Drying of a porous layer in an external constant electric field (electroosmotic drying)

Authors

Lviv Polytechnic National University, Ukraine
https://orcid.org/0000-0002-3692-7110
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine, Ukraine
https://orcid.org/0000-0003-0788-506X
Lviv Polytechnic National University, Ukraine
https://orcid.org/0000-0002-8813-9108
Lviv Polytechnic National University, Ukraine
https://orcid.org/0000-0002-2393-0193
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine, Ukraine
https://orcid.org/0000-0002-5504-0419

Keywords:

Electroosmotic drying, porous media, moisture transport, external electric field, capillary effects, ponderomotive force, convective drying, unilateral drying, bilateral drying, boundary layer properties, isothermal drying, electrokinetic flow, sustainable technology, numerical methods

Synopsis

In this Chapter, mathematical modeling of the drying process of a porous layer under the influence of an external constant electric field is presented, taking into account the electroosmotic effects on mass and heat transfer. A mathematical model of electroosmotic drying is formulated based on the coupled equations of moisture transport, electrokinetic flow, and thermal effects. The analysis considers both natural and convective drying conditions, incorporating the impact of electroosmotic forces on moisture migration within the porous medium.

In the study, the fundamental mechanisms governing electroosmotic moisture removal are explored, including the formation of a double electric layer at the interface between the pore liquid and the solid skeleton, the competition between electroosmotic and capillary forces, and the transition between different drying regimes. A system of governing equations, including modified Stefan-Maxwell relations and generalized Darcy's law, is derived to describe the transport processes in the porous domain.

Numerical simulations are carried out. The experiments have demonstrated the effect of key parameters, such as electric field intensity, moisture content, temperature, and mass transfer coefficients, on drying kinetics. Results indicate that increasing the electric field intensity significantly accelerates moisture removal, particularly during the initial drying stage when electroosmotic forces dominate.

References

Burak, Ya., Chaplia, Ye., Nahirnyi, T. et al. (2004). Fizyko-matematychne modeliuvannia skladnykh system. Lviv: SPOLOM, 264.

Haivas, B. I. (2004). Pro vplyv elektroosmosu na dvostoronnie konvektyvne osushennia porystoho sharu. Volynskyi matematychnyi visnyk. Seriia prykladna matematyka, 2 (11), 74–85.

Chaplya, Ye., Hayvas, B., Torskyy, A. (2015). Construction of the solution of the thermal-convective drying problem for porous solids in drying plants. Mathematical Modeling and Computing, 2 (1), 1–15. https://doi.org/10.23939/mmc2015.01.001

Sokolovskyy, Y., Drozd, K., Samotii, T., Boretska, I. (2024). Fractional-Order Modeling of Heat and Moisture Transfer in Anisotropic Materials Using a Physics-Informed Neural Network. Materials, 17 (19), 4753. https://doi.org/10.3390/ma17194753

Hachkevych, O., Musii, R., Melnyk, N. (2023). Problems of Thermomechanics of Multilayered Electroconductive Bodies Under the Action of the Pulsed Electromagnetic Fields with Modulation of Amplitude. Advances in Mechanics, 185–206. https://doi.org/10.1007/978-3-031-37313-8_11

Zhuravchak, L. M. (2007). Matematychne modeliuvannia protsesiv poshyrennia teplovoho ta elektromahnitnoho poliv u neodnoridnykh seredovyshchakh metodamy pryhranychnykh elementiv ta skinchennykh riznyts. [Extended abstract of doctors thesis].

Dukhin, S. S. (1975). Elektroprovodnost y elektrokynetycheskye svoistva dyspersnikh system. Kyiv: Naukova dumka, 246.

Decker, Ž., Tretjakovas, J., Drozd, K., Rudzinskas, V., Walczak, M., Kilikevičius, A. et al. (2023). Material’s Strength Analysis of the Coupling Node of Axle of the Truck Trailer. Materials, 16 (9), 3399. https://doi.org/10.3390/ma16093399

Tokarchuk, M. V. (2024). Kinetic coefficients of ion transport in a porous medium based on the Enskog – Landau kinetic equation. Mathematical Modeling and Computing, 11 (4), 1013–1024. https://doi.org/10.23939/mmc2024.04.1013

Sokolovskyy, Ya. I., Boretska, I. B., Gayvas, B. I., Kroshnyy, I. M., Nechepurenko, A. V. (2021). Mathematical modeling of convection drying process of wood taking into account the boundary of phase transitions. Mathematical Modeling and Computing, 8 (4), 830–841. https://doi.org/10.23939/mmc2021.04.830

Borovytskyi, M. Y., Lysenko, L. L., Rynda, O. F., Mishchuk, N. O. (2014). Rehuliuvannia vlastyvostei dyspersii dlia yikh elektrokinetychnoi obrobky. Naukovi visti NTUU “KPI”, (3), 100–106.

Barinova, N. O. (2016). Neliniini elektroforez ta elektroosmos dlia odynychnykh chastynok ta skladnykh system. [Extended abstract of Candidate’s thesis; Institute of Colloid Chemistry and Water Chemistry, NAS of Ukraine].

Malyarenko, V. V., Makarov, A. S. (2000). Elektropoverkhnostnye svoystva vspenennykh kontsentrirovannykh suspenziy kremnezema i uglya. Ukrainskyi khimichnyi zhurnal, 66 (9-10), 84–87.

Myshchuk, N. A., Lysenko, L. L., Kornilovych, B. Y., Barinova, N. O. (2002). Teoreticheskiy analiz zakonomernostey elektroosmoticheskogo transporta zhidkosti cherez diafragmu. Khimia i tekhnologiya vody, 24 (4), 328–351.

Berezniak, O. O. (1999). Zastosuvannia yavyshcha elektroosmosu pry znevodnenni kaolinu. Zbahachennia korys. kopalyn, 4 (45), 100–104.

Lysenko, L. L. (2002). Intensyfikatsiia masoperenosu pry elektrokinetychnii ochystsi hruntu. [Extended abstract of Candidate’s thesis; Institute of Colloid Chemistry and Water Chemistry, NAS of Ukraine].

Shevchenko, R. O. (2012). Upravlinnia elektrokinetychnymy protsesamy dlia poperedzhennia i podolannia avarii pry burinni sverdlovyn na naftu ta haz. [Extended abstract of Candidate’s thesis; National Technical University “Kharkiv Polytechnic Institute”].

Pushkarov, O., Zubko, O., Sevruk, I., Dolin, V. (2022). Use of mineral proton-conductive membranes for electroosmotic fractionation of the hydrogen isotopes. Geochemistry of Technogenesis, 35, 65–68. https://doi.org/10.32782/geotech2022.35.12

Musii, R., Melnyk, N., Dmytruk, V. (2024). Thermal stresses in bimetallic plate under induction heating by nonstationary electromagnetic field. Journal of Thermal Stresses, 47 (11), 1539–1551. https://doi.org/10.1080/01495739.2024.2415030

Musii, R., Dmytruk, V., Oryshchyn, O., Kushka, B., Shayner, H., Huk, L. (2024). Analysis of Thermal Modes of a Bimetallic Tube Under Short-Term Induction Heating. 2024 IEEE 19th International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), 16–19. https://doi.org/10.1109/memstech63437.2024.10620050

Musii, R., Dmytruk, V., Voloshyn, M. M., Kushka, B., Nakonechny, R., Huk, L. (2023). Computer Analysis of Nonstationary Thermoelastic Processes in an Electrically Conductive Plate during Pulse Electromagnetic Treatment. 2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 221–224. https://doi.org/10.1109/diped59408.2023.10269468

Gayvas, B., Burak, Y., Kondrat, V. (2005). Do matematychnoho modeliuvannia ta vyvchennia protsesu osushennia porystykh til. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 1, 20–29.

Gayvas, B. I., Markovych, B. M., Dmytruk, A. A., Havran, M. V., Dmytruk, V. A. (2023). Numerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying. Mathematical Modeling and Computing, 10 (2), 387–399. https://doi.org/10.23939/mmc2023.02.387

Severyn, O. A. (2008). Rozrobka protsesu ta aparaturnoho osnashchennia kombinovanoho heliosushinnia plodovoi syrovyny z avtonomnym enerhopostachanniam. [Extended abstract of Candidate’s thesis; Kharkiv State University of Food and Trade].

Fariseev, A. G. (2014). Rozrobka aparata dlia zharenia miasa v umovakh elektroosmosu. [Extended abstract of Candidate’s thesis; Kharkiv State University of Food and Trade].

Drachov, V. I. (2000). Tekhnolohiia zbahachennia ta kompleksnoho vykorystannia vidkhodiv staleplavylnoho vyrobnytstva. [Extended abstract of Candidate’s thesis; Kryvyi Rih Technical University].

Kostyuk, G. Ya., Kostyuk, O. G., Burkov, M. V., Golubovsky, I. A., Bulko, M. P., Bandura, L. O. et al. (2020). Pancreatic secretion and pressure biomechanics in pancreatic acinus. Clinical Anatomy and Operative Surgery, 19 (1), 6–12. https://doi.org/10.24061/1727-0847.19.1.2020.1

Kheifitc, L. I., Neimark, A. V. (1982). Mnogofaznye protcessy v poristykh sredakh. Moscow: Khimiia, 320.

Gayvas, B. I., Dmytruk, V. A. (2022). Investigation of drying the porous wood of a cylindrical shape. Mathematical Modeling and Computing, 9 (2), 399–415. https://doi.org/10.23939/mmc2022.02.399

Burak, Ya., Kondrat, V., Haivas, B. (2002). Do matematychnoho modeliuvannia protsesiv sushky porystykh til. Informatychno-matematychne modeliuvannia skladnykh system – MIMUZ2002. Lviv: TsMM IPPMM im. Ya. S. Pidstryhacha NAN Ukrainy, Vyd-vo Akhil, 153–159.

Gayvas, B. I., Dmytruk, V. A., Semerak, M. M., Rymar, T. I. (2021). Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation. Mathematical Modeling and Computing, 8 (2), 150–156. https://doi.org/10.23939/mmc2021.02.150

Kondrat, V. F., Kubik, Yu., Chaplia, Ye. Ya. (2000). Vzaiemodiia mekhanotermoelektrodyfuziinykh protsesiv v porystomu nasychenomu seredovyshchi. Mashynoznavstvo, 8, 3–9.

Gayvas, B., Dmytruk, V., Kaminska, O., Pastyrska, I., Dmytruk, A., Nezgoda, S. (2020). Simulation of Crack Resistance of Mustard in Pulsed Drying Mode. 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), 91–94. https://doi.org/10.1109/csit49958.2020.9321941

Gayvas, B., Markovych, B., Dmytruk, A., Dmytruk, V., Kushka, B., Senkovych, O. (2023). Study of Contact Drying Granular Materials in Fluidized Bed Dryers. 2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). Tbilisi, 238–241. https://doi.org/10.1109/diped59408.2023.10269464

Gayvas, B. I. (2004). On the influence of electroosmosis on two-sided convective drying of a porous layer. Volyn Mathematical Bulletin, 2 (11), 74–85.

Gayvas, B., Markovych, B., Dmytruk, A., Havran, M., Dmytruk, V. (2024). The methods of optimization and regulation of the convective drying process of materials in drying installations. Mathematical Modeling and Computing, 11 (2), 546–554. https://doi.org/10.23939/mmc2024.02.546

Polos, A. V. (2006). Pіdvyschennia efektyvnosti konvektyvnoho sushinnia pylomaterialiv (na prykladi umovnoho material). [Dissertation].

Dmytruk, A. (2024). Modeling mass transfer processes in multicomponent capillary-porous bodies under mixed boundary conditions. Mathematical Modeling and Computing, 11 (4), 978–986. https://doi.org/10.23939/mmc2024.04.978

Gayvas, B. I. (2003). Dynamika vologosti porystogo sharu pry osushuvanni z odniyeyi poverkhni. Konferentsiia profesorsko-vykladatskoho skladu DU “Lvivska politekhnika”. Lviv, 7–9.

Grinchik, N. N. (1991). Protcessy perenosa v poristykh sredakh, elektrolitakh i membranakh. Minsk: ITMO im. A.V. Lykova AN BSSR, 310.

Downloads

Pages

117-157

Published

March 31, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-09-2

How to Cite

Dmytruk, V., Gayvas, B., Markovych, B., Dmytruk, A., & Chaplya, Y. (2025). Drying of a porous layer in an external constant electric field (electroosmotic drying). In V. Dmytruk & B. Gayvas (Eds.), DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY (pp. 117–157). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-09-2.ch4