Research of the processes of acoustic cavitation technology for processing dispersed media
Ключові слова:
Акустична система, кавітатор, середовище, бульбашка, стадія, кавітаційний процес, фізична, математична модель, реологічні властивості, рівняння, аналітичні залежності, параметри, амплітуда, частота коливань, інтенсивність, енергія, хвильовий опірКороткий опис
Досліджено робочий процес акустичної обробки технологічних середовищ. Здійснена оцінка та обґрунтовано методи дослідження параметрів акустичної обробки технологічних середовищ. Виявлені функціональні залежностей між акустичними параметрами кавітаційного апарату та реологічними властивостями оброблювальних технологічних середовищ. Описано процес стадійної акустичної обробки технологічних середовищ. Визначена низка критеріїв та ключових параметрів, використання яких здійснено у якості оцінки в алгоритмах розрахунку в залежності від тих чи інших відомих вихідних даних кавітатора та середовища. Визначено значення вхідного опору компенсатора та отримано умову максимальної передачі енергії від акустичного апарату до технологічного середовища. Для здійснення розрахунків параметрів ультразвукової кавітаційної системи «кавітатор – технологічне середовище» було розроблено алгоритм та методика створення синергетичної системи.
Посилання
Kaletnik, H., Sevostianov, I., Bulgakov, V., Holovach, I., Melnik, V., Ihnatiev, Ye., Olt, J. (2020). Development and examination of high-performance fluidised-bed vibration drier for processing food production waste. Agronomy Research, 18 (4), 2391–2409. doi: http://doi.org/10.15159/ar.20.234
Bulgakov, V., Sevostianov, I., Kaletnik, G., Babyn, I., Ivanovs, S., Holovach, I., Ihnatiev, Y. (2020). Theoretical Studies of the Vibration Process of the Dryer for Waste of Food. Rural Sustainability Research, 44 (339), 32–45. doi: http://doi.org/10.2478/plua-2020-0015
Kaletnik, G., Tsurkan, O., Rimar, T., Stanislavchuk, O. (2020). Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies, 1 (8 (103)), 50–57. doi: http://doi.org/10.15587/1729-4061.2020.195203
Bernyk, I. M. (2011). Osnovni zasady proektuvannia mashyn i obladnannia pererobnykh vyrobnytstv. Teoriia i praktyka budivnytstva, 8, 6–9.
Vitenko, T. M. (2009). Hidrodynamichna kavitatsiia u masoobminnykh, khimichnykh i biolohichnykh protsesakh. Ternopil: Vydavnytstvo TDTU im. I Puliuia, 224.
Khmelev, V. N., Slivin, A. N., Barsukov, R. V., Tsyganok, S. N., Shalunov, A. V. (2010). Primenenie ultrazvuka vysokoi intensivnosti v promyshlennosti. Biisk: Izd-vo Alt. gos. tekhn. un-ta, 203.
Nazarenko, I., Dedov, O., Bernyk, I., Rogovskii, I., Bondarenko, A., Zapryvoda, A. et. al. (2020). Determining the regions of stability in the motion regimes and parameters of vibratory machines for different technological purposes. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 71–79. doi: http://doi.org/10.15587/1729-4061.2020.217747
Luhovskyi, O. F., Bernyk, I. M. (2014). Vstanovlennia osnovnykh parametriv vplyvu tekhnolohichnoho seredovyshcha na robochyi protses ultrazvukovoi kavitatsiinoi obrobky. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (75), 121–126.
Bernyk, I. M. (2015). Enerhetyka kavitatsiinoi obrobky tekhnolohichnoho seredovyshcha. Naukovi pratsi ONAKhT, 1 (47), 123–129.
Luhovskaia, E. A., Yakhno, O. M., Bernyk, Y. N. (2012). Model of Technological Process of Ultrasonic Clearing of Elastic Surfaces Management. Naukovi pratsi Don NTU. Seriia: Hirnychoelektromekhanichna, 23 (196), 154–166.
Luhovskyi, O. F., Gryshko, I. A., Bernyk, I. M. (2018). Enhancing the Efficiency of Ultrasonic Wastewater Disinfection Technology. Journal of Water Chemistry and Technology, 40 (2), 95–101. doi: http://doi.org/10.3103/s1063455x18020078
Bernyk, I., Luhovskyi, O., Nazarenko, I. (2018). Effect of rheological properties of materials on their treatment with ultrasonic cavitation. Materiali in Tehnologije, 52 (4), 465–468. doi: http://doi.org/10.17222/mit.2017.021
Bernyk, I., Luhovskyi, O., Wojcik, W., Shedreyeva, I., Karnakova, G. (2019). Theoretical Investigations of the Interaction of Acoustic Apparatus with Technological Environment Working Process. Przeglad Elektrotechniczny, 1 (4), 32–37. doi: http://doi.org/10.15199/48.2019.04.06
Luhovskyi, O., Bernyk, I., Gryshko, I., Abdulina, D., Zilinskyi, A.; Stryczek, J., Warzyńska, U. (Eds.) (2021). Mobile Equipment for Ultrasonic Cavitation Inactivation of Microorganisms in the Liquid Environment. NSHP 2020. Lecture Notes in Mechanical Engineering. Cham: Springer, 272–281. doi: http://doi.org/10.1007/978-3-030-59509-8_24
Bernyk, I., Luhovskyi, O., Nazarenko, I. (2016). Research staff process of interaction and technological environment in developed cavitation. Journal of Mechanical Engineering the National Technical University of Ukraine «Kyiv Polytechnic Institute», 1 (76), 12–19. doi: http://doi.org/10.20535/2305-9001.2016.76.39735
Bernyk, I. M. (2013). Intensification of technological processes of treatment of food environments. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (71), 109–115.
Bernyk, I. M. (2014). Doslidzhennia parametriv kavitatsiinoho protsesu obrobky tekhnolohichnykh seredovyshch. Naukovo-tekhnichnyi zhurnal Tekhnika budivnytstva, 33, 21–26.
Bernyk, I. M. (2018). Investigation of the viscosity of dispersed media under conditions of their intensive processing. Tekhnika, enerhetyka, transport APK, 1 (100), 62–67.
Ohirko, O. I., Halaiko, N. V. (2017). Teoriia ymovirnostei ta matematychna statystyka. Lviv: LvDUVS, 292.
Sirotiuk, M. G., Gavrilov, L. R. (2008). Akusticheskaia kavitatsiia. Moscow: Nauka, 271.
Goliamina, I. P. (Ed.) (1979). Ultrazvuk. Malenkaia entsiklopediia. Moscow: Sovetskaia entsiklopediia, 400.
Nazarenko, I., Svidersky, A., Kostenyuk, A., Dedov, O., Kyzminec, N., Slipetskyi, V. (2020). Determination of the workflow of energy-saving vibration unit with polyphase spectrum of vibrations. Eastern-European Journal of Enterprise Technologies, 1 (7 (103)), 43–49. doi: http://doi.org/10.15587/1729-4061.0.184632
Nazarenko, I., Gavryukov, O., Klyon, A., Ruchynsky, N. (2018). Determination of the optimal parameters of a tubular belt conveyor depending on such an economical. Eastern-European Journal of Enterprise Technologies, 3 (1 (93)), 34–42. doi: http://doi.org/10.15587/1729-4061.2018.131552
Nazarenko, I. I., Ruchynskyi, M. M., Sviderskyi, A. T., Kobylanska, I. M., Harasim, D., Kalizhanova, A., Kozbakova, A. (2019). Development of energy-efficient vibration machines for the buiding-and-contruction industry. Przeglad Elektrotechniczny, 95 (4), 53–59. doi: http://doi.org/10.15199/48.2019.04.10
Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2018). Determination of stresses and strains in the shaping structure under spatial load. Eastern-European Journal of Enterprise Technologies, 6 (7 (96)), 13–18. doi: http://doi.org/10.15587/1729-4061.2018.147195
Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2017). Investigation of vibration machine movement with a multimode oscillation spectrum. Eastern-European Journal of Enterprise Technologies, 6 (1 (90)), 28–36. doi: http://doi.org/10.15587/1729-4061.2017.118731
##submission.downloads##
Сторінки
Опубліковано
Категорії
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.