Chapter 4. Development of a polymodel resource management complex for intelligent decision support systems

Автори

Kharkiv National Automobile and Highway University, Україна
https://orcid.org/0000-0001-6731-6390
Kharkiv National Automobile and Highway University, Україна
https://orcid.org/0000-0002-6912-6520
Kharkiv National Automobile and Highway University, Україна
https://orcid.org/0009-0004-7873-1716
Central Scientifically-Research Institute of Armaments and Military Equipment of the Armed Forces of Ukraine, Україна
https://orcid.org/0000-0002-3515-2026
Kharkiv National Automobile and Highway University, Україна
https://orcid.org/0000-0001-9314-350X
The National Defense University of Ukraine , Україна
https://orcid.org/0000-0003-2001-7718

Ключові слова:

Інтелектуальні системи підтримки прийняття рішень, складне моделювання, ефективність, надійність, координація

Короткий опис

Об'єктом дослідження є інтелектуальні системи підтримки рішень. Проблема, яка вирішується в дослідженні, полягає у підвищенні точності моделювання процесу функціонування інтелектуальних систем підтримки рішень. Було здійснено розробку полімодельного комплексу управління ресурсами інтелектуальних систем підтримки рішень. Оригінальність дослідження полягає:
– у комплексному описі процесу функціонування інтелектуальних систем підтримки рішень;
– у можливості моделювати як окремий процес, що відбувається в інтелектуальних системах підтримки рішень, так і комплексно моделювати ті процеси, що відбуваються в них;
– у встановленні концептуальних залежностей процесу функціонування інтелектуальних систем підтримки рішень. Це дозволяє описувати взаємодію окремих моделей на всіх етапах вирішення розрахункових задач;
– описи процесів координації в гібридних інтелектуальних системах підтримки рішень, що підвищують надійність прийняття управлінських рішень;
– моделювання процесів вирішення складних розрахункових задач в інтелектуальних системах підтримки рішень, завдяки концептуальному опису заданого процесу;
– координація розрахункових процесів в інтелектуальних системах підтримки рішень, що досягає зменшення кількості обчислювальних ресурсів систем;
– комплексне вирішення суперечок, завдяки комплексу відповідних математичних моделей.
Запропонований полімодельний комплекс доцільно використовувати для вирішення задачі управління інтелектуальними системами підтримки прийняття рішень, що характеризуються високим ступенем складності.

Посилання

Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301

Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940

Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353

Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554

Kuchuk, N., Mohammed, A. S., Shyshatskyi, A., Nalapko, O. (2019). The Method of Improving the Efficiency of Routes Selection in Networks of Connection with the Possibility of Self-Organization. International Journal of Advanced Trends in Computer Science and Engineering, 8 (1.2), 1–6.

Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020

Pozna, C., Precup, R.-E., Horvath, E., Petriu, E. M. (2022). Hybrid Particle Filter–Particle Swarm Optimization Algorithm and Application to Fuzzy Controlled Servo Systems. IEEE Transactions on Fuzzy Systems, 30 (10), 4286–4297. https://doi.org/10.1109/tfuzz.2022.3146986

Yang, X.-S., Deb, S. (2013). Cuckoo search: recent advances and applications. Neural Computing and Applications, 24 (1), 169–174. https://doi.org/10.1007/s00521-013-1367-1

Mirjalili, S. (2015). The Ant Lion Optimizer. Advances in Engineering Software, 83, 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

Yu, J. J. Q., Li, V. O. K. (2015). A social spider algorithm for global optimization. Applied Soft Computing, 30, 614–627. https://doi.org/10.1016/j.asoc.2015.02.014

Mirjalili, S., Mirjalili, S. M., Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Koval, V., Nechyporuk, O., Shyshatskyi, A., Nalapko, O., Shknai, O., Zhyvylo, Y. et al. (2023). Improvement of the optimization method based on the cat pack algorithm. Eastern-European Journal of Enterprise Technologies, 1 (9 (121)), 41–48. https://doi.org/10.15587/1729-4061.2023.273786

Gupta, E., Saxena, A. (2015). Robust generation control strategy based on Grey Wolf Optimizer. Journal of Electrical Systems, 11, 174–188.

Chaman-Motlagh, A. (2015). Superdefect Photonic Crystal Filter Optimization Using Grey Wolf Optimizer. IEEE Photonics Technology Letters, 27 (22), 2355–2358. https://doi.org/10.1109/lpt.2015.2464332

Nuaekaew, K., Artrit, P., Pholdee, N., Bureerat, S. (2017). Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer. Expert Systems with Applications, 87, 79–89. https://doi.org/10.1016/j.eswa.2017.06.009

Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009

Ali, M., El-Hameed, M. A., Farahat, M. A. (2017). Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renewable Energy, 111, 455–462. https://doi.org/10.1016/j.renene.2017.04.036

Zhang, S., Zhou, Y. (2017). Template matching using grey wolf optimizer with lateral inhibition. Optik, 130, 1229–1243. https://doi.org/10.1016/j.ijleo.2016.11.173

Khouni, S. E., Menacer, T. (2023). Nizar optimization algorithm: a novel metaheuristic algorithm for global optimization and engineering applications. The Journal of Supercomputing, 80 (3), 3229–3281. https://doi.org/10.1007/s11227-023-05579-4

Saremi, S., Mirjalili, S., Lewis, A. (2017). Grasshopper Optimisation Algorithm: Theory and application. Advances in Engineering Software, 105, 30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

Braik, M. S. (2021). Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Systems with Applications, 174, 114685. https://doi.org/10.1016/j.eswa.2021.114685

Yapici, H., Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied Soft Computing, 78, 545–568. https://doi.org/10.1016/j.asoc.2019.03.012

, H., Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing and Cybernetics, 7 (1), 24–37. https://doi.org/10.1108/ijicc-02-2014-0005

Yang, X. S (2012). Flower pollination algorithm for global optimization. Unconventional computing and natural computation. Berlin, Heidelberg: Springer, 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

Gomes, G. F., da Cunha, S. S., Ancelotti, A. C. (2018). A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Engineering with Computers, 35 (2), 619–626. https://doi.org/10.1007/s00366-018-0620-8

Mehrabian, A. R., Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1 (4), 355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003

Qi, X., Zhu, Y., Chen, H., Zhang, D., Niu, B. (2013). An idea based on plant root growth for numerical optimization. Intelligent Computing Theories and Technology. Berlin, Heidelberg: Springer, 571–578. https://doi.org/10.1007/978-3-642-39482-9_66

Bezuhlyi, V., Oliynyk, V., Romanenko, І., Zhuk, O., Kuzavkov, V., Borysov, O., Korobchenko, S., Ostapchuk, E., Davydenko, T., Shyshatskyi, A. (2021). Development of object state estimation method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 5 (3 (113)), 54–64. https://doi.org/10.15587/1729-4061.2021.239854

Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718

Sova, O., Radzivilov, H., Shyshatskyi, A., Shevchenko, D., Molodetskyi, B., Stryhun, V. et al. (2022). Development of the method of increasing the efficiency of information transfer in the special purpose networks. Eastern-European Journal of Enterprise Technologies, 3 (4 (117)), 6–14. https://doi.org/10.15587/1729-4061.2022.259727

Zhang, H., Zhu, Y., Chen, H. (2013). Root growth model: a novel approach to numerical function optimization and simulation of plant root system. Soft Computing, 18 (3), 521–537. https://doi.org/10.1007/s00500-013-1073-z

Labbi, Y., Attous, D. B., Gabbar, H. A., Mahdad, B., Zidan, A. (2016). A new rooted tree optimization algorithm for economic dispatch with valve-point effect. International Journal of Electrical Power & Energy Systems, 79, 298–311. https://doi.org/10.1016/j.ijepes.2016.01.028

Murase, H. (2000). Finite element inverse analysis using a photosynthetic algorithm. Computers and Electronics in Agriculture, 29 (1-2), 115–123. https://doi.org/10.1016/s0168-1699(00)00139-3

Zhao, S., Zhang, T., Ma, S., Chen, M. (2022). Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Engineering Applications of Artificial Intelligence, 114, 105075. https://doi.org/10.1016/j.engappai.2022.105075

Paliwal, N., Srivastava, L., Pandit, M. (2020). Application of grey wolf optimization algorithm for load frequency control in multi-source single area power system. Evolutionary Intelligence, 15 (1), 563–584. https://doi.org/10.1007/s12065-020-00530-5

Dorigo, M., Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344 (2-3), 243–278. https://doi.org/10.1016/j.tcs.2005.05.020

Poli, R., Kennedy, J., Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1 (1), 33–57. https://doi.org/10.1007/s11721-007-0002-0

Bansal, J. C., Sharma, H., Jadon, S. S., Clerc, M. (2014). Spider Monkey Optimization algorithm for numerical optimization. Memetic Computing, 6 (1), 31–47. https://doi.org/10.1007/s12293-013-0128-0

Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. https://doi.org/10.46338/ijetae0521_05

Maccarone, A. D., Brzorad, J. N., Stone H. M. (2008). Characteristics And Energetics Of Great Egret And Snowy Egret Foraging Flights. Waterbirds, 31 (4), 541‒549. https://doi.org/10.1675/1524-4695-31.4.541

Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025

Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023

Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233

Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114

Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046

Nechyporuk, O., Sova, O., Shyshatskyi, A., Kravchenko, S., Nalapko, O., Shknai, O. et al. (2023). Development of a method of complex analysis and multidimensional forecasting of the state of intelligence objects. Eastern-European Journal of Enterprise Technologies, 2 (4 (122)), 31–41. https://doi.org/10.15587/1729-4061.2023.276168

Merrikh-Bayat, F. (2015). The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Applied Soft Computing, 33, 292–303. https://doi.org/10.1016/j.asoc.2015.04.048

Poliarush, O., Krepych, S., Spivak, I. (2023). hybrid approach for data filtering and machine learning inside content management system. Advanced Information Systems, 7 (4), 70–74. https://doi.org/10.20998/2522-9052.2023.4.09

Balochian, S., Baloochian, H. (2019). Social mimic optimization algorithm and engineering applications. Expert Systems with Applications, 134, 178–191. https://doi.org/10.1016/j.eswa.2019.05.035

Lenord Melvix, J. S. M. (2014). Greedy Politics Optimization: Metaheuristic inspired by political strategies adopted during state assembly elections. 2014 IEEE International Advance Computing Conference (IACC), 1157–1162. https://doi.org/10.1109/iadcc.2014.6779490

Moosavian, N., Roodsari, B. K. (2014). Soccer League Competition Algorithm, a New Method for Solving Systems of Nonlinear Equations. International Journal of Intelligence Science, 4 (1), 7–16. https://doi.org/10.4236/ijis.2014.41002

Hayyolalam, V., Pourhaji Kazem, A. A. (2020). Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 87, 103249. https://doi.org/10.1016/j.engappai.2019.103249

Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A. A., Gandomi, A. H. (2021). Aquila Optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250. https://doi.org/10.1016/j.cie.2021.107250

Hodlevskyi, M., Burlakov, G. (2023). Information technology of quality improvement planning of process subsets of the spice model. Advanced Information Systems, 7 (4), 52–59. https://doi.org/10.20998/2522-9052.2023.4.06

Askari, Q., Younas, I., Saeed, M. (2020). Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowledge-Based Systems, 195, 105709. https://doi.org/10.1016/j.knosys.2020.105709

Mohamed, A. W., Hadi, A. A., Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11 (7), 1501–1529. https://doi.org/10.1007/s13042-019-01053-x

Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001

Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013

Orouskhani, M., Orouskhani, Y., Mansouri, M., Teshnehlab, M. (2013). A Novel Cat Swarm Optimization Algorithm for Unconstrained Optimization Problems. International Journal of Information Technology and Computer Science, 5 (11), 32–41. https://doi.org/10.5815/ijitcs.2013.11.04

Karaboga, D., Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39 (3), 459–471. https://doi.org/10.1007/s10898-007-9149-x

Voznytsia, A., Sharonova, N., Babenko, V., Ostapchuk, V., Neronov, S., Feoktystov, S. et. al (2025). Development of methods for intelligent assessment of parameters in decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (4 (136)), 73–82. https://doi.org/10.15587/1729-4061.2025.337528

Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S. et. al (2022). Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems. Eastern-European Journal of Enterprise Technologies, 2 (3 (116)), 6–14. https://doi.org/10.15587/1729-4061.2022.254122

Опубліковано

вересня 24, 2025

Категорії

Ліцензія

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Як цитувати

Shyshatskyi, A., Plekhova, G., Pliekhov, D., Nalapko, O., Dmytriieva, O., & Starynskyi, I. (2025). Chapter 4. Development of a polymodel resource management complex for intelligent decision support systems. в Y. Zhuravskyi (ред.), IN PRESS. INTELLIGENT DECISION SUPPORT SYSTEMS: METHODS FOR OPTIMIZING AND SUPPORTING MANAGEMENT DECISIONS. Kharkiv: ПП "ТЕХНОЛОГІЧНИЙ ЦЕНТР". вилучено із https://monograph.com.ua/catalog/chapter/904/3727