MODERN TRENDS IN CONSTRUCTION MATERIALS TECHNOLOGIES

Authors

Physico-Technological Institute of Metals and Alloys of National Academy of Sciences of Ukraine, Ukraine
https://orcid.org/0000-0002-8410-7045

Keywords:

Chromium-manganese alloys, chemical composition, phase composition, thermal analysis, crystallization, wear resistance, heat treatment, structure, alloying, operational durability, inclusive engineering, craft technologies, design, architectural solutions, building materials, sustainable development, ost-war reconstruction of Ukraine, food service facilities, quality, safety, HACCP, high-entropy alloys, heat resistance, elastic properties, thermophysical parameters, B2-phase, fluidity, induction melting, reinforced cast structure, reinforcing filler, matrix melt, gas-hydrodynamic conditions, heat exchange processes, computer simulation, polystyrene foam pattern, cast steel, lost foam casting, heat treatment of steel, technological process

Synopsis

The monograph is devoted to the actual scientific and practical problems of materials science, foundry production and engineering and architectural solutions, which are of great importance for the industrial development and post-war reconstruction of Ukraine. The book comprehensively combines research in the field of creation of new metal materials with increased operational properties and development of inclusive and sustainable engineering approaches in construction and environmental design.

The first chapter substantiates the rational compositions of chromium-manganese alloys and investigates the regularities of formation of their structure, phase composition and properties in the cast state. The possibilities of reducing the energy intensity of casting processes and increasing the wear resistance of products compared to traditional alloys-analogues are shown. The prospects of using the developed materials to increase the operational stability of piercing mandrels of pipe rolling mills are determined, provided that the heat treatment regimens are optimized and metastable self-strengthening structures are formed.

The second chapter is devoted to the integration of the principles of inclusive engineering and artisanal technologies in the design of public catering establishments in the conditions of post-war reconstruction of Ukraine. The choice of environmentally friendly building materials and architectural solutions that ensure accessibility, safety, energy efficiency and compliance with sanitary and hygienic requirements (HACCP) is justified. The proposed approach contributes to the sustainable development of communities, reducing the environmental load and preserving local cultural identity.

The third chapter considers promising high-entropy alloys based on the FeNiCrCuAl and FeNiCrCuMn systems as heat-resistant casting materials of a new generation. Based on thermodynamic calculations, structural-phase analysis and research of thermophysical, mechanical and casting properties, their high structural stability and feasibility of use in conditions of elevated temperatures are confirmed.

The fourth chapter highlights the scientific and technological prerequisites for obtaining steel hollow castings with composite and reinforced non-metallic fillers by the casting method using gasified models. A mathematical description of gas-hydrodynamic processes has been developed, computer modeling and experimental verification of technological solutions that are important for the manufacture of special and protective casting products have been carried out.

The book is addressed to scientists, practicing engineers, foundry specialists, architects and designers, as well as scientific and pedagogical workers and higher education students in the specialties of materials science, metallurgy and civil engineering.

Chapters

References

Rozhkova, Ye. V., & Vatkovskaya, I. Ye. (1985). Prokalivaemost iznosostoikikh chugunov. Liteinoe proizvodstvo, 1, 33–35.

Stepina, A. I., Stupitskii, A. M., & Kleis, I. R. (1977). Vliyanie strukturi na iznosostoikost chugunov. Liteinoe proizvodstvo, 9, 26–36.

Romanov, O. M., Rozhkova, Ye. V., Kozlov, L. Ya., & Shveikhman, A. O. (1981). Iznosostoikie lopatki drobemetnikh apparatov. Liteinoe proizvodstvo, 6, 26–30.

Leshchenko, A. D., Kutuzov, A. D., & Lunev, V. V. (1988). Sostav khromistogo chuguna s zadannimi svoistvami. Liteinoe proizvodstvo, 6, 8–12.

Timofeeva, L. A., Timofeev, S. S., Dyomin, A. Y., et al. (2018). Surface modification of machine parts made of iron–carbon alloys operating under conditions of friction and wear. Journal of Friction and Wear, 39(3), 283–289.

Timofeєva, L. A., Ustenko, O. V., Tsap, O. І., & Voloshina, L. V. (2019). Pіdvishchennya yekspluatatsіinikh pokaznikіv friktsіinikh klinіv shlyakhom formuvannya pokrittіv zі spetsіalnimi vlastivostyami. Zbіrnik naukovikh prats UkrDUZT, 185, 88–95.

Timofeєva, L. A., Timofeєv, S. S., Voloshina, L. V., & Kolesnik, M. A. (2021). Pіdvishchennya tribologіchnikh vlastivostei poverkhnevogo sharu chavunu za dopomogoyu obroblennya v seredovishchі peregrіtoї pari vodyanogo rozchinu solei. Vіsnik KhNADU, 94, 123–127.

Yurasov, S. A., Kozlov, L. Ya., & Rozhkova, Ye. V. (1984). Vliyanie strukturi metallicheskoi osnovi na prochnost khromistikh splavov. Metallovedenie i termicheskaya obrabotka metallov (MitOM), 7, 18–20.

Bunin, K. P., & Taran, Yu. N. (1972). Stroenie chuguna. Metallurgiya.

Grigorovich, V. K. (1970). Elektronnoe stroenie i termodinamika splavov zheleza. Nauka.

Bobro, Yu. G. (1976). Legirovannnie chuguni. Metallurgiya.

Bobro, Yu. G., Tikhonovich, V. I., & Bobro, A. Yu. (1990). Upravlenie strukturoi metallicheskoi matritsi iznosostoikikh chugunov. Protsessi litya, 1, 31–35.

Garber, M. Ye. (2010). Iznosostoikie belie chuguni: svoistva, struktura, tekhnologiya, ekspluatatsiya. Mashinostroenie.

Bunin, K. P., Malinochka, Ya. N., & Taran, Yu. N. (1969). Osnovi metallografii chuguna. Metallurgiya.

Taran, Yu. N., & Snagovskii, V. M. (1966). Morfologiya evtektiki v Fe–C–Cr splavakh. Metallovedenie i termicheskaya obrabotka metallov, 4, 27–30.

Yakovlev, A. Yu., & Volchok, I. P. (2007). Materiali dlya izgotovleniya metallicheskikh form. Lite i metallurgiya, 4, 118–121.

Skoblo, T. S., Popova, Ye. G., & Sidashenko, A. I. (2001). Vliyanie kolichestva i razmera karbidnoi fazi na svoistva tsentrobezhnolitikh valkov s rabochim sloem iz visokokhromistogo chuguna. Liteinoe proizvodstvo, 8, 7–8.

Rockel, M., & Bender, R. (2008). Heat‐resistant and scaling‐resistant alloys. In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. https://doi.org/10.1002/9783527610433.chb01273

Svistunova, T. V., Runova, Z. K., & Kireeva, T. S. (1976). Vliyanie sostava na strukturu i svoistva austenitnikh zhelezokhromonikelevikh splavov. Stal, 9, 851–853.

Nosova, G. I., & Polyakova, N. A. (1980). Nekotorie osobennosti povedeniya zharoprochnikh splavov pri tsiklicheski menyayushchikhsya temperaturakh. Fizika metallov i metallovedenie (FMM), 50, 818–825.

Svistunova, T. V., Runova, Z. K., & Kireeva, T. S. (1983). Novie splavi na osnove nikelya dlya raboti pri visokikh temperaturakh. Zashchita metallov, 19(2), 212–219.

Krell, J., Röttger, A., & Theisen, W. (2019). Chromium-nickel-alloys for wear application at elevated temperature. Wear, 432-433, 102924. https://doi.org/10.1016/j.wear.2019.102924

Svistunova, T. V., Runova, Z. K., & Kireeva, T. S. (1979). Zharoprochnost i fiziko-khimicheskie svoistva mnogokomponentnikh nikelevikh splavov. Stal, 2, 141–143.

Taran, Yu. M. (Ed.). (1983). Metaloznavstvo і termіchna obrobka іz zastosuvannyam komp’yuternikh tekhnologіi navchannya: navch. posіbnik. ІSDO.

Sims, Ch., & Khagel, V. (1976). Zharoprochnie splavi (Trans.). Metallurgiya.

Sabol, G. P., & Sticker, R. (1969). Microstructure of Nickel-Based Superalloys. Physica Status Solidi, 35(11), 1085–1089.

Sustaita Torres, I., Haro Rodriguez, S., Guerrero, M., De la Garza Garza, M., Valdes, E., Deschaux-Beaume, F., & Colás, R. (2012). Aging of a cast 35Cr–45Ni heat resistant alloy. Materials Chemistry and Physics, 133, 1018–1023. https://doi.org/10.1016/j.matchemphys.2012.02.010

Hu, Z., & Yang, Z.-G. (2003). Development and application of high chromium heat-resistant steel. Journal of Iron and Steel Research, 15, 60–65.

Kutsova, V. Z., Kovzel, M. A., Grebeneva, A. V., & Chernoivanenko, A. A. (2009). Zakonomernosti formirovaniya strukturi chuguna 28Kh32N3F. Metaloznavstvo ta termіchna obrobka metalіv, 4, 5–13.

Kutsova, V. Z., Kovzel, M. A., Pogrebna, N. Ye., Grebenєva, A. V., & Fedorova, І. P. (2011). Vpliv іzotermіchnogo gartuvannya na vlastivostі bіlogo visokokhromistogo chavunu 28Kh32N3F. Fundamentalnie i prikladnie problemi chernoi metallurgii, 23, 244–258.

Kutsova, V. Z., Kovzel, M. A., Grebenєva, A. V., & Velichko, O. O. (2012). Vpliv іzotermіchnogo gartuvannya na fazovii sklad bіlogo visokokhromistogo chavunu 28Kh32N3F. Stroitelstvo, materialovedenie, mashinostroenie, 64, 81–87.

Kutsova, V. Z., Nesterenko, A. M., Kutsov, A. Yu., & Kovzel, M. A. (2002). Fazovii sostav i svoistva visokokhromistikh chugunov. Perspektivnie zadachi inzhenernoi nauki, 4, 322–335.

Kutsova, V. Z., Kutsov, A. Yu., Kovzel, M. A., & Kravchenko, A. V. (2004). Struktura i svoistva kompozitnikh valkov, poluchennikh metodom EShN. Oborudovanie i tekhnologii termicheskoi obrabotki metallov i splavov, 109–115.

Kutsova, V. Z., Kovzel, M. A., Kravchenko, A. V., & Zhivotovich, A. V. (2005). Struktura i svoistva kompozitnikh valkov. Strategiya kachestva v promishlennosti i obrazovanii, 86–89.

Kutsova, V. Z., Kutsov, A. Yu., Kovzel, M. A., & Kravchenko, G. V. (2006). Struktura ta vlastivostі bіlikh visokokhromistikh chavunіv dlya kompozitnikh valkіv. Metaloznavstvo ta obrobka metalіv, 1, 42–46.

Kutsova, V. Z., Kutsov, A. Yu., & Kovzel, M. A. (2003). Vliyanie termicheskoi obrabotki na strukturu i svoistva visokokhromistikh belikh chugunov. Oborudovanie i tekhnologii termicheskoi obrabotki metallov i splavov, 61–68.

Kutsova, V. Z., Kutsov, A. Yu., Kovzel, M. A., & Kravchenko, A. V. (2005). Resursosberegayushchie rezhimi termicheskoi obrabotki kompozitnikh valkov, poluchennikh metodom EShN. Teoriya i praktika metallurgii, 6, 38–42.

Kutsova, V. Z., Markashova, L. I., Kovzel, M. A., & Kravchenko, A. V. (2007). Formirovanie nanostrukturnoi matritsi v visokokhromistikh chugunakh putem termicheskoi obrabotki. Stroitelstvo, materialovedenie, mashinostroenie, 43, 229–236.

Kutsova, V. Z., Kovzel, M. A., Nesterenko, A. M., & Zhivotovich, A. V. (2008). Struktura i fazovii sostav zharoprochnogo khromonikelevogo splava «nikorim». Stroitelstvo, materialovedenie, mashinostroenie, 45(3), 44–51.

Kutsova, V. Z., Kovzel, M. A., & Zhivotovich, A. V. (2008). Issledovanie strukturi, fazovogo sostava i svoistv zharoprochnikh khromonikelevikh splavov v litom sostoyanii. Oborudovanie i tekhnologii termicheskoi obrabotki metallov i splavov, 1, 23–28.

Kutsova, V. Z., Zhivotovich, A. V., Kovzel, M. A., & Kravchenko, A. V. (2008). Struktura, fazovii sostav i fazovii rentgenospektralnii analiz zharoprochnogo khromonikelevogo splava «nikorim». Metallofizika i noveishie tekhnologii, 30, 235–243.

Kutsova, V. Z., Kovzel, M. A., & Grebeneva, A. V. (2011). Zakonomernosti formirovaniya strukturi khromonikelevogo splava «nikorim». Novі materіali і tekhnologії v metalurgії ta mashinobuduvannі, 1, 59–66.

Sokolov, O. G., & Katsov, K. B. (1982). Zhelezomargantsevie splavi. Naukova dumka.

Jellinghaus, W., & Keller, H. (1972). Das System Eisen – Chrom – Kochlenstoff Dievertelungde Chroms Zwishen Ferritund Sondercarbiden. Archiv für das Eisenhüttenwesen, 43(3), 193–203.

Hattori, S., & Kitagawa, T. (2010). Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data. Wear, 269(5-6), 443–448. https://doi.org/10.1016/j.wear.2010.04.031

Panov, D., Pertsev, A., Smirnov, A., Khotinov, V., & Simonov, Y. (2019). Metastable Austenitic Steel Structure and Mechanical Properties Evolution in the Process of Cold Radial Forging. Materials, 12(13), 2058. https://doi.org/10.3390/ma12132058

Malinov, L. S., & Malinov, V. L. (1999). Udarno-abrazivnaya iznosostoikost margantsovistikh stalei s ponizhennim soderzhaniem margantsa. Metallurgicheskaya i gornorudnaya promishlennost, 6, 39–42.

Popov, V. S., Brikov, N. N., & Dmitrichenko, N. S. (1971). Iznosostoikost pressform ogneupornogo proizvodstva. Metallurgiya.

Silman, G. I., & Dmitrieva, N. V. (2001). Perspektivi ispolzovaniya litikh tverdikh splavov. Materialovedenie i proizvodstvo, 2, 241–245.

Cheilyakh, A. P., Oleinik, I. M., & Lokshina, Ye. B. (2000). O vliyanii fazovikh prevrashchenii na iznosostoikost splavov s metastabilnim austenitom. Metalli, 1, 66–71.

Cheilyakh, A. P., Klok, D. V., & Prekrasnii, S. V. (2006). Razrabotka i issledovanie novikh ekonomnolegirovannikh iznosostoikikh chugunov s metastabilnoi strukturoi dlya bistroiznashivayushchikhsya detalei. Metall i lite Ukraini, 9-10, 13–17.

Mironova, T. M., Nizhnikovskaya, P. F., & Taran, Yu. N. (1981). Karbidnoe prevrashchenie v ledeburite Fe–C–V splavov. In Voprosi formirovaniya metastabilnikh struktur splavov (pp. 132–137).

Chabak, Yu. G., Zurnadzhy, V. I., Golinskyi, M. A., Efremenko, V. G., Zaichuk, N. P., Petryshynets, I., & Shymchuk, S. P. (2022). Current Functional Materials for Wear-Resistant Casting: from Multicomponent Cast Irons to Hybrid High-Boron Alloys. Progress in Physics of Metals, 23(4), 583–612.

Voitov, V. A. (Ed.). (2008). Osnovi tribologії: Pіdruchnik. KhNTUSG.

Kіndrachuk, M. V., Labunets, V. F., Pashechko, M. І., & Korbut, Є. V. (2009). Tribologіya: pіdruchnik. NAU.

Tikhonovich, V. I., Gavrilyuk, V. P., & Shalevskaya, I. A. (2005). Puti povisheniya abrazivnoi stoikosti khromistikh chugunov. Protsessi litya, 2, 84–89.

Brykov, M. N., & Efremenko, V. G. (2014). Abrasive Wear Resistance of Steels and Cast Irons (in Russian). https://doi.org/10.13140/2.1.1395.7129

Zakalov, O. V., & Zakalov, І. O. (2011). Osnovi tertya і znoshuvannya v mashinakh: Navchalnii posіbnik. Vidavnitstvo TNTU іm. І.Pulyuya.

Rozhkova, Ye. V., Romanov, O. M., Kozlov, L. Ya., & Romanov, L. M. (1986). Vliyanie metallicheskoi osnovi na iznosostoikost khromistikh chugunov. Metallovedenie i termicheskaya obrabotka metallov, 6, 30–32.

Bobro, Yu. G. (1976). Legirovannie chuguni. Metallurgiya.

Tikhonovich, V. I., Kovalenko, O. I., & Loktionov, V. A. (1980). Litie iznosostoikie materiali, ikh razrabotka i primenenie. Znanie.

Poddubnii, A. N. (1997). Struktura i svoistva melyushchikh sharov iz legirovannogo belogo chuguna pri lite v kokil. Liteinoe proizvodstvo, 3, 7–10.

Filipovic, M., & Baiuk, A. (2003). Studies of a wear resistant cast iron. Metalurgija -Sisak then Zagreb-, 9(4), 259–272.

Pasini, W., Bellé, M. R., Pereira, L., Amaral, R. F., & de Barcellos, V. (2021). Analysis of Carbides in Multi-component Cast Iron Design Based on High Entropy Alloys Concepts. Materials Research, 24(1), e20200398. https://doi.org/10.1590/1980-5373-mr-2020-0398

Kutsova, V. Z., Kovzel, M. A., Grebeneva, A. V., & Velichko, O. O. (2014). Tribotekhnicheskie svoistva visokokhromistikh splavov v litom i termoobrabotannom sostoyanii pri komnatnoi i povishennoi temperature ispitanii. Metallurgicheskaya i gornorudnaya promishlennost, 3, 69–74.

Kіndrachuk, M. V., Kutsova, V. Z., Kovzel, M. A., & Tіsov, O. V. (2016). Suchasnі funktsіonalnі materіali z beinіtnoyu nanostrukturnoyu matritseyu ta pіdvishchenimi tribologіchnimi vlastivostyami. Problemi tertya ta znoshuvannya, 70(1), 112–130.

Druyan, V. M., Gulyaєv, Yu. G., & Chukmasov, S. O. (2000). Teorіya ta tekhnologіya trubnogo virobnitstva: pіdruchnik. Nats. metalurg. akad. Ukraїni, Dnіpro-VAL.

Mazur, V. L., & Timoshenko, V. I. (2018). Teoriya i tekhnologiya prokatki : gidrodinamicheskie effekti smazki i mikrorelef poverkhnosti. ADEF-Ukraina.

Cheilyakh, A. P., Oleinik, I. M., Lokshina, Ye. B., & Lukyanskova, A. N. (1995). Iznosostoikie chuguni s metastabilnim austenitom. Metall i lite Ukraini, 1, 30–35.

Cheilyakh, A. P. (2009). Ekonomnolegirovannie metastabilnie splavi i uprochnyayushchie tekhnologii. PGTU.

Cheilyakh, A. P., Klok, D. V., & Klimanchuk, V. V. (2002). Vliyanie parametrov zakalki na strukturu i svoistva ekonomnolegirovannogo iznosostoikogo chuguna s metastabilnoi strukturoi. Metall i lite Ukraini, 7, 33–38.

Sadovskii, V. M., Komarov, O. S., & Gertsik, S. N. (1998). Vliyanie soderzhaniya ugleroda i khroma na svoistva visokokhromistogo chuguna. Liteinoe proizvodstvo, 5, 12–13.

Brikov, M. N., Yefremenko, V. G., & Yefremenko, A. V. (2014). Iznosostoikost stalei i chugunov pri abrazivnom iznashivanii. Grin D. S.

Efremenko, V. G., Shimidzu, K., Cheilyakh, A. P., Kozarevskaya, T. V., Chabak, Yu. G., Khara, K., & Kusumoto, K. (2013). Abrazivnaya iznosostoikost chugunov so sferoidalnimi karbidami vanadiya. Trenie i iznos, 34(6), 610–620.

Cheilyakh, A. P., & Oleinik, I. M. (1995). Vliyanie otpuska na strukturu i svoistva khromomargantsovistikh i margantsovistikh chugunov s metastabilnim austenitom. Vestnik Priazovskogo gos. tekhn. universiteta, 1, 103–108.

Skoblo, T. S., Vishnyakova, Ye. N., & Mozharova, N. M. (1990). Povishenie kachestva prokatnikh valkov iz visokokhromistogo chuguna visokotemperaturnoi termicheskoi obrabotkoi. Metallovedenie i termicheskaya obrabotka metallov (MiTOM), 10, 7–9.

Cheilyakh, A. P. (2002). Vozmozhnosti sozdaniya metastabilnikh sostoyanii austenita v splavakh na osnove zheleza. Novі materіali і tekhnologії v metalurgії ta mashinobuduvannі, 2, 31–34.

Cheilyakh, A. P., Oleinik, I. M., Lokshina, Ye. B., & Telitsya, A. V. (2000). O vliyanii fazovikh prevrashchenii na iznosostoikost splavov s metastabilnim austenitom. Metalli, 1, 66–71.

Kutsova, V. Z., Kovzel, M. A., & Nosko, O. A. (2008). Legovanі stalі ta splavi z osoblivimi vlastivostyami. NMetAU.

Wilson, F. R., & Harding, R. A. (1984). The X-Ray Study of ADI. BCIRA Journal, 318, 318–331.

Dvoruk, V. І., & Matrosov, M. V. (2008). Pretsizіinii vimіryuvach lіnіinogo znosu mekhanіchnikh tribosistem dlya viprobuvalnoї mashini 2070 SMT-1. Problemi tertya ta znoshuvannya, 50, 44–49.

Prikhodko, E. V. (1995). Metallokhimiya mnogokomponentnikh sistem. Metallurgiya.

Prikhodko, E. V. (1995). Effektivnost kompleksnogo legirovaniya stali i splavov. Naukova dumka.

Prikhodko, E. V., Togobitskaya, D. N., & Golovko, L. A. (2006). Kontseptualnie osnovi prikladnoi teorii kompleksnogo legirovaniya. Fundamentalnie i prikladnie problemi chernoi metallurgii, 13, 162–165.

Babachenko, A. I., Togobitskaya, D. N., Kozachek, A. S., Kononenko, A. A., Knish, A. V., & Snigura, I. R. (2016). Optimizatsiya khimicheskogo sostava stali dlya zheleznodorozhnikh koles, obespechivayushchego stabilizatsiyu mekhanicheskikh i povishenie ekspluatatsionnikh svoistv. Metallurgicheskaya i gornorudnaya promishlennost, 2, 67–73.

Togobitskaya, D. N., Piptyuk, V. P., Petrov, A. F., Grekov, E. V., & Mirgorodskaya, A. S. (2019). Prediction of Ferroalloy Properties for Expert Evaluation of the Efficiency of their Use During Addition to Steel in a Ladle Furnace Unit. Metallurgist, 62(11-12), 1115–1122.

Pіptyuk, V. P., Togobitska, D. M., Bayul, K. V., Logozinskii, І. M., Levіn, B. A., Petrov, O. P., Grekov, S. V., & Andrієvskii, G. O. (2018). Yeksperimentalne doslіdzhennya pіdvishchennya tekhnologіchnostі briketіv ferosilіtsіyu dlya virobnitstva stalі. Suchasnі problemi metalurgії. Naukovі vіstі, 21(1), 50–55.

Togobitskaya, D. N., Piptyuk, V. P., Petrov, A. F., Grekov, S. V., Snigura, I. R., Likhachev, Yu. M., & Golovko, L. A. (2017). Bazi dannikh i modeli dlya ekspertnoi otsenki effektivnosti ispolzovaniya ferrosplavov pri proizvodstve stali. Fundamentalnie i prikladnie problemi chernoi metallurgii, 31, 150–165.

A.s. № 70524 Ukraїna. Metodika viboru khіmіchnogo skladu stalі v ramkakh dіapazonіv reglamentovanikh GOSTom, yakii zabezpechuє stabіlіzatsіyu mekhanіchnikh vlastivostei metaloproduktsії na ratsіonalnomu rіvnі (2017). Zayavl. № 70012 26.12.2016. Reg. 20.02.2017.

Nesterenko, A. M., Kutsova, V. Z., & Kovzel, M. A. (2003). Issledovanie kristallicheskoi strukturi karbidov tipa Me7S3. Metallofizika i noveishie tekhnologii, 1, 99–106.

Kutsova, V. Z., Zhivotovich, A. V., Kovzel, M. A., & Kravchenko, A. V. (2008). Struktura i fazovii sostav zharoprochnogo khromonikelevogo splava «nikorim». Metallofizika i noveishie tekhnologii, 30, 235–243.

Kutsova, V. Z., Kovzel, M. A., Grebeneva, A. V., & Myrgorodskaya, A. S. (2012). Structure, Phases and Alloying Elements Distribution of Nikorim (High-Temperature Strength Ni-Cr Alloy) In Its Cast Form. Metallurgical and Mining Industry, 4(1), 40–44.

Kutsova, V. Z., Kovzel, M. A., Velichko, O. O., & Stradomski, Z. (2013). Structure, Phases and Alloying Elements Distribution of Nikorim (High-Temperature Strength Ni-Cr Alloy) In Its Cast Form. In Metallurgy 2013. New technologies and achievements in metallurgy, material engineering and production engineering. A collective monograph (pp. 99–105). Czestochowa.

Kutsova, V. Z., Kovzel, M. A., & Grebeneva, A. V. (2011). Zakonomernosti formirovaniya strukturi khromonikelevogo splava «nikorim». Novі materіali і tekhnologії v metalurgії ta mashinobuduvannі, 1, 59–66.

Ostash, O., Polyvoda, S., Titov, A., Balushok, K., Chepil, R., Zlochevska, N., Narivskiy, A., Shinsky, O., Shalevska, I., Kvasnitska, Y., Kaliuzhnyi, P., Kovzel, M., & Kutzova, V. (2023). Structural materials: manufacture, properties, conditions of use: collective monograph. TECHNOLOGY CENTER PC.

Sychkov, A. B., Parusov, E. V., Zavalishin, A. N., & Kozlov, A. V. (2018). Inherent Effect of the Crystal Structure of Continuous Cast Steel Billets On the Formation of Structure of High Carbon Wire Rod In Coils. Journal of Chemical Technology & Metallurgy, 53(5), 977–985.

Parusov, Ye. V. (2016). Spadkovii vpliv pokaznikіv yakostі bezperervnolitoї zagotovki na strukturoutvorennya visokovugletsevogo buntovogo prokatu. Metaloznavstvo ta obrobka metalіv, 2, 55–56.

Kutsova, V. Z., Kovzel, M. A., Grebeneva, A. V., Ratnikova, I. V., & Velichko, O. O. (2015). Vliyanie legiruyushchikh elementov na formirovanie strukturi, fazovogo sostava i svoistv khromomargantsevogo chuguna v litom sostoyanii. Metallurgicheskaya i gornorudnaya promishlennost, 294(3), 45–48.

Kutsova, V. Z., Kovzel, M. A., Grebeneva, A. V., Shvets, P. Yu., Zyska, A., & Koczurkiewicz, B. (2016). Structure and Mechanical Properties of Chrome- Manganese Cast Irons In the Cast State. In New technologies and achievements in metallurgy, material engineering and production engineering. A collective monograph (pp. 147–153). Czestochowa.

Mazur, V. І., Kutsova, V. Z., Nosko, O. A., & Kovzel, M. A. (2015). Splavi na osnovі zalіza: pіdruchnik. U 2 t. (Vol. 1-2). Vidavnitstvo «Polіtekhnіka».

Bodrova, L. G., Kramar, G. M., Kovalchuk, Ya. O., & Koval, І. V. (2023). Tekhnologіya konstruktsіinikh materіalіv ta materіaloznavstvo, rozdіl Materіaloznavstvo: Navchalnii posіbnik. FOP Palyanitsya V.A.

Kuzmin, A., & Krymskaya, N. (2023). Public Space during the War. In Re:imagine your city – rethinking urban paradigms (pp. 68–71). SHIFT BOOKS / Umweltdruck.

Ivanova, H. P., Olishevska, V. Y., Hapieiev, S. M., & Olishevska, S. O. (2024). Construction industry in Ukraine: transformations and prospects in the context of martial law and post-war reconstruction. Science and Transport Progress, 4(108), 80–88. https://doi.org/10.15802/stp2024/317405

Kucher, A., Kucher, L., Rudenko, D., & Synytsia, O. (2024). Development of «green» building in the context of «green» post-war recovery. Journal of Innovations and Sustainability, 8(2), 10. https://doi.org/10.51599/is.2024.08.02.10

Bielohrad, A. (2024). Assessment of the opportunities of demolition waste using as a building material of the future in Ukraine. Technology Audit and Production Reserves, 3(3(77)), 25–29. https://doi.org/10.15587/2706-5448.2024.307317

Kuzmin, O., Levkun, K., & Riznyk, A. (2017). Qualimetric assessment of diets. Ukrainian Food Journal, 6(1), 46–60. https://doi.org/10.24263/2304-974X-2017-6-1-7

Koretska, I., Kuzmin, O., Polyovyk, V., Deinychenko, L., Berezova, G., & Stukalska, N. (2021). Quality rating of desserts based on fruit and berry raw materials. Ukrainian Journal of Food Science, 9(1), 71–87. https://doi.org/10.24263/2310-1008-2021-9-1-8

Shevchenko, O. Y., Kuzmin, O. V., Dudarev, I. M., Melnyk, N. A., Murzin, A. V., Ushchapovskyi, A. O., Chemakina, O. V., Kuzmin, A. O., & Kuzmin, D. O. (2024). Food safety and quality management system in the restaurant industry. In The level of development of science and technology in the XXI century: Innovative technology, computer science, transport, physics and mathematics (Monographic series «European Science», Book 32, Part 2, pp. 79–88). https://doi.org/10.30890/2709-2313.2024-32-00-019

Selezniova, D. V., Niemirich, O. V., Kuzmin, O. V., Havrysh, A. V., & Mamchenko, L. Ye. (2023). Monitorynh bezpechnosti chyzkeikiv na osnovi pryntsypiv HACCP [Monitoring the safety of cheesecakes based on HACCP principles]. Naukovi pratsi NUKhT, 29(3), 93–109. https://doi.org/10.24263/2225-2924-2023-29-3-9

Kuzmin, O. V., Chemakina, O. V., Akimova, L. M., Kuts, A. M., Koretska, I. L., & Kuzmin, A. O. (2019). Inzhynirynh u restorannomu biznesi [Engineering in the restaurant business]. Oldi-Plus.

Kuzmin, D., Soldatova, O., Kuzmin, A., Niemirich, O., & Kuzmin, O. (2025, July 23–25). Innovative transformation of school nutrition in the context of inclusion: Opportunities of electronic systems. In Progressive approaches in science and engineering: Collection of Scientific Papers with Proceedings of the 1st International Scientific and Practical Conference (pp. 49–54). International Scientific Unity. https://doi.org/10.70286/isu-23.07.2025

Kuzmin, A., Chemakina, O., Dudarev, I., Niemirich, O., & Kuzmin, O. (2025, July 9–11). Community recovery strategy: Inclusive engineering in the restaurant industry. In Global trends in science, technology and economy: Collection of scientific papers with proceedings of the 2nd International Scientific and Practical Conference (pp. 15–17). International Scientific Unity. https://doi.org/10.70286/ISU-09.07.2025

Kuzmin, A., Chemakina, O., Matyiashchuk, O., & Kuzmin, O. (2025, July 16–18). Socio-spatial «magnets» in inclusive territories of Ukraine: Designing HoReCa facilities. In Modern science: Research, economy and innovation: Collection of scientific papers with proceedings of the 2nd International Scientific and Practical Conference (pp. 10–13). International Scientific Unity. https://doi.org/10.70286/ISU-16.07.2025

Zosim, S., Nikolaienko, V. A., & Nikolaienko, V. V. (2024). Preservation of national traditions of Ukrainian architecture during the reconstruction of destroyed cities and villages in the post-war period. International Journal of Conservation Science, 15(SI 1), 221–234. https://doi.org/10.36868/IJCS.2024.SI.18

Dudariev, I. M., Kuzmin, O. V., Taraimovych, I. V., Panasiuk, S. H., Shemet, V. Ya., Chemakina, O. V., & Kuzmin, A. O. (2024). Kraftovi kharchovi tekhnolohii: rozroblennia, doslidzhennia, inzhynirynh [Craft food technologies: Development, research, engineering]. Lutsk National Technical University. Oldi Plus.

Kuzmin, O. V., Chemakina, O. V., & Kuzmin, A. O. (2018). The quality management system of the reception service – as one of the elements of the innovative development of the hotel-restaurant industry. In Innovative development of the economy: Global trends and national features: Collective monograph (pp. 619–633). Baltija Publishing.

Kuzmin, O., Chemakina, O., & Kuzmin, A. (2019). The quality management system in the banquet service as one of the elements of innovative development of the hotel-restaurant industry. In Management mechanisms and development strategies of economic entities in conditions of institutional transformations of the global environment: Collective monograph (Vol. 2, pp. 101–110). ISMA University. Landmark SIA.

Atstāja, D., Koval, V., Purviņš, M., Butkevičs, J., & Mikhno, I. (2022). Construction waste management for improving resource efficiency in the reconstruction of war-destroyed objects. Economics Ecology Socium, 6(2), 46–57. https://doi.org/10.31520/2616-7107/2022.6.2-5

Martsynyuk, Ye., & Khandogina, O. (2025). Key characteristics of war-related debris and their implications for local waste management. Municipal Economy of Cities, 2(190), 56–62. https://doi.org/10.33042/2522-1809-2025-2-190-56-62

Demian, P., Hassan, T. M., Kalmykov, O., Demianenko, I., & Makarov, R. (2024). BIM implementation in post-war reconstruction of Ukraine. Buildings, 14(11), 3495. https://doi.org/10.3390/buildings14113495

Kuzmin, A., Chemakina, O., Matyiashchuk, O., & Kuzmin, O. (2025, July 14–16). Accessibility and comfort of foodservice enterprises: Principles of inclusive engineering. In Scientific progress: Theories, applications and global impact: Collection of scientific papers with the proceedings of the 1st International Scientific and Practical Conference (pp. 33–40). European Open Science Space. https://doi.org/10.70286/EOSS-14.07.2025

Kuzmin, O., Chemakina, O., Kuzmin, A., & Kuzmin, D. (2024, August 14–16). Inclusive engineering in the restaurant industry. In World trends in the development of scientific progress: Proceedings of the XXXIV International Scientific and Practical Conference (pp. 12–14). International Scientific Unity.

Novoselchuk, N. E. (2022). National traditions in the architecture of Ukrainian Modernism of the early 20th century. Docomomo Journal, 67. https://doi.org/10.52200/docomomo.67.07

Kolupaieva, I., & Lindahl, M. (2025). Policy recommendations for building a circular Ukraine. Journal of Cleaner Production, 492, 144835. https://doi.org/10.1016/j.jclepro.2025.144835

Hudym, M., Kononenko, H., & Izbash, Y. (2022). Current state, issues and perspectives of construction waste recycling in Ukraine. International Science Journal of Engineering & Agriculture, 1(5), 65–69. https://doi.org/10.46299/j.isjea.20220105.08

Chemakina, O., Svirko, V., Kuzmin, O., & Kuzmin, A. (2019). Competitive advantages of the visual information system of transport centers. In Conceptual aspects of management of competitiveness of economic entities: Collective monograph (Vol. 2, pp. 126–135). Higher School of Social and Economic. WSSG.

Pekarchuk, O., & Palianytsia, K. B. (2024). Specificity of the interior formation of the universal physical rehabilitation hall for military personnel. SA, 6(2), 133–143. https://doi.org/10.23939/sa2024.02.133

Chemakina, O. V., & Kuzmin, A. O. (2018). Designing functional planning solutions for hotels of family type in Ukraine. In Engineering sciences: Development prospects in countries of Europe at the beginning of the third millennium: Collective monograph (Vol. 1, pp. 426–447). Economics College in Stalowa Wola. Izdevnieciba «Baltija Publishing».

Abdelkarim, S. B., Ahmad, A. M., Zahrah, J., Makhoul, N. N., Al-Nuaimi, M. N., & Naji, K. (2023). Criteria and challenges of inclusive design in the built environment. In Proceedings of the 2nd International Conference on Civil Infrastructure and Construction (CIC 2023) (pp. 49–59). Qatar University Press. https://doi.org/10.29117/cic.2023.0011

Teploizoliatsiia budivel. Metod vyboru teploizoliatsiinoho materialu dlia uteplennia budivel [Thermal insulation of buildings. Method for selecting thermal insulation material for building insulation] (2023). DSTU 9191:2022 from 1st March 2023. Kyiv: UkrNDNC.

Pozdniakov, S. V., Kuzmin, O. V., Kiiko, V. V., & Korenets, Y. M. (2018). Definition of the role of business modelling in the building of a management information system. In Strategies for economic development: The experience of Poland and the prospects of Ukraine (Vol. 2, pp. 231–245). Kielce: Baltija Publishing.

Adobor, H., & McMullen, R. (2007). Supplier diversity and supply chain management: A strategic approach. Business Horizons, 50(3), 219–229. https://doi.org/10.1016/j.bushor.2006.11.002

Park, C. L., Nunes, M. F., & Machuca, J. A. D. (2024). Reputational enablers for supplier diversity: An exploratory approach on the inclusion of war veterans and disabled people. Journal of Purchasing and Supply Management, 100898. https://doi.org/10.1016/j.pursup.2024.100898

Zvieriev, M. V., Kuzmin, A. O., & Chemakina, O. V. (2024). Stratehii pidvyshchennia efektyvnosti restorannoho biznesu cherez reabilitatsiiu, motyvatsiiu, inkliuzyvnist ta rozvytok kompetentnostei [Strategies to improve the efficiency of the restaurant business through rehabilitation, motivation, inclusion, and competence development]. In Innovatsiini tekhnolohii v hotelno-restorannomu ta turystychnomu biznesi : Materialy XIII Vseukrainskoi naukovo-praktychnoi konferentsii z mizhnarodnoiu uchastiu, prysviachenoi 140-richchiu NUHT (Kyiv, 21 travnia 2024 r.) (pp. 215–216). Kyiv.

Steyn, K., de Villiers, W., & Babafemi, A. J. (2025). A comprehensive review of hempcrete as a sustainable building material. Innovative Infrastructure Solutions, 10(3), 97. https://doi.org/10.1007/s41062-025-01906-1

Linnyk, D. S. (2021). Arbolitobeton na kompleksno modyfikovanomu kompozytsiynomu hipsovomu v'iazhuchomu [Arbolit concrete based on a complex-modified composite gypsum binder] (Abstract of Cand. Sci. (Tech.) dissertation, Odesa State Academy of Civil Engineering and Architecture). Odesa.

Blahovestova, O. O., & Pechertsev, O. O. (2019). Vykorystannia tradytsiinykh ta novitnikh budivelnykh tekhnolohii pry proektuvanni ekologichnykh poselen [Use of traditional and modern building technologies in the design of ecological settlements]. Naukovyi Visnyk Budivnytstva, 98(4), 187–192.

Derzhavne pidpryyemstvo «Derzhavnyi naukovo-doslidnyi instytut budivelʹnykh konstruktsiy» (2021). Derzhavni budivelʹni normy Ukrayiny V.2.6-31:2021. Teplova izolatsiya ta enerhetoefektyvnistʹ budivelʹ [State building codes of Ukraine V.2.6-31:2021. Thermal insulation and energy efficiency of buildings]. Nakaz Minrehionu Ukrayiny vid 30.12.2021 № 366 ta inshi.

Zaporozhan, A., Kuzmin, O., & Stukalska, N. (2022). HACCP color coding in restaurants. In The 14th International Scientific and Practical Conference «Science, Innovations and Education: Problems and Prospects» (August 25–27, 2022) (pp. 86–89). CPN Publishing Group.

Kuzmenko, R., Kravchenko, A., Vozniuk, S., & Kuzmin, O. (2023). Control measures for pests, species identification, prevention of infestation, preventive measures, and pest management strategies in restaurants. In Prospects for sustainable development and ensuring the security of economic systems in the new geostrategic realities (pp. 151–162). Vysoká škola bezpečnostného manažérstva v Košiciach.

Yurchenko, I., Kuzmin, O., & Zakharov, V. (2022). Implementation of HACCP system in restaurants. In The 10th International Scientific and Practical Conference «Modern Science: Innovations and Prospects» (pp. 106–110). SSPG Publish.

Yeh, J.-W. (2002). High-entropy multielemental alloys (U.S. Patent No. 2002/0159917 A1).

Ranganathan, S. (2003). Alloyed pleasures: multimetallic cocktails. Current Science, 85(10), 1404–1406.

Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsai, C.-H., & Chang, S.-Y. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), 299–303. https://doi.org/10.1002/adem.200300567

Miracle, D. B., Miller, J. D., Senkov, O. N., Woodward, C., Uchic, M. D., & Tiley, J. (2014). Exploration and Development of High Entropy Alloys for Structural Applications. Entropy, 16(1), 494–525. https://doi.org/10.3390/e16010494

Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., & Liaw, P. K. (2008). Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 10(6), 534–538. https://doi.org/10.1002/adem.200700240

Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy Alloys. Progress in Materials Science, 61, 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

Pogrebnjak, A. D., Bagdasaryan, A. A., Yakushchenko, I. V., & Beresnev, V. M. (2014). The structure and properties of high-entropy alloys and nitride coatings based on them. Russian Chemical Reviews, 83(11), 1027–1061. https://doi.org/10.1070/RCR4407

Miedema, A. R., de Chatel, P. F., & de Boer, F. R. (1980). Cohesion in alloys – fundamentals of a semi-empirical model. Physica B+C, 100(1), 1–28. https://doi.org/10.1016/0378-4363(80)90054-6

Niessen, A. K., de Boer, F. R., Boom, R., de Châtel, P. F., Mattens, W. C. M., & Miedema, A. R. (1983). Model predictions for the enthalpy of formation of transition metal alloys II. Calphad, 7(1), 51–70. https://doi.org/10.1016/0364-5916(83)90030-5

Takeuchi, A., & Inoue, A. (2005). Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 46(12), 2817–2829. https://doi.org/10.2320/matertrans.46.2817

Rempel, A. A., & Gel’chinskii, B. R. (2020). High-entropy alloys: preparation, properties and practical application. Izvestiya. Ferrous Metallurgy, 63(3–4), 248–253. https://doi.org/10.17073/0368-0797-2020-3-4-248-253

Dębski, A., Dębski, & R., & Gąsior, W. (2014). New features of Entall database: comparison of experimental and model formation enthalpies. Archives of Metallurgy and Materials, 59(4), 1337–1343.

Zhang, Y. (2010). Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites. Materials Science Forum, 654-656, 1058–1061. https://doi.org/10.4028/www.scientific.net/MSF.654-656.1058

Yang, X., & Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

Yeh, J.-W. (2016). Overview of High-Entropy Alloys. In M. C. Gao, J.-W. Yeh, P. K. Liaw, & Y. Zhang (Eds.), High-Entropy Alloys: Fundamentals and Applications (pp. 1–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-27013-5

Guo, S., & Liu, C. T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), 433–446. https://doi.org/10.1016/S1002-0071(12)60080-X

Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109, 103505. https://doi.org/10.1063/1.3587228

Singh, A. K., & Subramaniam, A. (2014). On the formation of disordered solid solutions in multi-component alloys. Journal of Alloys and Compounds, 587, 113–119. https://doi.org/10.1016/j.jallcom.2013.10.133

Jiang, L., Lu, Y. P., Jiang, H., Wang, T. M., Wei, B. N., Cao, Z. Q., & Li, T. J. (2016). Formation rules of single phase solid solution in high entropy alloys. Materials Science and Technology, 32(6), 588–592. https://doi.org/10.1179/1743284715Y.0000000130

Zhu, J. H., Liaw, P. K., & Liu, C. T. (1997). Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys. Materials Science and Engineering: A, 239-240, 260–264. https://doi.org/10.1016/S0921-5093(97)00590-X

Jin, X., Zhou, Y., Zhang, L., Du, X., & Li, B. (2018). A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Materials & Design, 143, 49–55. https://doi.org/10.1016/j.matdes.2018.01.057

Li, H., He, W., Wang, F., Zhang, X., & Shcheretskyi, O. (2024). Wear performance of FeCuMoTiV high entropy alloy coatings by laser cladding. Surface Topography: Metrology and Properties, 12(2), 025013. https://doi.org/10.1088/2051-672X/ad4403

Li, H., Shen, W., He, W., Nie, Z., & Shcheretskyi, O. (2025). Preparation of AlCoCrFeNi HEA wear-resistant coatings by laser cladding on the surface of (ZrB2+Al3Zr)/AA6016. Materials Today Communications, 48, 113575. https://doi.org/10.1016/j.mtcomm.2025.113575

Zhang, X., Li, H., Jiao, L., Shen, W., & Shcheretskyi, O. (2024). Effect of Rotational Speed on Microstructure and Properties of Al-Based Composite Reinforced with High-Entropy-Alloy Particles Fabricated by Friction Stir Processing. Advanced Engineering Materials, 26(23), 2401417. https://doi.org/10.1002/adem.202401417

Li, H., Li, C., Qiao, Y., Lu, S., Wang, F., Sun, C., Jiao, L., Andrii, Z., & Volodymyr, S. (2022). Preparation of in-situ ZrB2/A356 composites and high-temperature tribological studies. Materials Research Express, 9(4). https://doi.org/10.1088/2053-1591/ac62b6

Korzhyk, V., Khaskin, V., Grynyuk, A., Peleshenko, S., Kvasnytskyi, V., Fialko, N., Berdnikova, O., Illiashenko, Y., Shcheretskiy, V., & Yao, Y. (2022). Comparison of the features of the formation of joints of aluminum alloy 7075 (Al-Zn-Mg-Cu) by laser, microplasma, and laser-microplasma welding. Eastern-European Journal of Enterprise Technologies, 1(12(115)), 38–47. https://doi.org/10.15587/1729-4061.2022.253378

Shcheretskyi, O. A., Sergiienko, R. A., & Verkovliuk, A. M. (2022). Development and smelting of casting high-entropy alloys based on the FeCoNiMnCr system. Casting Processes, 2(148), 50–59. https://doi.org/10.15407/plit2022.02.050

Yeh, J.-W. (2013). Alloy design strategies and future trends in high-entropy alloys. JOM, 65(12), 1759–1771. https://doi.org/10.1007/s11837-013-0761-6

Verkhovliuk, A. M., Sergiienko, R. A., Shcheretskyi, O. A., Serhiiko, R. S., Potrukh, O. G., Kanibolotsky, D. S., Byba, I. G., & Zhelezniak, О. V. (2024). Casting properties of high-entropy alloys of the FeNiCrCuAl and FeNiCrCuMn systems. Casting Processes, 4(158), 56–65. https://doi.org/10.15407/plit2024.04.056

Lakhnenko, V. L., Shcheretskyi, A. A., Apukhtin, V. V., & Gavrilyuk, K. V. (2005). Methodological aspects of determining the fluidity of alloys with significantly different thermophysical characteristics. Casting Processes, 3, 28–34.

Kao, Y.-F., Chen, T.-J., Chen, S.-K., & Yeh, J.-W. (2009). Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlₓCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57–64. https://doi.org/10.1016/j.jallcom.2009.08.090

Glezer, A. M., & Utevskaya, O. L. (1983). Development of a technique for measuring the mechanical properties of thin ribbon materials. In B. V. Molotilov (Ed.), Compositional precision materials (pp. 78–82). Metallurgiya.

Shcheretskyi, O. A., Verkhovliuk, A. M., Sergiienko, R. A., & Zadorozhnyy, V. Y. (2021). Obtaining Nanostructured Materials by Heat Treatment of Amorphous Zirconium-Based Alloy. In O. Fesenko & L. Yatsenko (Eds.), Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications. NANO 2020 (pp. 257–271). Springer Proceedings in Physics, vol. 264, Springer. https://doi.org/10.1007/978-3-030-74800-5_17

Menard, K. P. (2008). Dynamic Mechanical Analysis: A Practical Introduction (2nd ed.). CRC Press. https://doi.org/10.1201/9781420053135

Koval, Yu. M., Odnosum, V. V., Slipchenko, V. M., Filatova, V. S., Filatov, A. S., Shcheretskyi, O. A., & Firstov, G. S. (2024). Influence of Grain Size on Shape Memory and Internal Friction in Cu69.26Al25.86Mn4.88 Alloy. Metallophysics and Advanced Technologies, 46(9), 933–941. https://doi.org/10.15407/mfint.46.09.0933

Ivanova, O., Shcheretsky, O., Podrezov, Y., & Karpets, M. (2017). Young's modulus and damping capacity of Ti3Sn intermetallic compound with 1 at% and 3 at% of Zr and Al additions. Materials Science and Engineering: A, 683, 252–255. https://doi.org/10.1016/j.msea.2016.12.030

Sergiienko, R. A., Shcheretskyi, O. A., Zadorozhnyy, V. Y., Verkhovliuk, A. M., & Louzguine-Luzgin, D. V. (2019). Investigation of Zr55Cu30Al10Ni5 bulk amorphous alloy crystallization. Journal of Alloys and Compounds, 791, 477–482. https://doi.org/10.1016/j.jallcom.2019.03.270

Charchi, A., Rezaei, M., Hossainpour, S., Shayegh, J., & Falak, S. (2010). Numerical simulation of heat transfer and fluid flow of molten metal in MMA–St copolymer lost foam casting process. Journal of Materials Processing Technology, 210(14), 2071–2080. https://doi.org/10.1016/j.jmatprotec.2010.07.028

Narivskiy, A., Shinsky, O., Shalevska, I., Kvasnitska, Y., Kaliuzhnyi, P., & Polyvoda, S. (2023). Modern technological processes of obtaining cast products and structures of responsible purpose from aluminum, ferrous carbon and heat-resistant alloys. In O. Ostash et al. (Eds.), Structural materials: manufacture, properties, conditions of use (pp. 32–67). TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-7319-97-8.ch2

Shalevska, I. A. (2020). Complex of technological processes of ecologically safe production of lost-foam castings with predicted functional properties [Doctoral dissertation, Physico-Technological Institute of Metals and Alloys of the National Academy of Science of Ukraine].

Kreith, F., & Bohn, M. (1997). Principles of Heat Transfer (General Engineering Series). PWS Publishing Company.

Shinsky, О. I. (1997). Gazogidrodinamika i tekhnologii litia zhelezouglerodistykh i tcvetnykh splavov po gazifitciruemym modeliam [Doctoral dissertation, Physico-Technological Institute of Metals and Alloys of the National Academy of Science of Ukraine].

Narivskiy, A., Shinsky, O., Shalevska, I., Kvasnitska, Y., Kaliuzhnyi, P., & Polyvoda, S. (2023). The influence of external actions and methods of alloying alloys on the operational characteristics of cast products. In O. Ostash et al. (Eds.), Structural materials: manufacture, properties, conditions of use (pp. 121–157). TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-7319-97-8.ch4

Nagata, S., & Sakamoto, M. (1989). Development and applications of metal composites from pressure casting. Materials & Design, 10(3), 153–158. https://doi.org/10.1016/s0261-3069(89)80031-7

Wakai, E., Noto, H., Shibayama, T., Furuya, K., Ando, M., Kamada, T., et al. (2024). Microstructures and hardness of BCC phase iron-based high entropy alloy Fe-Mn-Cr-V-Al-C. Materials Characterization, 211, 113881. https://doi.org/10.1016/j.matchar.2024.113881

Shinsky, O., Kvasnytska, I., Shalevska, I., Kaliuzhnyi, P., & Neima, O. (2024). Devising a technology for manufacturing hollow cast steel structures with composite and reinforced non-metallic functional filler. Eastern-European Journal of Enterprise Technologies, 6(12 (132)), 6–14. https://doi.org/10.15587/1729-4061.2024.318553

Azeem Ullah, M., Cao, Q. P., Wang, X. D., Ding, S. Q., Abubaker Khan, M., Zhang, D. X., & Jiang, J. Z. (2024). Carbon effect on tensile and wear behaviors for a dual-phase Fe61.5Cr17.5Ni13Al8 alloy. Materials Science and Engineering: A, 914, 147128. https://doi.org/10.1016/j.msea.2024.147128

Tsyganov, V., Naumik, V., Byalik, H., Ivschenko, L., & Mokhnach, R. (2019). Steel-copper nano-composited materials. In Contributed Papers from Materials Science and Technology 2019 (MS&T19) (pp. 439–443). Portland.

Kondratyuk, S. Ye., Veis, V. I., Parkhomchuk, Z. V., Kvasnytska, Y. H., & Kvasnytska, K. H. (2024). Thermokinetic Parameters of Solidification and Gradient Structure of Steel Castings. Metallofizika i Noveishie Tekhnologii, 45(7), 865–872. https://doi.org/10.15407/mfint.45.07.0865

Shalevska, І. А., Doroshenko, V. S., Kaliuzhnyi, P. B., & Kvasnytska, Yu. G. (2022). Review of the use of cast metal materials in the construction of underground and protective structures. Metal and Casting of Ukraine, 30(4), 54–61. https://doi.org/10.15407/steelcast2022.04.054

ASTM A732/A732M-20. Specification for Castings, Investment, Carbon and Low Alloy Steel for General Application, and Cobalt Alloy for High Strength at Elevated Temperatures (2020). ASTM International. https://doi.org/10.1520/a0732_a0732m-20

Shypytsyn, S., Fedorov, H., Kirchu, I., Lykhovey, D., & Stepanova, T. (2024). Increasing the physical-mechanical and operational properties of high manganese steels by improving the technological processes of their melting, micro-alloying and modification. Casting Processes, 155(1), 14–28. https://doi.org/10.15407/plit2024.01.014

Yamshinsky, M. M., Fedorov, G. E., & Radchenko, K. S. (2015). Termostiikist zharostiikykh stalei dlia roboty v ekstremalnykh umovakh. Visnyk Donbaskoi derzhavnoi mashynobudivnoi akademii, 3, 33–37.

DSTU 8781:2018. Steel castings. General specifications (2018). DP «UkrNDNTs».

Yamshinsky, M. M., & Fedorov, G. E. (2015). Liteinye i mekhanicheskie svoistva zharostoikikh stalei. Lite i metallurgiia, 2, 17–24.

ISO 4990:2023. Steel castings – General technical delivery requirements (2023). ISO.

DSTU 9074:2021. Steel. Microstructure Standarts (2021). DP «UkrNDNTs».

DSTU 8966:2019. Steel. Metalographic method for the determination of nonmetallic inclusions (2019). DP «UkrNDNTs».

ISO 643:1983. Steels – Micrographic determination of the ferritic or austenitic grain size (1983). ISO.

DSTU 7809:2015. Carbon Structural Quality Steel Gauged Bars With Special Surface Finish. General specifications (2015). DP «UkrNDNTs».

Shinsky, O., Fedorov, G., Kvasnytska, I., Shalevska, I., Kaliuzhnyi, P., Neima, O., & Shalevskyi, A. (2025). Selection of materials for the manufacture of cast hollow metal modules of protective structures. Casting Processes, 159(1), 11–21. https://doi.org/10.15407/plit2025.01.011

Liu, X. J., Bhavnani, S. H., & Overfelt, R. A. (2007). Simulation of EPS foam decomposition in the lost foam casting process. Journal of Materials Processing Technology, 182(1-3), 333–342. https://doi.org/10.1016/j.jmatprotec.2006.08.023

Kaliuzhnyi, P., Shalevska, I., & Shynskyi, O. (2024). Casting of a Steel Valve Body Using Lost Foam Sand casting: Comparison Between Experimental and Simulation Results. International Journal of Metalcasting, 19(4), 2409–2418. https://doi.org/10.1007/s40962-024-01487-2

MODERN TRENDS IN CONSTRUCTION MATERIALS TECHNOLOGIES

Downloads

Published

December 25, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-17-7

How to Cite

MODERN TRENDS IN CONSTRUCTION MATERIALS TECHNOLOGIES. (2025). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-17-7