Results of the search for laboratory signs of autoimmune reactions to brain and extracerebral autoantigens in children with autism spectrum disorders associated with genetic deficiency of the folate cycle
Keywords:
immunodiagnostics, immunotherapy, neuropsychiatric disorders, children, diagnostics, therapySynopsis
Genetic deficiency of the folate cycle (GDFC) is an important associated factor in autism spectrum disorders (ASD) in children, as evidenced by the accumulated evidence base from meta-analyses of randomized controlled trials. Biochemical abnormalities caused by GDFC have been shown to lead to immune system damage with induction of immunodeficiency and associated immune dysregulation. Data from a systematic review by H. K. Hughes et al. clearly outline a range of representative pathological changes in the immune status in children with ASD, in particular, a pronounced cytokine imbalance with a predominance of pro-inflammatory mediators, aberrant subpopulation composition of blood lymphocytes, increased serum and cerebrospinal fluid concentrations of laboratory markers of neuroinflammation, multidirectional abnormal deviations in the functioning of the adaptive and innate immune systems, impaired ratios of immunoglobulins of different classes and subclasses in blood serum, and autoimmune reactions to a number of cerebral and extracerebral autoantigens.
At least 3 independent immune-mediated mechanisms of CNS damage in GDFC are currently known, caused by persistent immune dysfunction, which significantly contribute to the formation of encephalopathy with the clinical picture of ASD. These include the development of neurotropic opportunistic and conditionally pathogenic infections, autoimmune reactions to neurons and myelin of the cerebral hemispheres, and systemic and associated intracerebral aseptic inflammation caused by immune dysregulation. Inhibition or elimination of immune-dependent mechanisms of CNS damage appears to be a promising strategy for the treatment of ASD in children with GDFC.
A special role in the pathogenesis of encephalopathy in children with ASD is assigned to autoimmune mechanisms. Such ideas are based on a number of scientific evidence.
References
Almohmeed, Y. H., Avenell, A., Aucott, L., Vickers, M. A. (2013). Systematic Review and Meta-Analysis of the Sero-Epidemiological Association between Epstein Barr Virus and Multiple Sclerosis. PLoS ONE, 8 (4), e61110. https://doi.org/10.1371/journal.pone.0061110
Borkosky, S. S., Whitley, C., Kopp-Schneider, A., zur Hausen, H., deVilliers, E.-M. (2012). Epstein-Barr Virus Stimulates Torque Teno Virus Replication: A Possible Relationship to Multiple Sclerosis. PLoS ONE, 7 (2), e32160. https://doi.org/10.1371/journal.pone.0032160
Broccolo, F., Drago, F., Cassina, G., Fava, A., Fusetti, L., Matteoli, B. et al. (2013). Selective reactivation of human herpesvirus 6 in patients with autoimmune connective tissue diseases. Journal of Medical Virology, 85 (11), 1925–1934. https://doi.org/10.1002/jmv.23670
Budhram, A., Leung, A., Nicolle, M. W., Burneo, J. G. (2019). Diagnosing autoimmune limbic encephalitis. Canadian Medical Association Journal, 191 (19), E529–E534. https://doi.org/10.1503/cmaj.181548
Cabanlit, M., Wills, S., Goines, P., Ashwood, P., Van de Water, J. (2007). Brain‐Specific Autoantibodies in the Plasma of Subjects with Autistic Spectrum Disorder. Annals of the New York Academy of Sciences, 1107 (1), 92–103. https://doi.org/10.1196/annals.1381.010
Cai, X., Zhou, H., Xie, Y., Yu, D., Wang, Z., Ren, H. (2018). Anti-N-methyl-D-aspartate receptor encephalitis associated with acute Toxoplasma gondii infection. Medicine, 97 (7), e9924. https://doi.org/10.1097/md.0000000000009924
Dop, D., Marcu, I., Padureanu, R., Niculescu, C., Padureanu, V. (2020). Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (Review). Experimental and Therapeutic Medicine, 21 (1). https://doi.org/10.3892/etm.2020.9526
Frye, R. E., Sequeira, J. M., Quadros, E. V., James, S. J., Rossignol, D. A. (2012). Cerebral folate receptor autoantibodies in autism spectrum disorder. Molecular Psychiatry, 18 (3), 369–381. https://doi.org/10.1038/mp.2011.175
Fujinami, R. S. (2002). Molecular mimicry that primes for autoimmunity which is triggered by infection. Molecular Psychiatry, 7 (S2), S32–S33. https://doi.org/10.1038/sj.mp.4001173
Gesundheit, B., Rosenzweig, J. P., Naor, D., Lerer, B., Zachor, D. A., Procházka, V. et al. (2013). Immunological and autoimmune considerations of Autism Spectrum Disorders. Journal of Autoimmunity, 44, 1–7. https://doi.org/10.1016/j.jaut.2013.05.005
Gonzalez-Gronow, M., Cuchacovich, M., Francos, R., Cuchacovich, S., Blanco, A., Sandoval, R. et al. (2015). Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus. Journal of Neuroimmunology, 287, 1–8. https://doi.org/10.1016/j.jneuroim.2015.07.006
González Toro, M. C., Jadraque Rodríguez, R., Sempere Pérez, Á., Martínez Pastor, P., Jover Cerdá, J., Gómez Gosálvez, F. A. (2013). Encefalitis antirreceptor de NMDA: dos casos pediátricos. Revista de Neurología, 57 (11), 504–508. https://doi.org/10.33588/rn.5711.2013272
Harberts, E., Yao, K., Wohler, J. E., Maric, D., Ohayon, J., Henkin, R., Jacobson, S. (2011). Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proceedings of the National Academy of Sciences, 108 (33), 13734–13739. https://doi.org/10.1073/pnas.1105143108
Hughes, H. K., Mills Ko, E., Rose, D., Ashwood, P. (2018). Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00405
Kiani, R., Lawden, M., Eames, P., Critchley, P., Bhaumik, S., Odedra, S., Gumber, R. (2015). Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism. BJPsych Bulletin, 39 (1), 32–35. https://doi.org/10.1192/pb.bp.112.041954
Li, Y., Qiu, S., Shi, J., Guo, Y., Li, Z., Cheng, Y., Liu, Y. (2020). Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatrics, 20 (1). https://doi.org/10.1186/s12887-020-02330-3
Li, Z.-X., Zeng, S., Wu, H.-X., Zhou, Y. (2018). The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection: a systematic review and meta-analysis. Clinical and Experimental Medicine, 19 (1), 23–36. https://doi.org/10.1007/s10238-018-0535-0
Linnoila, J. J., Binnicker, M. J., Majed, M., Klein, C. J., McKeon, A. (2016). CSF herpes virus and autoantibody profiles in the evaluation of encephalitis. Neurology Neuroimmunology & Neuroinflammation, 3 (4). https://doi.org/10.1212/nxi.0000000000000245
Maltsev, D., Natrus, L. (2020). The Effectiveness of Infliximab in Autism Spectrum Disorders Associated with Folate Cycle Genetic Deficiency. Psychiatry, Psychotherapy and Clinical Psychology, 3, 583–594. https://doi.org/10.34883/pi.2020.11.3.015
Maltsev, D. V. (2016). High-dose intravenous immunoglobulin therapy efficiency in children with autism spectrum disorders associated with genetic deficiency of folate cycle enzymes. Psychiatry, Psychotherapy and Clinical Psychology, 7 (2), 207–224. Available at: https://recipe.by/wp-content/uploads/woocommerce_uploads/2016/10/2_2016_Psikhiatriya.indd_.pdf
Marchezan, J., Winkler dos Santos, E. G. A., Deckmann, I., Riesgo, R. dos S. (2018). Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy. Neuroimmunomodulation, 25 (5-6), 300–319. https://doi.org/10.1159/000492225
Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., Guastella, A. J. (2014). Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Molecular Psychiatry, 20 (4), 440–446. https://doi.org/10.1038/mp.2014.59
Mead, J., Ashwood, P. (2015). Evidence supporting an altered immune response in ASD. Immunology Letters, 163 (1), 49–55. https://doi.org/10.1016/j.imlet.2014.11.006
Shaik Mohammad, N., Sai Shruti, P., Bharathi, V., Krishna Prasad, C., Hussain, T., Alrokayan, S. A. et al. (2016). Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatric Genetics, 26 (6), 281–286. https://doi.org/10.1097/ypg.0000000000000152
Monge Galindo, L., Pérez Delgado, R., López Pisón, J., Lafuente Hidalgo, M., Ruiz del Olmo Izuzquiza, I., Peña Segura, J. L. (2010). Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period. Revista de Neurología, 50 (6), 341–348. https://doi.org/10.33588/rn.5006.2009448
Mora, M., Quintero, L., Cardenas, R. (2009). Association between HSV-2 infection and serum anti–rat brain antibodies in patients with autism. Invest. Clin., 50 (3), 315–326.
Mostafa, G. A., AL-ayadhi, L. Y. (2011). Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. Journal of Neuroinflammation, 8 (1), 39. https://doi.org/10.1186/1742-2094-8-39
Naghibalhossaini, F., Ehyakonandeh, H., Nikseresht, A., Kamali, E. (2015). Association Between MTHFR Genetic Variants and Multiple Sclerosis in a Southern Iranian Population. International Journal of Molecular and Cellular Medicine, 4 (2), 87–93.
Nepal, G., Shing, Y. K., Yadav, J. K., Rehrig, J. H., Ojha, R., Huang, D. Y., Gajurel, B. P. (2020). Efficacy and safety of rituximab in autoimmune encephalitis: A meta‐analysis. Acta Neurologica Scandinavica, 142 (5), 449–459. https://doi.org/10.1111/ane.13291
Nicolson, G. L., Gan, R., Nicolson, N. L., Haier, J. (2007). Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus‐6 coinfections in the blood of patients with autistic spectrum disorders. Journal of Neuroscience Research, 85 (5), 1143–1148. https://doi.org/10.1002/jnr.21203
Perlejewski, K., Pawełczyk, A., Bukowska-Ośko, I., Rydzanicz, M., Dzieciątkowski, T., Paciorek, M. et al. (2020). Search for Viral Infections in Cerebrospinal Fluid From Patients With Autoimmune Encephalitis. Open Forum Infectious Diseases, 7 (11). https://doi.org/10.1093/ofid/ofaa468
Pormohammad, A., Azimi, T., Falah, F., Faghihloo, E. (2017). Relationship of human herpes virus 6 and multiple sclerosis: A systematic review and meta‐analysis. Journal of Cellular Physiology, 233 (4), 2850–2862. https://doi.org/10.1002/jcp.26000
Pu, D., Shen, Y., Wu, J. (2013). Association between MTHFR Gene Polymorphisms and the Risk of Autism Spectrum Disorders: A Meta‐Analysis. Autism Research, 6 (5), 384–392. https://doi.org/10.1002/aur.1300
Rai, V. (2016). Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metabolic Brain Disease, 31 (4), 727–735. https://doi.org/10.1007/s11011-016-9815-0
Rhee, H., Cameron, D. (2012). Lyme disease and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS): an overview. International Journal of General Medicine, 5, 163–174. https://doi.org/10.2147/ijgm.s24212
Rout, U. K., Mungan, N. K., Dhossche, D. M. (2012). Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. European Child & Adolescent Psychiatry, 21 (3), 141–147. https://doi.org/10.1007/s00787-012-0245-1
Saberi, A., Akhondzadeh, S., Kazemi, S. (2018). Infectious agents and different course of multiple sclerosis: a systematic review. Acta Neurologica Belgica, 118 (3), 361–377. https://doi.org/10.1007/s13760-018-0976-y
Sadeghiyeh, T., Dastgheib, S. A., Mirzaee-Khoramabadi, K., Morovati-Sharifabad, M., Akbarian-Bafghi, M. J., Poursharif, Z. et al. (2019). Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian Journal of Psychiatry, 46, 54–61. https://doi.org/10.1016/j.ajp.2019.09.016
Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., Rezaei, N. (2019). A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of Psychiatric Research, 115, 90–102. https://doi.org/10.1016/j.jpsychires.2019.05.019
Salimi, S., Keshavarzi, F., Mohammadpour-Gharehbagh, A., Moodi, M., Mousavi, M., Karimian, M., Sandoughi, M. (2017). Polymorphisms of the folate metabolizing enzymes: Association with SLE susceptibility and in silico analysis. Gene, 637, 161–172. https://doi.org/10.1016/j.gene.2017.09.037
Santoro, J. D., Hemond, C. C. (2018). Human herpesvirus 6 associated post‐transplant acute limbic encephalitis: Clinical observations of biomarkers for risk of seizure in a pediatric population. Transplant Infectious Disease, 21 (1). https://doi.org/10.1111/tid.13003
Schwenkenbecher, P., Skripuletz, T., Lange, P., Dürr, M., Konen, F. F., Möhn, N. et al. (2021). Intrathecal Antibody Production Against Epstein-Barr, Herpes Simplex, and Other Neurotropic Viruses in Autoimmune Encephalitis. Neurology Neuroimmunology & Neuroinflammation, 8 (6). https://doi.org/10.1212/nxi.0000000000001062
Shimasaki, C., Frye, R. E., Trifiletti, R., Cooperstock, M., Kaplan, G., Melamed, I. et al. (2020). Evaluation of the Cunningham Panel™ in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): Changes in antineuronal antibody titers parallel changes in patient symptoms. Journal of Neuroimmunology, 339, 577138. https://doi.org/10.1016/j.jneuroim.2019.577138
Singh, V. K., Lin, S. X., Newell, E., Nelson, C. (2002). Abnormal measles-mumps-rubella antibodies and CNS autoimmunity in children with autism. Journal of Biomedical Science, 9 (4), 359–364. https://doi.org/10.1007/bf02256592
Singh, V. K., Lin, S. X., Yang, V. C. (1998). Serological Association of Measles Virus and Human Herpesvirus-6 with Brain Autoantibodies in Autism. Clinical Immunology and Immunopathology, 89 (1), 105–108. https://doi.org/10.1006/clin.1998.4588
Venâncio, P., Brito, M. J., Pereira, G., Vieira, J. P. (2014). Anti-N-methyl-D-aspartate Receptor Encephalitis with Positive Serum Antithyroid Antibodies, IgM Antibodies Against Mycoplasma pneumoniae and Human Herpesvirus 7 PCR in the CSF. Pediatric Infectious Disease Journal, 33 (8), 882–883. https://doi.org/10.1097/inf.0000000000000408
Vojdani, A., Campbell, A. W., Anyanwu, E., Kashanian, A., Bock, K., Vojdani, E. (2002). Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. Journal of Neuroimmunology, 129 (1–2), 168–177. https://doi.org/10.1016/s0165-5728(02)00180-7
Zheng, Q., Zhu, K., Gao, C.-N., Xu, Y.-P., Lu, M.-P. (2019). Prevalence of Epstein-Barr virus infection and characteristics of lymphocyte subsets in newly onset juvenile dermatomyositis. World Journal of Pediatrics, 17 (2), 205–209. https://doi.org/10.1007/s12519-019-00314-7

