K., Toshynskyi, V. Y., Krasnikov, Y. L., Podustov M. A. (2007). Enerhozberihaiuche tekhnolohichne oformlennia bloku vtorynnoi kondensatsii krupnotonazhnykh ahrehativ syntezu amiaku. Integrated Technologies and Energy Conservation, 4, 3–7. Available at: https://www.kpi.kharkov.ua/archive/Наукова_періодика/ite/2007/2007_4.pdf
Garimella, S., Mostafa, S., Sheldon, M. (2012). Ammonia-water desorption in flooded columns. Georgia Institute of Technology, Sheldon, 148.
Shukla, A., Mishra, A., Shukla, D., Chauhan, K. (2015). C.O.P derivation and thermodynamic calculation of ammonia-water vapor absorption refrigeration system / Shukla A., Mishra A., Shukla D., Chauhan K. International Journal of Mechanical Engineering and Technology, 6 (5), 72–81. Available at: https://iaeme.com/Home/article_id/IJMET_06_05_010
Lutska, N. M., Ladaniuk, A. P. (2016). Optymalni ta robastni systemy keruvannia tekhnolohichnymy obiektamy. Lira-K, 288.
Babichenko, A., Kravchenko, Y., Babichenko, J., Krasnikov, I., Lysachenko, I., Velma, V. (2018). Algorithmic tools for optimizing the temperature regime of evaporator at absorption-refrigeration units of ammonia production. Eastern-European Journal of Enterprise Technologies, 4 (2 (94)), 29–35. https://doi.org/10.15587/1729-4061.2018.139633
Çengel, Y. A. (2009). Introduction to Thermodynamics and Heat Transfer. McGraw-Hill, 960.
Hare, W., Nutini, J., Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28. https://doi.org/10.1016/j.advengsoft.2013.03.001
Ravindran, A., Ragsdell, K. M., Reklaitis, G. V. (2007). Engineering optimization: methods and applications. New York: John Wiley & Sons, 667. doi: https://doi.org/10.1002/9780470117811
Sharma, K. L. S. (2016). Overview of Industrial Process Automation. Elsevier, 492.
Pacaux-Lemoine, M.-P., Trentesaux, D., Zambrano Rey, G., Millot, P. (2017). Designing intelligent manufacturing systems through Human-Machine Cooperation principles: A human-centered approach. Computers & Industrial Engineering, 111, 581–595. https://doi.org/10.1016/j.cie.2017.05.014
Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1 (1), 3–28. https://doi.org/10.1016/0165-0114(78)90029-5
Druz, V. A., Samsonkin, V. M. (2023). Yedyna teoriia system, shcho samoorhanizuiutsia. Kyiv: Talkom, 123.
Upravlinnia. Slovnyk ukrainskoi movy. Available at: https://slovnyk.ua/index.php?swrd=управління
Upravlinnia. Velykyi tlumachnyi slovnyk suchasnoi movy. Available at: https://slovnyk.me/dict/vts/%D1%83%D0%BF%D1%80%D0%B0%D0%B2%D0%BB%D1%96%D0%BD%D0%BD%D1%8F
Keruvannia. Slovnyk ukrainskoi movy. Available at: https://slovnyk.ua/index.php?swrd=%D0%BA%D0%B5%D1%80%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
Menedzhment. Velykyi tlumachnyi slovnyk suchasnoi ukrainskoi movy. Available at: https://slovnyk.me/dict/vts/%D0%BC%D0%B5%D0%BD%D0%B5%D0%B4%D0%B6%D0%BC%D0%B5%D0%BD%D1%82
Menedzhment. SLOVNYK.ua. Available at: https://slovnyk.ua/index.php?swrd=%D0%9C%D0%B5%D0%BD%D0%B5%D0%B4%D0%B6%D0%BC%D0%B5%D0%BD%D1%82+
Шинкарук В.Д., Пєша І.В., Сопівник І.В., Галайдюк В.В., Кошук О.Б. Моніторинг і оцінка у соціальній роботі: навчальний посібник. Київ: Компринт, 2022. 360 с. Available at: https://nubip.edu.ua/sites/default/files/u188/posibnik_monitoring_1673873800.pdf
Система. Словника української мови. Available at: https://slovnyk.ua/index.php?swrd=%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
Systema. Velykyi tlumachnyi slovnyk suchasnoi ukrainskoi movy. Available at: https://slovnyk.me/dict/vts/%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
Systemnyi pidkhid. Velykyi tlumachnyi slovnyk suchasnoi ukrainskoi movy. Available at: https://irbis-nbuv.gov.ua/cgi-bin/ua/elib.exe?Z21ID=&I21DBN=UKRLIB&P21DBN=UKRLIB&S21STN=1&S21REF=10&S21FMT=online_book&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=FF=&S21STR=ukr0000728%5F12
Shynkaruk, V. I. (Ed.) (2002). Filosofskyi entsyklopedychnyi slovnyk. Abrys, 842. Available at: https://books.google.com/books/about/Філософський_енциклоп.html?id=iR28AAAAIAAJ
Systemnyi analiz. Ekonomichnyi slovnyk. Available at: https://slovnyk.me/dict/economics_dict/%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%BD%D0%B8%D0%B9
Slyusarchuk, A. (2021). Mathematical modelling of a self-assembly in the systems of functionalized nanoparticles. [Extended abstract of PhD thesis; Lviv Polytechnic National University].
Kulchytskyi, I. M. (2018). Kontseptualizatsiia poniat «model» ta «modeliuvannia» u naukovykh doslidzhenniakh. Naukovyi zhurnal Lvivskoi politekhniky. Seriia: Pedahohika ta psykholohiia, 829, 273–284. Available at: https://science.lpnu.ua/sites/default/files/journal-paper/2018/jun/12897/19kulchickiyimkonceptual.pdf
Velykyi tlumachnyi slovnyk suchasnoi ukrainskoi movy. Available at: https://slovnyk.me/dict/vts
Kyryllova, O. V., & Pavlovska, L. A. (2022). Modern transport technologies: lecture notes [for master’s students, specialty 275 “Transport Technologies (maritime and river transport)”]. Odesa: Odesa National Maritime University. Available at: http://rp.onmu.org.ua/handle/123456789/3958?show=full&locale-attribute=uk
Vovk, Yu. Ya., & Vovk, I. P. (2021). Fundamentals of the theory of transport processes and systems: a textbook (lecture course). Ternopil: Ternopil Ivan Puluj National Technical University. Available at: https://elartu.tntu.edu.ua/bitstream/lib/35983/1/%21%21%21%D0%9D%D0%B0%D0%B2%D1%87%D0%B0%D0%BB%D1%8C%D0%BD%D0%B8%D0%B9%20%D0%BF%D0%BE%D1%81%D1%96%D0%B1%D0%BD%D0%B8%D0%BA%20%D0%9E%D0%A2%D0%A2%D0%9F%D0%A1_%D0%92%D0%BE%D0%B2%D0%BA_002.pdf
Dosenko, S. I. (2019). The principle of functional self-organization of intelligent systems’ activity. Radioelectronic and Computer Systems, 2(90), 18–28. https://doi.org/10.32620/reks.2019.2.02
Samsonkin, V. N., Druz, V. A. (2005). Metod statisticheskoi zakonomernosti v upravlenii bezopasnostiu dvizheniia na zheleznodorozhnom transporte. Donetck: DIZhT, 158.
Dovidnyk osnovnykh pokaznykiv roboty zaliznyts Ukrainy (2015–2023 roky) (2024). Kyiv: AT «Ukrzaliznytsia».
STP 07-005:2019. Poriadok sluzhbovoho rozsliduvannia transportnykh podii (2019). Kyiv: AT «Ukrainska zaliznytsia», 82.
Bertalanffy, L. von. (2007). General system theory: Foundations, development, applications. New York: George Braziller.
Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering (2nd ed.). CRC Press. Available at: https://www.biodyn.ro/course/literatura/Nonlinear_Dynamics_and_Chaos_2018_Steven_H._Strogatz.pdf
Osnovni statystychni katehorii. Studfile.net. Available at: https://studfile.net/preview/7170223/page:2/
DSTU ISO 8258:2001. Statystychnyi kontrol. Karty kontrolni Shukharta (ISO 8258:1991, IDT) (2006). Kyiv: Derzhspozhyvstandart Ukrainy, 38.
Arhueles, Kh. (2002). Faktor maiia. Netekhnolohycheskyi put. Kyiv: Sofyia, 272.
Filiptsova, K. A., & Topchiy, M. S. (2023). Age physiology and valeology: a textbook. Odesa: Ushynsky University. Available at: http://dspace.pdpu.edu.ua/jspui/bitstream/123456789/16724/1/Filiptsova%20Kateryna%20Anatoliivna.pdf
United Nations Development Programme (UNDP). (2020). The Next Frontier: Human Development and the Anthropocene. Human Development Report 2020. New York: UNDP. Available at: https://hdr.undp.org/content/human-development-report-2020
Samsonkin, V. M., Martyshko, A. M. (2015). Praktychne zastosuvannia vyznachennia «vuzkykh mists» v ubezpechenni rukhu na pidpryiemstvakh zaliznychnoho transportu dlia profilaktyky transportnykh podii. Zaliznychnyi transport Ukrainy, 1, 3–10.
Budashko, V., Nikolskyi, V., Onishchenko, O., Khniunin, S. (2016). Decision support system’s concept for design of combined propulsion complexes. Eastern-European Journal of Enterprise Technologies, 3 (8 (81)), 10–21. https://doi.org/10.15587/1729-4061.2016.72543
Budashko, V. V. (2017). Design of the three-level multicriterial strategy of hybrid marine power plant control for a combined propulsion complex. Electrical Engineering & Electromechanics, 2, 62–72. https://doi.org/10.20998/2074-272x.2017.2.10
Budashko, V. (2017). Formalization of design for physical model of the azimuth thruster with two degrees of freedom by computational fluid dynamics methods. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 40–49. https://doi.org/10.15587/1729-4061.2017.101298
Budashko, V. V. (2016). Increasing control’s efficiency for the ship’s two-mass electric drive. Electrical Engineering & Electromechanics, 4, 34–42. https://doi.org/10.20998/2074-272x.2016.4.05
Budashko, V., Sandler, A., Khniunin, S. (2023). Improving the method of linear-quadratic control over a physical model of vessel with azimuthal thrusters. Eastern-European Journal of Enterprise Technologies, 1 (2 (121)), 49–71. https://doi.org/10.15587/1729-4061.2023.273934
Myrhorod-Karpova, V., Hvozdeva, I., Budashko, V. (2022). Multiparameter Approximation Model of Temperature Conditions of Marine Diesel Generator Sets, Based on Markov Chain Monte Carlo. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 16 (4), 779–784. https://doi.org/10.12716/1001.16.04.20
Budashko, V., Golikov, V. (2017). Theoretical-applied aspects of the composition of regression models for combined propulsion complexes based on data of experimental research. Eastern-European Journal of Enterprise Technologies, 4 (3 (88)), 11–20. https://doi.org/10.15587/1729-4061.2017.107244
Budashko, V., Sandler, A., Glazeva, O. (2024). Improvement of the Predictive Control Method for the High-Level Controller. 2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv, 294–297. https://doi.org/10.1109/tcset64720.2024.10755561
Hvozdeva, I., Myrhorod, V., Budashko, V., Shevchenko, V. (2020). Problems of Improving the Diagnostic Systems of Marine Diesel Generator Sets. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Slavske, 350–354. https://doi.org/10.1109/tcset49122.2020.235453
Budashko, V., Shevchenko, V. (2018). Synthesis of the Management Strategy of the Ship Power Plant for the Combined Propulsion Complex. 2018 IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). Kyiv, 106–109. https://doi.org/10.1109/msnmc.2018.8576266
Budashko, V., Hvozdeva, I., Onishchenko, O., Shevchenko, V., Kudelkin, R. (2020). Improvement of the operation for electromechanical system under non-permanent loading. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Slavske, 35–39. https://doi.org/10.1109/tcset49122.2020.235588
Budashko, V. (2020). Thrusters Physical Model Formalization with regard to Situational and Identification Factors of Motion Modes. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). Istanbul, 1–6. https://doi.org/10.1109/icecce49384.2020.9179301
Budashko, V., Obniavko, T., Onishchenko, O., Dovidenko, Y., Ungarov, D. (2020). Main Problems of Creating Energy-efficient Positioning Systems for Multipurpose Sea Vessels. 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). Kyiv, 106–109. https://doi.org/10.1109/msnmc50359.2020.9255514
Budashko, V., Shevchenko, V. (2021). The synthesis of control system to synchronize ship generator assemblies. Eastern-European Journal of Enterprise Technologies, 1 (2 (109)), 45–63. https://doi.org/10.15587/1729-4061.2021.225517
Budashko, V., Shevchenko, V. (2021). Solving a task of coordinated control over a ship automated electric power system under a changing load. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 54–70. https://doi.org/10.15587/1729-4061.2021.229033
Budashko, V. Diagnosis of the Technical Condition of High-Tech Complexes by Probabilistic Methods [Text] / V. Budashko, I. Hvozdeva, V. Shevchenko, V. Myrhorod, A. Sandler, O. Glazeva // 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Slavske, 22-26 Feb. 2022, Ukraine: IEEE TCSET 2022. – P. 7-14. Doi: https://doi.org/10.1109/TCSET49122.2020.235588
Budashko, V., Sandler, A., Shevchenko, V. (2022). Optimization of the control system for an electric power system operating on a constant-power hyperbole. Eastern-European Journal of Enterprise Technologies, 1 (8 (115)), 6–17. https://doi.org/10.15587/1729-4061.2022.252172
Budashko, V., Sandler, A., Shevchenko, V. (2022). Diagnosis of the Technical Condition of High-tech Complexes by Probabilistic Methods. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 16 (1), 105–111. https://doi.org/10.12716/1001.16.01.11
Sir Elkhatem, A., Naci Engin, S. (2022). Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control. Alexandria Engineering Journal, 61 (8), 6275–6292. https://doi.org/10.1016/j.aej.2021.11.057
Furmanik, M., Konvičný, D., Rafajdus, P. (2023). Low-Speed Sensorless Control for Six-Phase PMSM Based on Magnetic Anisotropy. Transportation Research Procedia, 74, 892–899. https://doi.org/10.1016/j.trpro.2023.11.222
Budashko, V., Sandler, A., Khniunin, S., Bogach, V. (2024). Design of the predictive management and control system for combined propulsion complex. Eastern-European Journal of Enterprise Technologies, 5 (2 (131)), 90–102. https://doi.org/10.15587/1729-4061.2024.313627
van Goor, P., Hamel, T., Mahony, R. (2023). Constructive Equivariant Observer Design for Inertial Navigation. IFAC-PapersOnLine, 56 (2), 2494–2499. https://doi.org/10.1016/j.ifacol.2023.10.1229
Hemalatha, N., Venkatesan, S., Kannan, R., Kannan, S., Bhuvanesh, A., Kamaraja, A. S. (2024). Sensorless speed and position control of permanent magnet BLDC motor using particle swarm optimization and ANFIS. Measurement: Sensors, 31, 100960. https://doi.org/10.1016/j.measen.2023.100960
Sagin, S. V., Semenov, O. V. (2016). Motor Oil Viscosity Stratification in Friction Units of Marine Diesel Motors. American Journal of Applied Sciences, 13 (2), 200–208. https://doi.org/10.3844/ajassp.2016.200.208
Lang, X., Mao, W. (2020). A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements. Ocean Engineering, 209, 107494. https://doi.org/10.1016/j.oceaneng.2020.107494
Maidana, R. G., Kristensen, S. D., Utne, I. B., Sørensen, A. J. (2023). Risk-based path planning for preventing collisions and groundings of maritime autonomous surface ships. Ocean Engineering, 290, 116417. https://doi.org/10.1016/j.oceaneng.2023.116417
Myrhorod, V., Hvozdeva, I., Budashko, V. (2020). Multi-parameter Diagnostic Model of the Technical Conditions Changes of Ship Diesel Generator Sets. 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP). Kremenchuk, 1–4. https://doi.org/10.1109/paep49887.2020.9240905
Sagin, S. V., Solodovnikov, V. G. (2017). Estimation of Operational Properties of Lubricant Coolant Liquids by Optical Methods. International Journal of Applied Engineering Research, 12 (19), 8380–8391.
Myrhorod, V., Gvozdeva, I., Budashko, V. (2022). Approximation - markov models of changes in the technical condition parameters of power and energy installations in long-term operation. Aerospace Technic and Technology, 4, 73–79. https://doi.org/10.32620/aktt.2022.4sup2.11
Nikolskyi, V., Budashko, V., Khniunin, S., Nikolskyi, M. (2018). Parametrization and identification of energy flows in the ship propulsion complex. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). Slavske, 288–294. https://doi.org/10.1109/tcset.2018.8336205
Sandler, A., Budashko, V. (2022). Improving tools for diagnosing technical condition of ship electric power installations. Eastern-European Journal of Enterprise Technologies, 5 (5 (119)), 25–33. https://doi.org/10.15587/1729-4061.2022.266267
Budashko, V. V. (2021). Prospektive globale wissenschaftliche Trends: Modern technologies and concepts of researching for ship power plants of combined propulsion complexes. ScientificWorld-NetAkhatAV, 7 (7), 152. https://doi.org/10.30890/2709-2313.2021-07-07
Sandler, A., Budashko, V., Khniunin, S., Bogach, V. (2023). Improving the mathematical model of a fiber-optic inclinometer for vibration diagnostics of elements in the propulsion system with sliding bearings. Eastern-European Journal of Enterprise Technologies, 5 (5 (125)), 24–31. https://doi.org/10.15587/1729-4061.2023.289773
Boyko, А., Budashko, V., Yushkov, Y., Boyko, N. (2016). Synthesis and research of automatic balancing system of voltage converter fed induction motor currents. Eastern-European Journal of Enterprise Technologies, 1 (2 (79)), 22–34. https://doi.org/10.15587/1729-4061.2016.60544
Sáez, D., Cipriano, A. (1998). Fuzzy Linear Quadratic Regulator Applied to the Real Time Control of an Inverted Pendulum. IFAC Proceedings Volumes, 31 (4), 155–160. https://doi.org/10.1016/s1474-6670(17)42150-1
Budashko, V. (2015). Implementation approaches during simulation of energy processes for a dynamically positioned ship. Electrical Engineering & Electromechanics, 6, 14–19.
Budashko, V. V., Iushkov, E. A. (2015). Mathematic modeling of all-range controllers speed of thrusters for ship power plants in combined propulsion complexes. Electronic Modelin, 37 (2), 101–113. Available at: http://nbuv.gov.ua/UJRN/elmo_2015_37_2_10
Sagin, S. V., Kuropyatnyk, O. A., Zablotskyi, Yu. V. Gaichenia, O. V. (2022). Supplying of Marine Diesel Engine Ecological Parameters. Naše More, 69 (1), 53–61. https://doi.org/10.17818/nm/2022/1.7
Budashko, V. V. (2020). Ship's power plants of combined propulsion complexes: concepts, technologies, researching. Оdesa: NU “OMA”, 136.
Nikolskyi, V., Budashko, V., Khniunin, S., Nikolskyi, M. (2018). Development of a Computer System of Technical Condition for the Electric Podded Azimuth Thrusters. Information technologies and computer modelling. Ivano-Frankivsk, 157–160.
Basok, B. I., Butkevych, O. F., Dubovskyi, S. V. (2021). Technical and economic aspects of decarbonisation prospects assessing of the interconnected power system of Ukraine. Tekhnichna Elektrodynamika, 5, 55–62. https://doi.org/10.15407/techned2021.05.055
Yandulskyi, O., Nesterko, A., Trunina, H. (2020). Determining the reserve capacity of thermal and hydroelectric power stations for frequency and power flows regulation in ISP of Ukraine. Tekhnichna Elektrodynamika, 1, 58–63. https://doi.org/10.15407/techned2020.01.058
Shaping the energy transition. Towards a 100% renewable energy future. Wartsila. Available at: https://www.wartsila.com/energy/vision Last accessed: 15.01.2021
Kudria, S., Riepkin, О., Rubanenkо, О., Yatsenko, L., Shynkarenko, L. (2022). Stages of green hydrogen energy development of Ukraine. Vidnovluvana Energetika, 1 (68), 5–16. https://doi.org/10.36296/1819-8058.2022.1(68).5-16
Kan, Z., Li, Z., Li, S., Zhang, T., Zhu, D., Yi, M., Huang, Y. (2020). Research on Grid-Connected/Islanded Control Strategy of PV and Battery Storage Systems as Emergency Power Supply of Pumping Storage Power Station. 2020 IEEE 3rd International Conference on Electronics Technology (ICET). Chengdu, 457–462. https://doi.org/10.1109/icet49382.2020.9119658
Zhu, Z., Liu, Z., Duan, Q., Xu, Z., Sun, B., Mei, H. (2021). Capacity Allocation of Energy Storage and Synchronous Condenser for Wind-photovoltaic-thermal-storage Combined Transmission System. 2021 IEEE Sustainable Power and Energy Conference (ISPEC). Nanjing, 239–244. https://doi.org/10.1109/ispec53008.2021.9735446
Bolotnyi, N., Loienko, Y., Karmazin, О. (2022). Energy storage systems application for operation management problems in electric power system of Ukraine. Status and development prospects. Vidnovluvana Energetika, 3 (70), 28–35. https://doi.org/10.36296/1819-8058.2022.3(70).28-35
Denysiuk, S. P., Derevianko, D. Н., Bielokha, H. S. (2022). Synthesis of models of local power systems with distributed generation sources. Tekhnichna Elektrodynamika, 4, 48–53. https://doi.org/10.15407/techned2022.04.048
Tomashevskyi, Y., Burykin, O., Kulyk, V., Malogulko, J. (2019). Estimation of the dynamics of power grid operating parameters based on standard load curves. Eastern-European Journal of Enterprise Technologies, 6 (8 (102)), 6–12. https://doi.org/10.15587/1729-4061.2019.184095
Yin, S., Jin, M., Chen, X., Guo, X., Feng, J. (2021). Modeling and Simulation of Optimal Configuration of Virtual Power Plant Oriented to Power Internet of Things. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). Shenyang, 751–754. https://doi.org/10.1109/auteee52864.2021.9668812
Kuznietsov, M., Karmazin, O. (2022). Optimal planning of hybrid power system at different electricity tariffs. Vidnovluvana Energetika, 3 (70), 6–18. https://doi.org/10.36296/1819-8058.2022.3(70).6-18
Jung, J., Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180–191. https://doi.org/10.1016/j.rser.2016.10.061
Lezhniuk, P., Komar, V., Hunko, I., Jarykbassov, D., Tussupzhanova, D., Yeraliyeva, B., Katayev, N. (2022). Natural-simulation model of photovoltaic station generation in process of electricity balancing in electrical power system. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 12 (3), 40–45. https://doi.org/10.35784/iapgos.3030
Pro zatverdzhennia Zmin do postanovy NKREKP (2019). Postanova Natsionalnoi komisii, shcho zdiisniuie derzhavne rehuliuvannia u sferakh enerhetyky ta komunalnykh posluh No. 641. 26.04.2019. Available at:
Lezhniuk, P., Komar, V., Kravchuk, S., Netrebskiy, V., Lesko, V. (2019). Optimal Integration of Photoelectric Stations in Electric Networks. LAP LAMBERT Academic Publishing, 210.
Malvoni, M., Hatziargyriou, N. (2019). One-day ahead PV power forecasts using 3D Wavelet Decomposition. 2019 International Conference on Smart Energy Systems and Technologies (SEST). Porto, 1–6. https://doi.org/10.1109/sest.2019.8849007
Lezhniuk, P., Komar, V., Povstianko, K. (2023). Relative assessment of the cost of reservation of renewable energy sources. Power engineering: Economics, Technique, Ecology, 1, 39–45. https://doi.org/10.20535/1813-5420.1.2023.275958
Hydrogen Insights A perspective on hydrogen investment, market development and cost competitiveness (2021). Hydrogen Council. Available at: https://hydrogencouncil.com/wp-content/-uploads/2021/02/Hydrogen-Insights-2021-Report.pdf
Lezhniuk, P., Kozachuk, O., Komenda, N., Malogulko, J. (2023). Electrical power and energy balance in the local electrical system by using reconciliation of the generation and consumption schedules. Przegląd Elektrotechniczny, 1 (9), 59–65. https://doi.org/10.15199/48.2023.09.10
Smolarz, A., Lezhniuk, P., Kudrya, S., Komar, V., Lysiak, V., Hunko, I. et al. (2023). Increasing Technical Efficiency of Renewable Energy Sources in Power Systems. Energies, 16 (6), 2828. https://doi.org/10.3390/en16062828
Kyrylenko, O. V., Blinov, I. V., Parus, E. V., Trach, I. V. (2021). Evaluation of efficiency of use of energy storage system in electric networks. Tekhnichna Elektrodynamika, 4, 44–54. https://doi.org/10.15407/techned2021.04.044
Baziuk, T., Blinov, I., Butkevych, O., Honcharenko, I., Denysiuk, S.; Kyrylenka, O. (Ed.) (2016). Intelektualni elektrychni merezhi: elementy ta rezhymy. Kyiv: In-t elektrodynamiky NAN Ukrainy, 399.
Jiang, W., Yang, K., Yang, J., Mao, R., Xue, N., Zhuo, Z. (2019). A Multiagent-Based Hierarchical Energy Management Strategy for Maximization of Renewable Energy Consumption in Interconnected Multi-Microgrids. IEEE Access, 7, 169931–169945. https://doi.org/10.1109/access.2019.2955552
Lezhniuk, P., Kozachuk, O., Galuzinsky, O. (2023). Use of active consumers for balance of electricity in the electric grid. Herald of Khmelnytskyi national university. Technical sciences, 3, 214–221.
Wójcik, W., Lezhniuk, P., Kaczmarek, C., Komar, V., Hunko, I., Sobchuk, N. et al. (2025). Integrated Assessment of the Quality of Functioning of Local Electric Energy Systems. Energies, 18 (1), 137. https://doi.org/10.3390/en18010137
Kozachuk, O., Lezhniuk, P. (2024). Formation of local electric energysystems in the composition of the unified energy supply system. Herald of Khmelnytskyi National University. Technical Sciences, 337 (3 (2)), 352–356. https://doi.org/10.31891/2307-5732-2024-337-3-53
Denysiuk, S. P., Derevianko, D. Н., Bielokha, H. S. (2022). Synthesis of models of local power systems with distributed generation sources. Tekhnichna Elektrodynamika, 4, 48–53. https://doi.org/10.15407/techned2022.04.048
Xing, X., Jia, L. (2023). Energy management in microgrid and multi‐microgrid. IET Renewable Power Generation, 18 (15), 3480–3508. https://doi.org/10.1049/rpg2.12816
Jiang, W., Yang, K., Yang, J., Mao, R., Xue, N., Zhuo, Z. (2019). A Multiagent-Based Hierarchical Energy Management Strategy for Maximization of Renewable Energy Consumption in Interconnected Multi-Microgrids. IEEE Access, 7, 169931–169945. https://doi.org/10.1109/access.2019.2955552
Hunko, I., Kudrya, S., Komar, V., Lezhniuk, P. (2024). Mathematical model and algorithm for the determination of the origin of electricity from renewable energy sources in the electric power system. Vidnovluvana Energetika, 2 (77), 6–12. https://doi.org/10.36296/1819-8058.2024.2(77).6-12
Zhang, J., Guo, H., Yang, G., Wang, Y., & Chen, W. (2025). Sustainable transition pathways for steel manufacturing: Low-carbon steelmaking technologies in enterprises. Sustainability, 17(12), 5329. https://doi.org/10.3390/su17125329
Mariani, A., & Malucelli, G. (2023). Insights into induction heating processes for polymeric materials: An overview of the mechanisms and current applications. Energies, 16(11), 4535. https://doi.org/10.3390/en16114535
Hauck, A., & Schmitz, W. (2018). The basic properties of the coreless induction furnace and its application in recycling production scrap. World of Metallurgy – ERZMETALL, 71(6), 309–317.
Kukhar, V., Prysiazhnyi, A., Balalayeva, E., & Anishchenko, O. (2017). Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect. In Proceedings of the International Conference on Modern Electrical and Energy Systems (MEES 2017) (pp. 404–407). IEEE. https://doi.org/10.1109/MEES.2017.8248945
Ren, W., & Wang, L. (2022). Precipitation behavior of M23C6 in high nitrogen austenitic heat-resistant steel. Journal of Alloys and Compounds, 905, 164013. https://doi.org/10.1016/j.jallcom.2022.164013
Wang, B., Zhang, Y., Qiu, F., Cai, G., Cui, W., Hu, Z., Zhang, H., Tyrer, N., & Barber, G. C. (2022). Role of trace nanoparticles in manipulating the Widmanstätten structure of low carbon steel. Materials Letters, 306, 130853. https://doi.org/10.1016/j.matlet.2021.130853
Chelariu, R. G., Cimpoeșu, N., Birnoveanu, T. I., Istrate, B., Baciu, C., & Bejinariu, C. (2022). Obtaining and analysis of a new aluminium bronze material using induction furnace. Archives of Metallurgy and Materials, 67(4), 1251–1257. https://doi.org/10.24425/amm.2022.141049
Li, H., Wang, A., Liu, T., Chen, P., He, A., Li, Q., Luan, J., & Liu, C.-T. (2021). Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Materials Today, 42, 49–56. https://doi.org/10.1016/j.mattod.2020.09.030
Aikin, M., Shalomeev, V., Kukhar, V., Kostryzhev, A., Kuziev, I., Kulynych, V., Dykha, O., Dytyniuk, V., Shapoval, O., Zagorskis, A., Burko, V., Khliestova, O., Titov, V., & Hrushko, O. (2025). Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation. Crystals, 15(8), 671. https://doi.org/10.3390/cryst15080671
Markov, O. E., Khvashchynskyi, A. S., Musorin, A. V., Markova, M. A., Shapoval, A. A., & Hrudkina, N. S. (2022). Investigation of new method of large ingots forging based on upsetting of workpieces with ledges. International Journal of Advanced Manufacturing Technology, 122(3–4), 1383–1394. https://doi.org/10.1007/s00170-022-09989-1
Kukhar, V., Balalayeva, E., Hurkovska, S., Sahirov, Y., Markov, O., Prysiazhnyi, A., & Anishchenko, O. (2020). The selection of options for closed-die forging of complex parts using computer simulation by the criteria of material savings and minimum forging force. Advances in Intelligent Systems and Computing, 989, 325–331. https://doi.org/10.1007/978-981-13-8618-3_35
Kalisz, D., Żak, P. L., Semiryagin, S., & Gerasin, S. (2021). Evolution of chemical composition and modeling of growth nonmetallic inclusions in steel containing yttrium. Materials, 14(23), 7113. https://doi.org/10.3390/ma14237113
Patil, D. D., & Ghatge, D. A. (2017). Parametric evaluation of melting practice on induction furnace to improve efficiency and system productivity of CI and SGI foundry – A review. International Advanced Research Journal in Science, Engineering and Technology, 4(Special Issue 1), 159–163. https://doi.org/10.17148/IARJSET/NCDMETE.2017.36
Sinelnikov, V., Szucki, M., Merder, T., Pieprzyca, J., & Kalisz, D. (2021). Physical and numerical modeling of the slag splashing process. Materials, 14(9), 2289. https://doi.org/10.3390/ma14092289
Dou, W., Yang, Z., Wang, Z., & Yue, Q. (2021). Molten steel flow, heat transfer and inclusion distribution in a single-strand continuous casting tundish with induction heating. Metals, 11(10), 1536. https://doi.org/10.3390/met11101536
Guglielmi, M., Baake, E., Köppen, A., Holzmann, E., Herbst, S., & MoradiMaryamnegari, S. (2023). Induction melting in a cold crucible furnace applied to innovative high-melting temperature metals. Magnetohydrodynamics, 58(4), 523–532. https://doi.org/10.22364/mhd.58.4.17
Liang, X., Li, M., Cheng, B., Wu, F., & Luo, X. (2023). Effects of induction furnace conditions on lining refractory via multi-physics field simulation. Applied Physics A, 129, 542. https://doi.org/10.1007/s00339-023-06808-6
Shiqi, L., & Weili, L. (2024). Induction furnace melting. In X. Kuangdi (Ed.), The ECPH encyclopedia of mining and metallurgy (pp. 929–931). Springer. https://doi.org/10.1007/978-981-99-2086-0_967
Khrebtova, O., Shapoval, O., Markov, O., Kukhar, V., Hrudkina, N., & Rudych, M. (2022). Control systems for the temperature field during drawing, taking into account the dynamic modes of the technological installation. In Proceedings of the 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES) (pp. 1–6). IEEE. https://doi.org/10.1109/MEES58014.2022.10005724
Savchenko, I., Shapoval, A., & Kuziev, I. (2022). Modeling of high module power sources systems safety processes. Materials Science Forum, 1052, 399–404. https://doi.org/10.4028/p-24y9ae
Artiukh, V., Mazur, V., Kukhar, V., Vershinin, V., & Shulzhenko, N. (2019). Study of polymer adhesion to steel. E3S Web of Conferences, 110, 01048. https://doi.org/10.1051/e3sconf/201911001048
Shapoval, A., Kantemyrova, R., Markov, O., Chernysh, A., Vakulenko, R., & Savchenko, I. (2020). Technology of production of refractory composites for plasma technologies. Proceedings of the 25th IEEE International Conference on Problems of Automated Electric Drive: Theory and Practice (PAEP 2020) (Article 9240830). https://doi.org/10.1109/PAEP49887.2020.9240830
Kruzhilko, O., Volodchenkova, N., Maystrenko, V., Bolibrukh, B., Kalinchyk, V. P., Zakora, A., Feshchenko, A., & Yeremenko, S. (2021). Mathematical modelling of professional risk at Ukrainian metallurgical industry enterprises. Journal of Achievements in Materials and Manufacturing Engineering, 108(1), 35–41. https://doi.org/10.5604/01.3001.0015.4797
Pachkolin, Y., Bondarenko, A., & Levchenko, S. (2018). Practical application of mathematical models of electro-thermo-mechanical processes in industrial induction furnaces with the aim of increasing their energy efficiency. Technology Audit and Production Reserves, 5(1), 28–33. https://doi.org/10.15587/2312-8372.2018.146484
Razzhivin, O., Markov, O., & Subotin, O. (2022). Automated melt temperature control system in induction furnace. In 2022 IEEE 4th International Conference on Modern Electrical and Energy Systems (MEES) (pp. 1–4). IEEE. https://doi.org/10.1109/MEES58014.2022.10005650
Dötsch, E. (2014). Operation of induction furnaces in iron foundries. In V. T. Rudnev & G. E. Totten (Eds.), Induction heating and heat treatment (ASM Handbook, Vol. 4C). ASM International. https://doi.org/10.31399/asm.hb.v04c.a0005904
Achkan, V. V., Vlasenko, K. V., Chumak, O. O., Sitak, I. V., & Kovalenko, D. A. (2022). A model of learning the online course "Creative thinking through learning elementary maths." Journal of Physics: Conference Series, 2288(1), 012020. https://doi.org/10.1088/1742-6596/2288/1/012020
Hsia, T.-C., & Huang, S.-C. (2011, August). Using the theory of inventive problem-solving (TRIZ) to implement safety improvements in foundry engineering pouring procedures. In Proceedings of the 2011 International Conference on Management and Service Science (ICMSS) (pp. 1–4). IEEE. https://doi.org/10.1109/ICMSS.2011.5999352
Refractories Materials. (2024, June 17). Refractory lining materials for induction furnaces. Refractories Materials. https://refractoriesmaterials.com/refractory-lining-materials-for-induction-furnaces
Park, H.-S., & Dang, X.-P. (2013). Reduction of heat losses for the in-line induction heating system by optimization of thermal insulation. International Journal of Precision Engineering and Manufacturing, 14, 903–909. https://doi.org/10.1007/s12541-013-0119-6
Umbrasko, A., Baake, E., Nacke, B., & Jakovics, A. (2008). Numerical studies of the melting process in the induction furnace with cold crucible. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 27(2), 359–368. https://doi.org/10.1108/03321640810847643
Dötsch, E., & Nacke, B. (2014). Components and design of induction crucible furnaces. In V. T. Rudnev & G. E. Totten (Eds.), Induction heating and heat treatment (ASM handbook, Vol. 4C). ASM International. https://doi.org/10.31399/asm.hb.v04c.a0005899
Nesarajah, M., & Frey, G. (2016). Thermoelectric power generation: Peltier element versus thermoelectric generator. In Proceedings of IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society (pp. 4252–4257). IEEE. https://doi.org/10.1109/IECON.2016.7793029
Demin, D. (2020). Constructing the parametric failure function of the temperature control system of induction crucible furnaces. EUREKA: Physics and Engineering, 6, 19–32. https://doi.org/10.21303/2461-4262.2020.001489
Przyłucki, R., Golak, S., Oleksiak, B., & Blacha, L. (2011). Influence of the geometry of the arrangement inductor — crucible to the velocity of the transport of mass in the liquid metallic phase mixed inductive. Archives of Civil and Mechanical Engineering, 11, 171–179. https://doi.org/10.1016/S1644-9665(12)60181-2
Sadri, A., Ying, W. L., Erskine, J., & MacRosty, R. (2016, October). Smelting furnace non-destructive testing (NDT) and monitoring. In 19th World Conference on Non-Destructive Testing (pp. 1–12). Hatch Ltd. https://ndt.net/?id=19619
Ung, D. (2023). Enhancing crucible performance in non-ferrous applications. Foundry Practice, 272, 13–17. https://27097971.fs1.hubspotusercontent-eu1.net/hubfs/27097971/FP%20272%20en.pdf
Tamura, S., Ochiai, T., Matsui, T., & Goto, K. (2008, July). Technological philosophy and perspective of nanotech refractories. Nippon Steel Technical Report, (98), 18–28. https://www.nipponsteel.com/en/tech/report/nsc/pdf/n9804.pdf
Prstić, A., Aćimović-Pavlović, Z., Terzić, A., & Pavlović, L. (2014). Synthesis and characterization of new refractory coatings based on talc, cordierite, zircon and mullite fillers for lost foam casting process. Archives of Metallurgy and Materials, 59(1), 89–95. https://doi.org/10.2478/amm-2014-0015
Buliński, P., Smolka, J., Golak, S., Przyłucki, R., Palacz, M., Siwiec, G., Lipart, J., Białecki, R., & Blacha, L. (2017). Numerical and experimental investigation of heat transfer process in electromagnetically driven flow within a vacuum induction furnace. Applied Thermal Engineering, 124, 1003–1013. https://doi.org/10.1016/j.applthermaleng.2017.06.099
Durand, F. (2005). The electromagnetic cold crucible as a tool for melt preparation and continuous casting. International Journal of Cast Metals Research, 18(2), 93–107. https://doi.org/10.1179/136404605225022883
Savransky, S. D. (2000). Engineering of creativity: Introduction to TRIZ methodology of inventive problem solving (1st ed., 408 pp.). CRC Press. https://doi.org/10.1201/9781420038958
Altshuller, G. S. (1984). Creativity as an exact science (1st ed., 320 pp.). CRC Press. https://doi.org/10.1201/9781466593442
Wu, X., Ma, J., Wang, J., Song, H., & Xu, J. (2025). Mobile tunnel lining measurable image scanning assisted by collimated lasers. Sensors, 25(13), 4177. https://doi.org/10.3390/s25134177
Tucci, G., Conti, A., & Fiorini, L. (2020). Refractory brick lining measurement and monitoring in a rotary kiln with terrestrial laser scanning. In C. Parente, S. Troisi, & A. Vettore (Eds.), R3 in Geomatics: Research, Results and Review (R3GEO 2019) (Communications in Computer and Information Science, Vol. 1246, pp. 296–310). Springer. https://doi.org/10.1007/978-3-030-62800-0_23
Kuo, S.-K., Lee, W.-C., & Du, S.-W. (2008). Measurement of blast furnace refractory lining thickness with a 3D laser scanning device and image registration method. ISIJ International, 48(10), 1354–1358. https://doi.org/10.2355/isijinternational.48.1354
Andrade, J., Viale, M., De los Santos, C., Butler, R., Kan, M., Rambo, M., & Corbari, R. (2015). EAF application of SmartFurnace and ZoloSCAN laser off gas measurement technology at Vallourec Star (Tech. Rep. No. PPMS001_2018). AMI Automation & Vallourec Star. https://www.amiautomation.com/PPMS001_2018
Angelova, D. (2021). Experimental application of the method of focal objects in design education. Innovation in Woodworking Industry and Engineering Design, 2(20), 82–87. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20220215904
Schmitz, W., Donsbach, F., & Henrik, H. (2006, June 5–7). Development and use of a new optical sensor system for induction furnace crucible monitoring. In Proceedings of the 67th World Foundry Congress: “Casting the Future” (Vol. 1, pp. 653–662). Institute of Cast Metals Engineers. Curran Associates, Inc. https://www.iftabira.org/pdfs/15%20W.Schmitz_441168101.pdf
Pererva, P., Kuchynskyi, V., Kobielieva, T., Kosenko, A., & Maslak, O. (2021). Economic substantiation of outsourcing the information technologies and logistic services in the intellectual and innovative activities of an enterprise. Eastern-European Journal of Enterprise Technologies, 4(13[112]), 6–14. https://doi.org/10.15587/1729-4061.2021.239164
Sadri, A., Ying, W. L., Erskine, J., & Macrosty, R. (2016, June 13–17). Smelting furnace non-destructive testing (NDT) and monitoring. In 19th World Conference on Nondestructive Testing (pp. 1–12). Munich, Germany. https://www.ndt.net/article/wcndt2016/papers/th4e5.pdf
Prijanovič Tonkovič, M., & Lamut, J. (2020). Build-up formation in an induction channel furnace. Materiali in Tehnologije, 54(2), 167–171. https://doi.org/10.17222/mit.2019.233
Zhang, H., Zhang, C., Vaziri, S., Kenarangi, F., & Sun, Y. (2021). Microfluidic ionic liquid dye laser. IEEE Photonics Journal, 13(1), 1–8. https://doi.org/10.1109/JPHOT.2020.3044861
Biswas, D. J. (2023). Molecular gas lasers. In A beginner’s guide to lasers and their applications. Part 1 (Undergraduate Lecture Notes in Physics, pp. 261–285). Cham, Switzerland: Springer.
Yang, L., Tang, S., Fan, Z., Jiang W. & Liu X. (2021). Rapid casting technology based on selective laser sintering. China Foundry, 18, 296–306. https://doi.org/10.1007/s41230-021-1099-2
Mudge, R. P., & Wald, N. R. (2007). Laser engineered net shaping advances additive manufacturing and repair. Welding Journal, 86(1), 44–48. https://lpclients.com/dev/rpmassociates/uploads/lens_advances_manufacturing_and_repair_.pdf
Chang, K.-S., Lu, S.-T., Wu, Y.-P., & Chou, C. (1992). Correction algorithms in a laser scanning dimension measurement system. IEE Proceedings A: Science, Measurement and Technology, 139(2), 57–60. https://doi.org/10.1049/ip-a-3.1992.0011
Zuo J., Lin X. (2022). High‐Power Laser Systems. Laser & Photonics Reviews, 16(5), 2100741. https://doi.org/10.1002/lpor.202100741
Hu, S., Huang, K., Zhu, F., Gai, B., Li, J., Tan, Y., & Guo, J. (2023). Temporal evolution of laser-induced ionization and recombination processes in argon-helium mixture. Optics Continuum, 2, 2516–2528. https://doi.org/10.1364/optcon.506849
Oukach, S., Pateyron, B., & Pawłowski, L. (2019). Physical and chemical phenomena occurring between solid ceramics and liquid metals and alloys at laser and plasma composite coatings formation: A review. Surface Science Reports, 74(3), 213–241. https://doi.org/10.1016/j.surfrep.2019.06.001
Gorokhovskii, A. V., Meshcheryakov, D. V., Burmistrov, I. N., & Sevryugin, A. V. (2019). Heat-reflecting ceramic materials based on potassium polytitanate and silicon oxide. Refractories and Industrial Ceramics, 59, 663–666. https://doi.org/10.1007/s11148-019-00292-3
