Technological aspects of computer control of the secondary condensation complex of ammonia production under uncertainty

Authors

National Technical University "Kharkiv Polytechnic Institute", Ukraine
https://orcid.org/0000-0002-8649-9417
National Technical University "Kharkiv Polytechnic Institute", Ukraine
https://orcid.org/0000-0002-7663-1816
Ukrainian State University of Railway Transport, Ukraine
https://orcid.org/0000-0002-5345-7595
National Technical University "Kharkiv Polytechnic Institute", Ukraine
https://orcid.org/0000-0002-1297-1045
National Technical University "Kharkiv Polytechnic Institute", Ukraine
https://orcid.org/0000-0002-6311-8060
National Technical University "Kharkiv Polytechnic Institute", Ukraine
https://orcid.org/0000-0002-3723-8587

Keywords:

ammonia production, secondary condensation, mathematical modelling of heat transfer processes, computer-integrated technology, optimal software control

Synopsis

The current publication reports on the magnetic field influence on the microstructure of Cz-Si doped with Al, Mg, Cu, Fe, Zr, Hf. The point is that these dopants have different effects on the interaction energy of silicon atoms in its crystal lattice and differently behave under magnetic field treatment. In this context, the problem of silicon processing is first time addressed.

It is established that the dopants (Al, Mg, Cu, Fe), which decrease the energy of atom interaction within the crystal lattice of silicon, lead to the increase in the defects of the silicon structural units after 240 hours of magnetic field treatment while 720 hours produce the decrease in the quantity of such defects.

Cz-Si doped with Zr, Hf (these dopants increase the interaction energy of the silicon crystal lattice) experiences the decrease in the quantity of defects in the structural units starting from 240 of exposing to the magnetic field.

By means of X-ray diffraction technique, the occurrence of new peaks on the scattering angles of 90–92 degrees has been detected, that is due to SiFCC lattice distortion and the formation of Si orthorhomic alongside with it. This indicates phase transformations in the samples of semiconductor silicon during magnetic treatment at room temperature.

References

Heidlage, M., Pfromm P. H. (2015). Novel Thermochemical Synthesis of Ammonia and Syngas from Natural Gas. 2015 AIChE Annual Meeting Proceedings. Available at: https://www.aiche.org/conferences/aiche-annual-meeting/2015/proceeding/paper/517b-novel-thermochemical-synthesis-ammonia-and-syngas-natural-gas

Dawson, C. J., Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36 (1), 14–22. https://doi.org/10.1016/j.foodpol.2010.11.012

Dybkjær, I. (2013). 100 years of ammonia synthesis technology. 58th Annual Safety in Ammonia Plants and Related Facilities Symposium. Available at: https://www.aiche.org/sites/default/files/docs/conferences/8096_ Ammonia2013_Committee_Flyer_v8_0.pdf

Noelker, K., Ruether, J. (2011). Low Energy Consumption Ammonia Production:Baseline Energy Consumption, Options for Energy Optimization. Nitrogen + Syngas Conference. Available at: https://www.scribd.com/document/317686530/Low-Energy-Consumption-Ammonia-Production-2011-paper-pdf

Babichenko, A. K., Toshynskyi, V. Y. (2009). Zastosuvannia matematychnoho modeliuvannia dlia diahnostyky pokaznykiv efektyvnosti protsesiv teplo-i masoobminu v absorberakh teplovykorystuiuchykh kholodylnykh ustanovok ahrehativ syntezu amiaku. Issues of Chemistry and Chemical Technology, 6, 107–111.

Ladaniuk, A. P., Ladaniuk, O. A., Boiko, R. O., Ivashchiuk, V. V., Kronikovskyi, D. O., Shumyhai, D. A.; Ladaniuk, A. P. (Ed.) (2015). Suchasni metody avtomatyzatsii tekhnolohichnykh obiektiv. Inter Lohistyk Ukraina, 408.

Wu, H., Wang, W., Ye, H. (2013). Robust state estimation for linear systems with parametric uncertainties and quantised measurements. International Journal of Systems Science, 46 (3), 526–534. https://doi.org/10.1080/00207721.2013.807387

Tovazhnianskyi, L. L., Loboiko, O. Ya., Hryn, H. I., Slabun, I. O., Vorozhbiian, M. I., Molchanov, V. I. et al.; Loboiko, O. Ya. (Ed.). Tekhnolohiia zviazanoho azotu. NTU “KhPI”, 536.

Fronk, B. M., Garimella, S. (2016). Condensation of ammonia and high-temperature-glide ammonia/water zeotropic mixtures in minichannels – Part I: Measurements. International Journal of Heat and Mass Transfer, 101, 1343–1356. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.049

Malyshev, V. V., Krietov, V. V., Hladka, T. M. (2015). Tekhnichna termodynamika ta teploperedacha. Universytet "Ukraina", 257.

Chen H.-F., Zhang J.-F. (1990). Stochastic Adaptive Control for ARMAX Systems with Unknown Orders, Time-Delay and Coefficients. IFAC Proceedings Volumes, 23 (8 (2)), 267–272. https://doi.org/10.1016/S1474-6670(17)52019-4

Ladaniuk, A. P, Reshetiuk, V. M., Kyshenko, V. D., Smitiukh, Ya. V. (2014). Innovatsiini tekhnolohii v upravlinni skladnymy biotekhnolohichnymy obiektamy ahropromyslovoho kompleksu. Tsentr uchbovoi literatury, 280.

Brandt, S. (2014). Data Analysis: Statistical and Computational Methods for Scientists and Engineers. Springer Cham, 523.

Hlon, O. V., Dubovoi, V. M. (2004). Modeliuvannia system keruvannia v umovakh nevyznachenosti. UNIVERSUM, 169.

Wit, E., van den Heuvel, E., Romeijn, J.-W. (2012). ‘All models are wrong...’: an introduction to model uncertainty. Statistica Neerlandica, "All Models are Wrong...", 66 (3), 217–236. https://doi.org/10.1111/j.1467-9574.2012.00530.x

Babichenko, A., Velma, V., Babichenko, J., Kravchenko, Y., Krasnikov, I. (2017). System analysis of the secondary condensation unit in the context of improving energy efficiency of ammonia production. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 18–26. https://doi.org/10.15587/1729-4061.2017.96464

Babichenko, A. K., Podustov, M. O., Kravchenko, Y. O., Babichenko, Y. A. (2019). Formation of the information array of the identifier of the adaptive control system of the ammonia production condensation unit with uncertainties. Bulletin of the National Technical University "KhPI", A series of "Information and Modeling", 13 (1338), 5–13. Available at: http://pim.khpi.edu.ua/article/view/2411-0558.2019.13.03

Mendenhall, W., Sincich T. L. (2003). A Second Course in Statistics: Regression Analysis. Sixth Edition. Pearson Education, 880.

Babichenko, A., Babichenko, J., Kravchenko, Y., Velma, S., Krasnikov, I., Lysachenko, I. (2018). Identification of heat exchange process in the evaporators of absorption refrigerating units under conditions of uncertainty. Eastern-European Journal of Enterprise Technologies, 1 (2 (91)), 21–29. https://doi.org/10.15587/1729-4061.2018.121711

Babichenko, A. (2010). Conformities to the law of heat exchange in the process of condensation of ammonia of products from circulation gas in viparnikakh of aggregates of synthesis. Integrated Technologies and Energy Conservation, 1, 47–53. Available at: https://www.kpi.kharkov.ua/archive/Наукова_періодика/ite/2010/2010_1.pdf

Babichenko, A., Podustov M., Kravchenko, Y. (2018). Systematic approach to creating an optimal structure and control system for the technological complex of secondary condensation of ammonia production. Accent Graphics Communications & Publishing, 145–155.

Babichenko, A. K., Toshynskyi, V. Y., Krasnikov, Y. L., Podustov M. A. (2007). Enerhozberihaiuche tekhnolohichne oformlennia bloku vtorynnoi kondensatsii krupnotonazhnykh ahrehativ syntezu amiaku. Integrated Technologies and Energy Conservation, 4, 3–7. Available at: https://www.kpi.kharkov.ua/archive/Наукова_періодика/ite/2007/2007_4.pdf

Garimella, S., Mostafa, S., Sheldon, M. (2012). Ammonia-water desorption in flooded columns. Georgia Institute of Technology, Sheldon, 148.

Shukla, A., Mishra, A., Shukla, D., Chauhan, K. (2015). C.O.P derivation and thermodynamic calculation of ammonia-water vapor absorption refrigeration system / Shukla A., Mishra A., Shukla D., Chauhan K. International Journal of Mechanical Engineering and Technology, 6 (5), 72–81. Available at: https://iaeme.com/Home/article_id/IJMET_06_05_010

Lutska, N. M., Ladaniuk, A. P. (2016). Optymalni ta robastni systemy keruvannia tekhnolohichnymy obiektamy. Lira-K, 288.

Babichenko, A., Kravchenko, Y., Babichenko, J., Krasnikov, I., Lysachenko, I., Velma, V. (2018). Algorithmic tools for optimizing the temperature regime of evaporator at absorption-refrigeration units of ammonia production. Eastern-European Journal of Enterprise Technologies, 4 (2 (94)), 29–35. https://doi.org/10.15587/1729-4061.2018.139633

Çengel, Y. A. (2009). Introduction to Thermodynamics and Heat Transfer. McGraw-Hill, 960.

Hare, W., Nutini, J., Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28. https://doi.org/10.1016/j.advengsoft.2013.03.001

Ravindran, A., Ragsdell, K. M., Reklaitis, G. V. (2007). Engineering optimization: methods and applications. New York: John Wiley & Sons, 667. doi: https://doi.org/10.1002/9780470117811

Sharma, K. L. S. (2016). Overview of Industrial Process Automation. Elsevier, 492.

Pacaux-Lemoine, M.-P., Trentesaux, D., Zambrano Rey, G., Millot, P. (2017). Designing intelligent manufacturing systems through Human-Machine Cooperation principles: A human-centered approach. Computers & Industrial Engineering, 111, 581–595. https://doi.org/10.1016/j.cie.2017.05.014

Downloads

Published

November 11, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-19-1

How to Cite

Babichenko, A., Krasnikov, I., Babichenko, J., Dzevochko, O., Kravchenko, Y., & Lysachenko, I. (2025). Technological aspects of computer control of the secondary condensation complex of ammonia production under uncertainty. In I. Krasnikov (Ed.), PROCESSES AND CONTROL SYSTEMS: SYNTHESIS, MODELING, OPTIMIZATION. Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-19-1.ch1