Chapter 3. Prospective compositions of heat-resistant high-entropy alloys for foundry production

Authors

Physicо-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine
https://orcid.org/0000-0001-9030-876X
Physicо-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine
https://orcid.org/0000-0002-2670-4052
Physicо-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine
https://orcid.org/0000-0003-3613-9330
Physicо-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine
https://orcid.org/0009-0001-2489-9167
Physicо-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Ukraine
https://orcid.org/0000-0002-8561-4444
G.V. Kurdyumov Institute for Metal Physics NAS of Ukraine, Ukraine
https://orcid.org/0000-0001-7420-7504

Keywords:

high-entropy alloys, heat resistance, phase composition, elastic properties, thermophysical parameters, B2-phase, fluidity, induction melting

Synopsis

The work investigates promising compositions of high-entropy alloys (HEAs) based on the FeNiCrCuAl and FeNiCrCuMn systems, which have the potential for use as heat-resistant materials in foundry production. It is shown that the use of a specially designed vacuum medium-frequency induction furnace allows obtaining high-quality ingots with active mixing of the melt and temperatures up to 1800°C. The thermodynamic parameters (entropy and enthalpy of mixing, atomic radii, electronegativities, VEC, Ω parameter) were calculated, on the basis of which the phase composition was predicted. X-ray phase analysis confirmed the formation of solid solutions with FCC and BCC lattices, an ordered B2 phase (of the NiAl type). In addition to phase analysis and structural study, the thermophysical properties (melting and crystallization heats, liquidus-solidus temperatures) and elastic properties of alloys in a wide temperature range were investigated by the dynamic mechanical analysis (DMA) method. The dependences of the elastic modulus and the tangent of the mechanical loss angle on temperature were established. The heat resistance of alloys (at 900 ºC and 1000 ºC) was assessed, which showed high stability of the structure of high-entropy alloys in an oxidizing environment. The casting properties of the experimental alloys – fluidity and linear shrinkage – were studied using spiral and U-shaped samples, which allowed comparing them with the indicators of cast irons and steels. The fluidity of high-entropy alloys of the FeNiCrCuMn system is lower, and that of alloys of the FeNiCrCuAl system is higher compared to standard steels (G25, GX10CrNiMn18-9-1. Thus, the results of the study confirm the feasibility of using alloys of the FeNiCrCuMn and FeNiCrCuAl systems as heat-resistant casting materials of a new generation.

References

Yeh, J.-W. High-entropy multielemental alloys. (2002). (U.S. Patent No. 2002/0159917 A1). https://patents.google.com/patent/US20020159914A1/

Ranganathan, S. (2003) Alloyed pleasures: multimetallic cocktails. Current science (Bangalore), 85(10), 1404–1406. https://www.currentscience.ac.in/Volumes/85/10/1404.pdf

Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsai, C.-H., & Chang, S.-Y. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials. 6(5), 299–303. https://doi.org/10.1002/adem.200300567

Miracle, D. B., Miller. J. D., Senkov, O. N., Woodward, C., Uchic, M. D., & Tiley, J. (2014). Exploration and Development of High Entropy Alloys for Structural Applications. Entropy, 16(1), 494–525. https://doi.org/10.3390/e16010494

Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., & Liaw, P. K. (2008). Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 10(6), 534–538. https://doi.org/10.1002/adem.200700240

Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy Alloys. Progress in Materials Science, 61, 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

Pogrebnjak, A. D., Bagdasaryan, A. A., Yakushchenko, I. V., & Beresnev V. M. The structure and properties of high-entropy alloys and nitride coatings based on them. Russian Chemical Reviews, 83(11), 1027–1061. https://doi.org/10.1070/RCR4407

Miedema, A. R., de Chatel, P. F., & de Boer, F. R. (1980). Cohesion in alloys – fundamentals of a semi-empirical model. Physica B+C, 100(1), 1–28. https://doi.org/10.1016/0378-4363(80)90054-6

Niessen, A. K., de Boer, F. R., Boom, R., de Châtel, P. F., Mattens, W. C. M., & Miedema A. R. (1983). Model predictions for the enthalpy of formation of transition metal alloys II. Calphad, 7(1), 51–70. https://doi.org/10.1016/0364-5916(83)90030-5

Takeuchi, A., & Inoue, A. (2005). Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 46(12), 2817–2829. https://doi.org/10.2320/matertrans.46.2817

Rempel, A. A., & Gel’chinskii, B. R. (2020). High-entropy alloys: preparation, properties and practical application. Izvestiya. Ferrous Metallurgy, 63(3–4), 248–253. (In Russ.) https://doi.org/10.17073/0368-0797-2020-3-4-248-253

Dębski, A., Dębski, & R., Gąsior, W. (2014). New features of Entall database: comparison of experimental and model formation enthalpies. Archives of Metallurgy and Materials, 59(4), 1337–1343. https://www.imim.pl/files/archiwum/Vol4_2014/15.pdf

Zhang, Y. (2010). Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites. Materials Science Forum, 654–656, 1058–1061. https://doi.org/10.4028/www.scientific.net/MSF.654-656.1058

Yang, X., & Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2–3), 233– 238. https://doi.org/10.1016/j.matchemphys.2011.11.021

Yeh, J.-W. (2016). Overview of High-Entropy Alloys. In M. C. Gao, J.-W. Yeh, P. K. Liaw, Y. Zhang (Eds.), High-Entropy Alloys: Fundamentals and Applications (pp. 1–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-27013-5

Guo, S., & Liu, C. T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), 433–446. https://doi.org/10.1016/S1002-0071(12)60080-X

Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109, Article 103505. https://doi.org/10.1063/1.3587228

Singh, A. K., & Subramaniam A. (2014). On the formation of disordered solid solutions in multi-component alloys. Journal of Alloys and Compounds, 587, 113–119. https://doi.org/10.1016/j.jallcom.2013.10.133

Jiang, L., Lu, Y. P., Jiang, H., Wang, T. M., Wei, B. N., Cao, Z. Q., & Li, T. J. (2016). Formation rules of single phase solid solution in high entropy alloys. Materials Science and Technology, 32(6), 588–592. https://doi.org/10.1179/1743284715Y.0000000130

Zhu, J. H., Liaw, P. K., & Liu, C. T. (1997). Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys. Materials Science and Engineering: A, 239–240, 260–264. https://doi.org/10.1016/S0921-5093(97)00590-X

Jin, X., Zhou, Y., Zhang, L., Du X., & Li B. (2018). A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Materials & Design, 143, 49–55. https://doi.org/10.1016/j.matdes.2018.01.057

Li, H., He, W., Wang, F., Zhang, X., & Shcheretskyi, O. (2024). Wear performance of FeCuMoTiV high entropy alloy coatings by laser cladding. Surface Topography Metrology and Properties, 2024, 12(2), Article 025013. https://doi.org/10.1088/2051-672X/ad4403

Li, H., Shen, W., He, W., Nie, Z., & Shcheretskyi, O. (2025). Preparation of AlCoCrFeNi HEA wear-resistant coatings by laser cladding on the surface of (ZrB2+Al3Zr)/AA6016. Materials Today Communications, 48, Article 113575. https://doi.org/10.1016/j.mtcomm.2025.113575

Zhang, X., Li, H., Jiao, L., Shen, W., & Shcheretskyi, O. (2024). Effect of Rotational Speed on Microstructure and Properties of Al-Based Composite Reinforced with High-Entropy-Alloy Particles Fabricated by Friction Stir Processing. Advanced Engineering Materials, 2024, 26(23), Article 2401417. https://doi.org/10.1002/adem.202401417

Hui Li, Chuying Li, Yuanpeng Qiao1, Shengbo Lu, Feng Wang1, Caizhi Sun, Lei Jiao, Zatulovskiy Andrii, Shcheretskyi Volodymyr Preparation of in-situ ZrB2/A356 composites and high-temperature tribological studies// Materials Research Express Vol. 9, No. 4, (2022) https://doi.org/10.1088/2053-1591/ac62b6

V. Korzhyk, V. Khaskin, A. Grynyuk, S. Peleshenko, V. Kvasnytskyi, N. Fialko, O. Berdnikova, Y. Illiashenko, V. Shcheretskiy, Y. Yao Comparison of the features of the formation of joints of aluminum alloy 7075 (Al-Zn-Mg-Cu) by laser, microplasma, and laser-microplasma welding //Eastern-European Journal of Enterprise Technologies Vol. 1 No. 12(115), (2022), P. 38-47 https://doi.org/10.15587/1729-4061.2022.253378

Shcheretskyi, O.A., Sergiienko, R.A., & Verkovliuk, A.M. (2022). Development and smelting of casting high-entropy alloys based on the FeCoNiMnCr system. Casting Processes, 2(148), 50–59. https://doi.org/10.15407/plit2022.02.050

Yeh, J.-W. (2013). Alloy design strategies and future trends in high-entropy alloys. JOM, 65(12), 1759–1771. https://doi.org/10.1007/s11837-013-0761-6

Verkhovliuk, A.M., Sergiienko, R.A., Shcheretskyi, O.A., Serhiiko, R.S., Potrukh, O.G., Kanibolotsky, D.S., Byba, I.G., & Zhelezniak, О.V. (2024). Casting properties of high-entropy alloys of the FeNiCrCuAl and FeNiCrCuMn systems. Casting Processes, 4(158), 56–65. https://doi.org/10.15407//plit2024.04.056

Lakhnenko, V.L., Shcheretskyi, A.A., Apukhtin, V.V., & Gavrilyuk, K.V. (2005). Methodological aspects of determining the fluidity of alloys with significantly different thermophysical characteristics. Casting Processes, 3, 28–34. [in Russian].

Kao, Y.-F., Chen, T.-J., Chen, S.-K., & Yeh, J.-W. (2009). Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlₓCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57–64.

https://doi.org/10.1016/j.jallcom.2009.08.090

Glezer, A. M., & Utevskaya, O. L. (1983). Development of a technique for measuring the mechanical properties of thin ribbon materials. In B. V. Molotilov (Ed.), Compositional precision materials (pp. 78–82). Metallurgiya. Moscow.

Shcheretskyi, O. A., Verkhovliuk, A. M., Sergiienko, R. A., & Zadorozhnyy, V. Y. (2021). Obtaining Nanostructured Materials by Heat Treatment of Amorphous Zirconium-Based Alloy. In O. Fesenko, & L. Yatsenko (Eds.), Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications. NANO 2020 (pp. 257–271). Springer Proceedings in Physics, vol. 264, Springer. https://doi.org/10.1007/978-3-030-74800-5_17

Menard, K. P. (2008). Dynamic Mechanical Analysis: A Practical Introduction (2nd ed.). CRC Press. https://doi.org/10.1201/9781420053135

Koval, Yu. M. , Odnosum, V. V., Slipchenko, V. M., Filatova, V. S., Filatov, A. S., Shcheretskyi, O. A., & Firstov, G. S. (2024). Influence of Grain Size on Shape Memory and Internal Friction in Cu69.26Al25.86Mn4.88 Alloy. Metallophysics and Advanced Technologies, 46(9), 933–941. https://doi.org/10.15407/mfint.46.09.0933

Ivanova, O., Shcheretsky, O., Podrezov, Y., & Karpets, M. (2017). Young's modulus and damping capacity of Ti3Sn intermetallic compound with 1 at% and 3 at% of Zr and Al additions. Materials Science and Engineering, 683, 252–255. https://doi.org/10.1016/j.msea.2016.12.030

Sergiienko R. A., Shcheretskyi O. A., Zadorozhnyy V. Y., Verkhovliuk A. M., & Louzguine-Luzgin D.V. (2019). Investigation of Zr55Cu30Al10Ni5 bulk amorphous alloy crystallization. Journal of Alloys and Compounds, 791, 477–482. https://doi.org/10.1016/j.jallcom.2019.03.270

Published

June 24, 2025

How to Cite

Shcheretskyi, O., Verkhovliuk, A., Sergiienko, R., Kanibolotsky, D., Shcheretskyi, V., & Dzevin, I. (2025). Chapter 3. Prospective compositions of heat-resistant high-entropy alloys for foundry production. In O. Kuzmin, O. Chemakina, A. Kuzmin, O. Zaporozhets, I. Dudarev, & L. Bal-Prylypko, In press. MODERN TRENDS IN CONSTRUCTION MATERIALS TECHNOLOGIES. Kharkiv: TECHNOLOGY CENTER PC. Retrieved from https://monograph.com.ua/catalog/chapter/825/3723