Intelligentization of control systems for local electric power systems

Authors

Vinnytsia National Technical University, Ukraine
https://orcid.org/0000-0003-0338-2131
Vinnytsia National Technical University, Ukraine
https://orcid.org/0000-0003-4969-8553
Institute of Renewable Energy of the National Academy of Sciences of Ukraine, Ukraine
https://orcid.org/0009-0007-0211-9100
Vinnytsia National Technical University, Ukraine
https://orcid.org/0000-0002-6637-7391
Vinnytsia National Technical University, Ukraine
https://orcid.org/0000-0003-2855-1253
Vinnytsia National Technical University, Ukraine
https://orcid.org/0000-0001-7341-9724

Keywords:

Local electrical systems, autonomous mode, renewable energy sources, intelligent control system

Synopsis

The work is devoted to a close analysis of the state and prospects for the development of the energy complex of Ukraine. The aim of the study is to develop a methodology for selecting and substantiating the predominant type of energy resources for energy supply of regions.

The state of use of available energy resources, their share in the total volume of energy production is clarified. The advantages and disadvantages of available resources in connection with their impact on the environment are considered.

It is proved that the predominant amount of energy is produced using traditional fossil and produced resources: coal, oil, gas and nuclear fuel. Energy production traditionally follows the availability of resources in the region and the need for energy, which creates an uneven concentration of industry and its accompanying environmental impact.

The use of a complex indicator for assessing the efficiency of types of energy resources and the impact of their use on the state of the environment is proposed. A methodology for using the proposed complex indicator to substantiate the energy strategies of regions is developed.

References

Basok, B. I., Butkevych, O. F., Dubovskyi, S. V. (2021). Technical and economic aspects of decarbonisation prospects assessing of the interconnected power system of Ukraine. Tekhnichna Elektrodynamika, 5, 55–62. https://doi.org/10.15407/techned2021.05.055

Yandulskyi, O., Nesterko, A., Trunina, H. (2020). Determining the reserve capacity of thermal and hydroelectric power stations for frequency and power flows regulation in ISP of Ukraine. Tekhnichna Elektrodynamika, 1, 58–63. https://doi.org/10.15407/techned2020.01.058

Shaping the energy transition. Towards a 100% renewable energy future. Wartsila. Available at: https://www.wartsila.com/energy/vision Last accessed: 15.01.2021

Kudria, S., Riepkin, О., Rubanenkо, О., Yatsenko, L., Shynkarenko, L. (2022). Stages of green hydrogen energy development of Ukraine. Vidnovluvana Energetika, 1 (68), 5–16. https://doi.org/10.36296/1819-8058.2022.1(68).5-16

Kan, Z., Li, Z., Li, S., Zhang, T., Zhu, D., Yi, M., Huang, Y. (2020). Research on Grid-Connected/Islanded Control Strategy of PV and Battery Storage Systems as Emergency Power Supply of Pumping Storage Power Station. 2020 IEEE 3rd International Conference on Electronics Technology (ICET). Chengdu, 457–462. https://doi.org/10.1109/icet49382.2020.9119658

Zhu, Z., Liu, Z., Duan, Q., Xu, Z., Sun, B., Mei, H. (2021). Capacity Allocation of Energy Storage and Synchronous Condenser for Wind-photovoltaic-thermal-storage Combined Transmission System. 2021 IEEE Sustainable Power and Energy Conference (ISPEC). Nanjing, 239–244. https://doi.org/10.1109/ispec53008.2021.9735446

Bolotnyi, N., Loienko, Y., Karmazin, О. (2022). Energy storage systems application for operation management problems in electric power system of Ukraine. Status and development prospects. Vidnovluvana Energetika, 3 (70), 28–35. https://doi.org/10.36296/1819-8058.2022.3(70).28-35

Denysiuk, S. P., Derevianko, D. Н., Bielokha, H. S. (2022). Synthesis of models of local power systems with distributed generation sources. Tekhnichna Elektrodynamika, 4, 48–53. https://doi.org/10.15407/techned2022.04.048

Tomashevskyi, Y., Burykin, O., Kulyk, V., Malogulko, J. (2019). Estimation of the dynamics of power grid operating parameters based on standard load curves. Eastern-European Journal of Enterprise Technologies, 6 (8 (102)), 6–12. https://doi.org/10.15587/1729-4061.2019.184095

Yin, S., Jin, M., Chen, X., Guo, X., Feng, J. (2021). Modeling and Simulation of Optimal Configuration of Virtual Power Plant Oriented to Power Internet of Things. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). Shenyang, 751–754. https://doi.org/10.1109/auteee52864.2021.9668812

Kuznietsov, M., Karmazin, O. (2022). Optimal planning of hybrid power system at different electricity tariffs. Vidnovluvana Energetika, 3 (70), 6–18. https://doi.org/10.36296/1819-8058.2022.3(70).6-18

Jung, J., Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180–191. https://doi.org/10.1016/j.rser.2016.10.061

Lezhniuk, P., Komar, V., Hunko, I., Jarykbassov, D., Tussupzhanova, D., Yeraliyeva, B., Katayev, N. (2022). Natural-simulation model of photovoltaic station generation in process of electricity balancing in electrical power system. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 12 (3), 40–45. https://doi.org/10.35784/iapgos.3030

Pro zatverdzhennia Zmin do postanovy NKREKP (2019). Postanova Natsionalnoi komisii, shcho zdiisniuie derzhavne rehuliuvannia u sferakh enerhetyky ta komunalnykh posluh No. 641. 26.04.2019. Available at:

Lezhniuk, P., Komar, V., Kravchuk, S., Netrebskiy, V., Lesko, V. (2019). Optimal Integration of Photoelectric Stations in Electric Networks. LAP LAMBERT Academic Publishing, 210.

Malvoni, M., Hatziargyriou, N. (2019). One-day ahead PV power forecasts using 3D Wavelet Decomposition. 2019 International Conference on Smart Energy Systems and Technologies (SEST). Porto, 1–6. https://doi.org/10.1109/sest.2019.8849007

Lezhniuk, P., Komar, V., Povstianko, K. (2023). Relative assessment of the cost of reservation of renewable energy sources. Power engineering: Economics, Technique, Ecology, 1, 39–45. https://doi.org/10.20535/1813-5420.1.2023.275958

Hydrogen Insights A perspective on hydrogen investment, market development and cost competitiveness (2021). Hydrogen Council. Available at: https://hydrogencouncil.com/wp-content/-uploads/2021/02/Hydrogen-Insights-2021-Report.pdf

Lezhniuk, P., Kozachuk, O., Komenda, N., Malogulko, J. (2023). Electrical power and energy balance in the local electrical system by using reconciliation of the generation and consumption schedules. Przegląd Elektrotechniczny, 1 (9), 59–65. https://doi.org/10.15199/48.2023.09.10

Smolarz, A., Lezhniuk, P., Kudrya, S., Komar, V., Lysiak, V., Hunko, I. et al. (2023). Increasing Technical Efficiency of Renewable Energy Sources in Power Systems. Energies, 16 (6), 2828. https://doi.org/10.3390/en16062828

Kyrylenko, O. V., Blinov, I. V., Parus, E. V., Trach, I. V. (2021). Evaluation of efficiency of use of energy storage system in electric networks. Tekhnichna Elektrodynamika, 4, 44–54. https://doi.org/10.15407/techned2021.04.044

Baziuk, T., Blinov, I., Butkevych, O., Honcharenko, I., Denysiuk, S.; Kyrylenka, O. (Ed.) (2016). Intelektualni elektrychni merezhi: elementy ta rezhymy. Kyiv: In-t elektrodynamiky NAN Ukrainy, 399.

Jiang, W., Yang, K., Yang, J., Mao, R., Xue, N., Zhuo, Z. (2019). A Multiagent-Based Hierarchical Energy Management Strategy for Maximization of Renewable Energy Consumption in Interconnected Multi-Microgrids. IEEE Access, 7, 169931–169945. https://doi.org/10.1109/access.2019.2955552

Lezhniuk, P., Kozachuk, O., Galuzinsky, O. (2023). Use of active consumers for balance of electricity in the electric grid. Herald of Khmelnytskyi national university. Technical sciences, 3, 214–221.

Wójcik, W., Lezhniuk, P., Kaczmarek, C., Komar, V., Hunko, I., Sobchuk, N. et al. (2025). Integrated Assessment of the Quality of Functioning of Local Electric Energy Systems. Energies, 18 (1), 137. https://doi.org/10.3390/en18010137

Kozachuk, O., Lezhniuk, P. (2024). Formation of local electric energysystems in the composition of the unified energy supply system. Herald of Khmelnytskyi National University. Technical Sciences, 337 (3 (2)), 352–356. https://doi.org/10.31891/2307-5732-2024-337-3-53

Denysiuk, S. P., Derevianko, D. Н., Bielokha, H. S. (2022). Synthesis of models of local power systems with distributed generation sources. Tekhnichna Elektrodynamika, 4, 48–53. https://doi.org/10.15407/techned2022.04.048

Xing, X., Jia, L. (2023). Energy management in microgrid and multi‐microgrid. IET Renewable Power Generation, 18 (15), 3480–3508. https://doi.org/10.1049/rpg2.12816

Jiang, W., Yang, K., Yang, J., Mao, R., Xue, N., Zhuo, Z. (2019). A Multiagent-Based Hierarchical Energy Management Strategy for Maximization of Renewable Energy Consumption in Interconnected Multi-Microgrids. IEEE Access, 7, 169931–169945. https://doi.org/10.1109/access.2019.2955552

Hunko, I., Kudrya, S., Komar, V., Lezhniuk, P. (2024). Mathematical model and algorithm for the determination of the origin of electricity from renewable energy sources in the electric power system. Vidnovluvana Energetika, 2 (77), 6–12. https://doi.org/10.36296/1819-8058.2024.2(77).6-12

Downloads

Published

November 11, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-19-1

How to Cite

Lezhniuk, P., Komar, V., Lysyi, V., Malohulko, Y., Netrebskyi, V., & Sikorska, O. (2025). Intelligentization of control systems for local electric power systems. In I. Krasnikov (Ed.), PROCESSES AND CONTROL SYSTEMS: SYNTHESIS, MODELING, OPTIMIZATION. Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-19-1.ch4