Convective drying of wood of cylindrical shape

Authors

Lviv Polytechnic National University, Ukraine
https://orcid.org/0000-0002-3692-7110
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine, Ukraine
https://orcid.org/0000-0003-0788-506X
Lviv Polytechnic National University, Ukraine
https://orcid.org/0000-0002-8813-9108
Lviv Polytechnic National University, Ukraine
https://orcid.org/0000-0002-2393-0193

Keywords:

Mathematical model, initial boundary value problem, heat and mass transfer, convection, diffusion, Stefan’s problem, Kontorovich-Lebedev transform, Pochhammer’s polynomials, Green’s function, Steklov’s theorem, Poiseuille’s equation, capillary-porous material, phase transition, cylindrical shape

Synopsis

In this work, the mathematical nonstationary and quasi-stationary models of the heat and moisture transfer in convective drying of a long wooden beam with a circular cross-section of the radius R are constructed, taking into account the moving boundary of the moisture evaporation zone under the action of the convective-thermal unsteady flow of the drying agent, as well as the calculation schemes for the implementation of these models into practice. Numerical experiments are carried out. The regularities of distribution of temperature and moisture in a capillary-porous body of a cylindrical shape at an arbitrary moment of drying depending on the coordinate of the phase transition, thermophysical characteristics of the material, and parameters of the drying agent have been established.

References

Burak, Ya. Y., Chaplia, Ye. Ya., Chernukha, O. Yu. (2006). Kontynualno-termodynamichni modeli mekhaniky tverdykh rozchyniv. Kyiv: Naukova dumka, 272.

Sokolovskyy, Y., Levkovych, M., Mysyk, M. (2023). Matrix Approach to Numerical Modeling of Heat-and-Moisture Transfer Processes in a Medium with a Fractal Structure. 2023 17th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), 44–48. https://doi.org/10.1109/cadsm58174.2023.10076519

Lykov, A. V. (1968). Teoriia sushki. Moscow: Energiia, 472.

Hachkevych, O. R., Kushnir, R. M., Terletskii, R. F. (2022). Mathematical Problems of Thermomechanics for Deformable Bodies Subjected to Thermal Irradiation. Ukrainian Mathematical Journal, 73 (10), 1522–1536. https://doi.org/10.1007/s11253-022-02011-7

Kheifitc, L. I., Neimark, A. V. (1982). Mnogofaznye protcessy v poristykh sredakh. Moscow: Khimiia, 320.

Pyanylo, Y. (2022). Analysis of Filtration Processes in Porous Environments Taking Into Aaccount the Movement of Capillaries. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT), 9–12. https://doi.org/10.1109/acit54803.2022.9913087

Gayvas, B., Markovych, B., Dmytruk, A., Havran, M., Dmytruk, V. (2024). The methods of optimization and regulation of the convective drying process of materials in drying installations. Mathematical Modeling and Computing, 11 (2), 546–554. https://doi.org/10.23939/mmc2024.02.546

Hayvas, B., Dmytruk, V., Torskyy, A., Dmytruk, A. (2017). On methods of mathematical modeling of drying dispersed materials. Mathematical Modeling and Computing, 4 (2), 139–147. https://doi.org/10.23939/mmc2017.02.139

Baranovsky, S. V., Bomba, A. Ya. (2024). The diffusion scattering parameters identification for a modified model of viral infection in the conditions of logistic dynamics of immunological cells. Mathematical Modeling and Computing, 11 (1), 59–69. https://doi.org/10.23939/mmc2024.01.059

Mozhaev, A. P. (2001). Chaotic homogeneous porous media. 1. Theorems about structure. Engineering-Physical Journal, 74 (5), 196–201.

Lutcyk, P. P. (1988). Issledovanie protcessov teplomassoperenosa pri sushke kapilliarno-poristykh tel s uchetom vnutrennikh napriazhenii. Teplomassoobmen. Minsk: Institut teplo- i massoobmena im. A. V. Lykova, 184–197.

Khoroshun, L. P., Maslov, B. P., Leshchenko, P. V. (1989). Prognozirovanie effektivnykh svoistv pezoaktivnykh kompozitcionnykh materialov. Kyiv: Naukova dumka, 208.

Burak, Y., Kondrat, V., Gayvas, B. (2002). On the mathematical modeling of drying processes of porous bodies. Informational-Mathematical Modeling of Complex Systems. Lviv: CMM IPPMM named after Y. S. Pidstryhach NAS of Ukraine, Akhil Publishing House, 153–159.

Dibagar, N., Kowalski, S. J., Chayjan, R. A., Figiel, A. (2020). Accelerated convective drying of sunflower seeds by high-power ultrasound: Experimental assessment and optimization approach. Food and Bioproducts Processing, 123, 42–59. https://doi.org/10.1016/j.fbp.2020.05.014

Shlikhting, G. (1974). Teoriia pogranichnogo sloia. Moscow: Nauka, 690.

Gayvas, B. I., Dmytruk, V. A., Semerak, M. M., Rymar, T. I. (2021). Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation. Mathematical Modeling and Computing, 8 (2), 150–156. https://doi.org/10.23939/mmc2021.02.150

Gayvas, B. I., Dmytruk, V. A. (2022). Investigation of drying the porous wood of a cylindrical shape. Mathematical Modeling and Computing, 9 (2), 399–415. https://doi.org/10.23939/mmc2022.02.399

Gayvas, B. I., Markovych, B. M., Dmytruk, A. A., Havran, M. V., Dmytruk, V. A. (2023). Numerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying. Mathematical Modeling and Computing, 10 (2), 387–399. https://doi.org/10.23939/mmc2023.02.387

Gera, B., Kovalchuk, V., Dmytruk, V. (2022). Temperature field of metal structures of transport facilities with a thin protective coating. Mathematical Modeling and Computing, 9 (4), 950–958. https://doi.org/10.23939/mmc2022.04.950

Gayvas, B., Markovych, B., Dmytruk, A., Dmytruk, V., Kushka, B., Senkovych, O. (2023). Study of Contact Drying Granular Materials in Fluidized Bed Dryers. 2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 238–241. https://doi.org/10.1109/diped59408.2023.10269464

Alaa, K., Atounti, M., Zirhem, M. (2021). Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing, 8 (3), 549–559. https://doi.org/10.23939/mmc2021.03.549

Alaa, H., Alaa, N. E., Aqel, F., Lefraich, H. (2022). A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement. Mathematical Modeling and Computing, 9 (2), 187–202. https://doi.org/10.23939/mmc2022.02.187

Baala, Y., Agmour, I., Rachik, M. (2022). Optimal control of tritrophic reaction–diffusion system with a spatiotemporal model. Mathematical Modeling and Computing, 9 (3), 647–662. https://doi.org/10.23939/mmc2022.03.647

Bounkaicha, C., Allali, K., Tabit, Y., Danane, J. (2023). Global dynamic of spatio-temporal fractional order SEIR model. Mathematical Modeling and Computing, 10 (2), 299–310. https://doi.org/10.23939/mmc2023.02.299

Gouasnouane, O., Moussaid, N., Boujena, S., Kabli, K. (2022). A nonlinear fractional partial differential equation for image inpainting. Mathematical Modeling and Computing, 9 (3), 536–546. https://doi.org/10.23939/mmc2022.03.536

Najm, F., Yafia, R., Aziz Alaoui, M. A., Aghriche, A., Moussaoui, A. (2023). A survey on constructing Lyapunov functions for reaction-diffusion systems with delay and their application in biology. Mathematical Modeling and Computing, 10 (3), 965–975. https://doi.org/10.23939/mmc2023.03.965

Suganya, G., Senthamarai, R. (2022). Mathematical modeling and analysis of Phytoplankton–Zooplankton–Nanoparticle dynamics. Mathematical Modeling and Computing, 9 (2), 333–341. https://doi.org/10.23939/mmc2022.02.333

Ben-Loghfyry, A., Hakim, A. (2022). Time-fractional diffusion equation for signal and image smoothing. Mathematical Modeling and Computing, 9 (2), 351–364. https://doi.org/10.23939/mmc2022.02.351

Kostrobij, P. P., Markovych, B. M., Ryzha, I. A., Tokarchuk, M. V. (2021). Statistical theory of catalytic hydrogen oxidation processes. Basic equations. Mathematical Modeling and Computing, 8 (2), 267–281. https://doi.org/10.23939/mmc2021.02.267

Kostrobij, P. P., Ivashchyshyn, F. O., Markovych, B. M., Tokarchuk, M. V. (2021). Microscopic theory of the influence of dipole superparamagnetics (Type β−CD⋅FeSO4⋅⋅) on current flow in semiconductor layered structures (type gase, inse). Mathematical Modeling and Computing, 8 (1), 89–105. https://doi.org/10.23939/mmc2021.01.089

Aberqi, A., Elmassoudi, M., Hammoumi, M. (2021). Discrete solution for the nonlinear parabolic equations with diffusion terms in Museilak-spaces. Mathematical Modeling and Computing, 8 (4), 584–600. https://doi.org/10.23939/mmc2021.04.584

Bazirha, Z., Azrar, L. (2024). DDFV scheme for nonlinear parabolic reaction-diffusion problems on general meshes. Mathematical Modeling and Computing, 11 (1), 96–108. https://doi.org/10.23939/mmc2024.01.096

Baranovsky, S., Bomba, A., Lyashko, S., Pryshchepa, O. (2024). Diffusion Perturbations in Models of the Dynamics of Infectious Diseases Taking into Account the Concentrated Effects. Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1, 273–303. https://doi.org/10.1002/9781394284344.ch11

El Hassani, A., Bettioui, B., Hattaf, K., Achtaich, N. (2024). Global dynamics of a diffusive SARS-CoV-2 model with antiviral treatment and fractional Laplacian operator. Mathematical Modeling and Computing, 11 (1), 319–332. https://doi.org/10.23939/mmc2024.01.319

Tokarchuk, M. V. (2023). Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids far from equilibrium. Mathematical Modeling and Computing, 10 (2), 272–287. https://doi.org/10.23939/mmc2023.02.272

Belhachmi, Z., Mghazli, Z., Ouchtout, S. (2022). A coupled compressible two-phase flow with the biological dynamics modeling the anaerobic biodegradation process of waste in a landfill. Mathematical Modeling and Computing, 9 (3), 483–500. https://doi.org/10.23939/mmc2022.03.483

Pukach, P. Y., Chernukha, Y. A. (2024). Mathematical modeling of impurity diffusion process under given statistics of a point mass sources system. I. Mathematical Modeling and Computing, 11 (2), 385–393. https://doi.org/10.23939/mmc2024.02.385

Laham, M. F., Ibrahim, S. N. I. (2023). Penalty method for pricing American-style Asian option with jumps diffusion process. Mathematical Modeling and Computing, 10 (4), 1215–1221. https://doi.org/10.23939/mmc2023.04.1215

Dmytryshyn, L. I., Dmytryshyn, M. I., Olejnik, A. (2023). Model of money income diffusion in the European integration context. Mathematical Modeling and Computing, 10 (2), 583–592. https://doi.org/10.23939/mmc2023.02.583

Patil, J. V., Vaze, A. N., Sharma, L., Bachhav, A. (2021). Study of calcium profile in neuronal cells with respect to temperature and influx due to potential activity. Mathematical Modeling and Computing, 8 (2), 241–252. https://doi.org/10.23939/mmc2021.02.241

Downloads

Pages

2-39

Published

March 31, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-09-2

How to Cite

Dmytruk, V., Gayvas, B., Markovych, B., & Dmytruk, A. (2025). Convective drying of wood of cylindrical shape. In V. Dmytruk & B. Gayvas (Eds.), DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY (pp. 2–39). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-09-2.ch1