Hierarchical structure of calculation methods for assessing the fire resistance of enclosure horizontal structures under the limit state of loss of integrity

Authors

Cherkasy Institute of Fire Safety named after Heroes of Chernobyl of the National University of Civil Defense of Ukraine, Ukraine
https://orcid.org/0000-0002-7664-6620
Cherkasy Institute of Fire Safety named after Heroes of Chernobyl of the National University of Civil Defense of Ukraine, Ukraine
https://orcid.org/0000-0003-1961-5008
Cherkasy Institute of Fire Safety named after Heroes of Chernobyl of the National University of Civil Defense of Ukraine, Ukraine
https://orcid.org/0000-0003-0359-5735
Cherkasy Institute of Fire Safety named after Heroes of Chernobyl of the National University of Civil Defense of Ukraine, Ukraine
https://orcid.org/0000-0002-1111-8747
Cherkasy Institute of Fire Safety named after Heroes of Chernobyl of the National University of Civil Defense of Ukraine, Ukraine
https://orcid.org/0009-0006-1933-570X
Cherkasy Institute of Fire Safety named after Heroes of Chernobyl of the National University of Civil Defense of Ukraine, Ukraine
https://orcid.org/0000-0002-6782-5221

Keywords:

Fire resistance, reinforced concrete slabs, limit state, loss of integrity, tabular method, simplified method, refined method, structural parameters, design, temperature effect of fire

Synopsis

The chapter presents a hierarchical system of calculation methods for assessing the fire resistance of reinforced concrete slabs upon the onset of the limit state of loss of integrity. Three approaches are proposed: tabular, simplified and refined. The tabular method allows to quickly assess the fire resistance of slabs, the simplified method takes into account structural parameters and loads, and the refined method takes into account detailed characteristics of materials and temperature effects for the most accurate results. Such a system provides designers with flexibility during the design phase, allowing them to select the appropriate method depending on the required accuracy and available data. In addition, they help increase the safety of building structures during a fire.

References

Pozdieiev, S. V. (20212). Development of scientific basis for determination of fire endurance of bearing reinforced concrete structures [Doctoral dissertation; Instytut derzhavnoho upravlinnia u sferi tsyvilnoho zakhystu].

Kovalov, A. I. (2023). Development of the scientific basis of assessing the fire resistance of fireproof reinforced concrete building structures [Doctoral dissertation; Natsionalnyi universytet tsyvilnoho zakhystu Ukrainy Derzhavnoi sluzhby Ukrainy z nadzvychainykh sytuatsii].

Kovalov, A., Konoval, V., Khmyrova, A., Dudko, K. (2019). Parameters for simulation of the thermal state and fire-resistant quality of hollow-core floors used in the mining industry. E3S Web of Conferences, 123, 01022. https://doi.org/10.1051/e3sconf/201912301022

Sidnei, S., Nuianzin, V., Kostenko, T., Berezovskyi, A., Wąsik, W. (2023). A Method of Evaluating the Destruction of a Reinforced Concrete Hollow Core Slab for Ensuring Fire Resistance. Journal of Engineering Sciences, 10 (2), D1–D7. https://doi.org/10.21272/jes.2023.10(2).d1

Sidnei, S., Myroshnyk, O., Kovalov, A., Veselivskyi, R., Hryhorenko, K., Shnal, T., Matsyk, I. (2024). Identifying the evolution of through cracks in iron-reinforced hollow slabs under the influence of a standard fire temperature mode. Applied Mechanics, 4 (7 (130)), 70–77. https://doi.org/10.15587/1729-4061.2024.310520

Sidnei, S., Berezovskyi, A., Kasiarum, S., Lytvynenko, O., Chastokolenko, I. (2023). Revealing patterns in the behavior of a reinforced concrete slab in fire based on determining its stressed and deformed state. Eastern-European Journal of Enterprise Technologies, 5 (7 (125)), 43–49. https://doi.org/10.15587/1729-4061.2023.289930

Тут будет ссылка с ВЕЖПТ за октябрь-2024.

Vasylkovskyi, O. M., Leshchenko, S. M., Vasylkovska, K. V., Petrenko, D. I. (2016). Pidruchnyk doslidnyka. Kirovohrad, 204.

Horvat, A. A., Molnar, O. O., Minkovych, V. V. (2019). Metody obrobky eksperymentalnykh danykh z vykorystanniam MS Excel. Uzhhorod: Vydavnytstvo UzhNU "Hoverla", 160.

Pozdieiev, S., Sidnei, S., Nekora, O., Subota, A., Kulitsa, O. (2023). Study of the Destruction Mechanism of Reinforced Concrete Hollow Slabs Under Fire Conditions. Smart Technologies in Urban Engineering, 447–457. https://doi.org/10.1007/978-3-031-46877-3_40

Wickström, U. (2016). Temperature Calculation in Fire Safety Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-319-30172-3

S. Ma, S. Y. A., May, I. M. (1986). The Newton-Raphson method used in the non-linear analysis of concrete structures. Computers & Structures, 24 (2), 177–185. https://doi.org/10.1016/0045-7949(86)90277-4

Cremonesi, M., Franci, A., Idelsohn, S., Oñate, E. (2020). A State of the Art Review of the Particle Finite Element Method (PFEM). Archives of Computational Methods in Engineering, 27 (5), 1709–1735. https://doi.org/10.1007/s11831-020-09468-4

Rainone, L. S., Tateo, V., Casolo, S., Uva, G. (2023). About the Use of Concrete Damage Plasticity for Modeling Masonry Post-Elastic Behavior. Buildings, 13 (8), 1915. https://doi.org/10.3390/buildings13081915

Murray, Y. D., Abu-Odeh, A., Bligh, R. (2006). Evaluation of Concrete Material Model 159. FHWA-HRT-05-063.

Janssen, R. (2013). Fire Spalling of Concrete. Doctoral thesis in Concrete structures. Stockholm.

Pozdieiev, S., Nekora, O., Kryshtal, T., Sidnei, S., Shvydenko, A. (2019). Improvement of the estimation method of the possibility of progressive destruction of buildings caused by fire. IOP Conference Series: Materials Science and Engineering, 708 (1), 012067. https://doi.org/10.1088/1757-899x/708/1/012067

Pozdieiev, S., Nekora, O., Kryshtal, T., Zazhoma, V., Sidnei, S. (2018). Method of the calculated estimation of the possibility of progressive destruction of buildings in result of fire. MATEC Web of Conferences, 230, 02026. https://doi.org/10.1051/matecconf/201823002026

Vambersky, J. N. J. A. (1994). Precast concrete in buildings today and hi the future. The Structural Engineer, 72 (15).

Khern, D., Beiker, M. P. (2005). Kompiuternaia hrafyka y standart OpenGL. Moscow: Vyliams, 1168.

Downloads

Pages

64-96

Published

December 31, 2024

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-05-4

How to Cite

Sidnei, S., Pelypenko, M., Grygorian, M., Kropyva, M., Taran, I., & Holovchenko, S. (2024). Hierarchical structure of calculation methods for assessing the fire resistance of enclosure horizontal structures under the limit state of loss of integrity. In O. Fomin (Ed.), ASSESSMENT OF TECHNICAL CONDITION: MEANS OF MEASUREMENT, SAFETY, RISKS (pp. 64–96). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-05-4.ch3