Scientific and technical solutions for the implementation of biomass burning at coal-fired thermal power plants of Ukraine
Keywords:
TPP, coal, biofuels, biomass, co-firingSynopsis
The purpose of the study is to develop a technology for co-combustion of coal and biomass that will reduce CO2, SO2, NOx, and dust emissions, as well as diversify fuel sources for TPPs in order to meet the standards for reducing pollutant emissions and solve problems with coal supply to power plants, and improve the conditions for coal ignition in the combustion chamber.
The article provides an overview of biomass combustion and gasification technologies and their application for co-combustion with coal, and the possibility of their use in boiler units of thermal power plants in Ukraine. The co-combustion of pulverised coal of G grade (gas) and heterogeneous biomass was experimentally investigated. A zone-by-zone thermal calculation of the boiler unit was performed when feeding biomass with coal. Co-combustion of coal with biomass was calculated using ANSYS FLUENT for the selected solution of the biomass feeding system to the boiler fuel chamber. Recommendations for the application of co-combustion of gas group coal and heterogeneous biomass at Ukrainian TPPs are given.
References
Tsili Staloho Rozvytku. United Nations Development Programme. Available at: https://www.undp.org/uk/ukraine/tsili-staloho-rozvytku
World Energy Outlook 2023 (2023). IEA. Available at: https://www.iea.org/reports/world-energy-outlook-2023
Kennedy, A. (2024). Visualized: Global Coal Consumption by Region. Available at: https://www.visualcapitalist.com/sp/rng01-world-coal-consumption/
Xu, Y., Yang, K., Zhou, J., Zhao, G. (2020). Coal-Biomass Co-Firing Power Generation Technology: Current Status, Challenges and Policy Implications. Sustainability, 12 (9), 3692. https://doi.org/10.3390/su12093692
Yu, B. (2018). Benefit and risk analysis of coal-fired biomass gasification coupled power generation project. Plant Maint. Eng., 20, 53–54.
Inside the dome. Drax. Available at: https://www.drax.com/technology/inside-the-dome/
Amaher Bakke. Wikipedia. Available at: https://uk.wikipedia.org/wiki/Амагер_Бакке
Sun, Y. (2018). Techno-economic Analysis of Biomass Co-firing in Coal-fired Boiler. [Master’s Thesis; Huazhong University of Science & Technology].
Zhang, X., Li, K., Zhang, C., Wang, A. (2020). Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads. Waste Management, 105, 84–91. https://doi.org/10.1016/j.wasman.2020.01.039
Chen, H. R. (2019). Foresee 2019: Panoramic Map of China’s Biomass Energy Industry in 2019 (with Market Scale, Competition Pattern and Development Prospect). Available at: https://www.qianzhan.com/analyst/detail/220/190610-a91842e0.html
Li Chuangjun, Deputy Director General, Introduced the Development of Renewable Energy in the First Three Quarters (2019). NEA. Available at: http://www.nea.gov.cn/2019-10/29/c_138511525.htm Last accessed: 11.03.2020
Zhang, Q. P. (2018). Application Analysis of Biomass and Coal-Fired Coupled Co-Combustion Power Generation Technology. Available at: http://www.china-nengyuan.com/tech/125253.html Last accessed: 11.03.2020
Triani, M., Tanbar, F., Cahyo, N., Sitanggang, R., Sumiarsa, D., Lara Utama, G. (2022). The Potential Implementation of Biomass Co-firing with Coal in Power Plant on Emission and Economic Aspects: A Review. EKSAKTA: Journal of Sciences and Data Analysis. https://doi.org/10.20885/eksakta.vol3.iss2.art4
Sidiq, A. N. (2022). Pengaruh Co-Firing Biomassa terhadap Efisiensi Boiler PLTU Batubara. KILAT, 11 (1), 21–31. https://doi.org/10.33322/kilat.v11i1.1553
Nudri, N. A., Wan Abdul Karim Ghani, W. A., Thomas Bachmann, R., Baharudin, B. T. H. T., Ng, D. K. S., Md Said, M. S. (2021). Co-combustion of oil palm trunk biocoal/sub-bituminous coal fuel blends. Energy Conversion and Management: X, 10, 100072. https://doi.org/10.1016/j.ecmx.2020.100072
Praevia, M. F., Widayat, W. (2022). Analisis Pemanfaatan Limbah Tandan Kosong Kelapa Sawit Sebagai Cofiring pada PLTU Batubara. Jurnal Energi Baru Dan Terbarukan, 3 (1), 28–37. https://doi.org/10.14710/jebt.2022.13367
Pro zatverdzhennia Natsionalnoho planu dii z vidnovliuvanoi enerhetyky na period do 2030 roku ta planu zakhodiv z yoho vykonannia (2024). Rozporiadzhennia Kabinetu Ministriv Ukrainy No. 761-r. 13.08.2024. Available at: https://zakon.rada.gov.ua/laws/show/761-2024-%D1%80#Text
Fateyev, A. I., Shendrik, T. G., Polishchuk, S. S., Dunayevska, N. I. (2018). The energy technological background of involving salty coals into energy balance of Ukraine. 1. Composition of water extracts and the prospects for their utilization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 40–47. https://doi.org/10.29202/nvngu/2018/8
Fateyev, A. I., Shendrik, T. G., Dunayevska, N. I. (2019). The energy technological background of involving salty coals into energy balance of Ukraine. 2. Natural minerals as catalysts of thermochemical conversion of salty coals in various conditions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 45–51. https://doi.org/10.29202/nvngu/2019-6/7
Shendrik, T., Dunayevska, N., Tsaryuk, A., Ielagin, V., Fateyev, A. (2020). Experimental development of approaches to reduce the slagging and corrosive activity of salty coal. Eastern-European Journal of Enterprise Technologies, 6 (6 (108)), 124–133. https://doi.org/10.15587/1729-4061.2020.217585
Shendrik, T. G., Dunayevska, N. I., Fateiev, A. I. (2024). High-temperature metal corrosion during combustion of coal with high salt content. Fizyko-Khimichna Mekhanika Materialiv, 60 (2), 20–28.
Madanayake, B. N., Gan, S., Eastwick, C., Ng, H. K. (2017). Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Processing Technology, 159, 287–305. https://doi.org/10.1016/j.fuproc.2017.01.029
Zhang, X. (2019). Support mechanisms for cofiring biomass with coal. CCC/294. London: IEA Clean Coal Centre, 60.
Arbaflame has signed a major contract with Engie (2019). Arbaflame. Available at: http://www.arbaflame.no Last accessed: 04.06.2019
Tillman, D. A., Duong, D. N. B., Stanley, N. (2012). Solid Fuel Blending. Elsevier. https://doi.org/10.1016/c2009-0-30636-4
Dunaievska, N., Chernyavskiy, M., Shchudlo, T. (2016). Co-combustion of solid biomass in pulverized anthracite-coal firing boilers. Ukrainian Food Journal, 5 (4), 748–764. https://doi.org/10.24263/2304-974x-2016-5-4-14
Dunayevska, N., Zasiadko, Y., Shchudlo, T. (2018). Thermal destruction kinetics of coal and solid biomass mixtures. Ukrainian Food Journal, 7 (4), 738–753. https://doi.org/10.24263/2304-974x-2018-7-4-17
Livingston, W. R., Middelkamp, J., Willeboer, W., Toseny, S., Saner, B., Madrali, S., Hansen, M. T.; Koppejan, J., Cremers, M. F. G. (Eds.) (2016). The status of large scale biomass firing. IEA Bioenergy, 87. Available at: https://www.ieabioenergy.com/wp-content/uploads/2016/03/IEA_Bioenergy_T32_cofiring_2016.pdf
Nekhamin, M., Beztsennyi, I., Dunayevska, N., Vyfatnuik, V. (2020). On using the ANSYS FLUENT software for calculating the process of burning a mixture of particles from different types of solid fuels. Eastern-European Journal of Enterprise Technologies, 4 (8 (106)), 48–53. https://doi.org/10.15587/1729-4061.2020.209762
Baranyuk, A., Dunayevska, N., Rachinsky, A., Vorobyov, N., Merenger, P., Shevel, E. (2024). CFD Modeling of the Combustion of Ukrainian and Biomass in a Flare Boiler Unit TPP-210a. International Journal of Energy for a Clean Environment, 25 (6), 59–79. https://doi.org/10.1615/interjenercleanenv.2023051717
Beagle, E., Belmont, E. (2019). Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy, 128, 267–275. https://doi.org/10.1016/j.enpol.2019.01.006
Shagalova, S., Shnicer, I. (1976). Szhiganie tverdogo topliva v topkah parogeneratorov. Leningrad: Energiya, 176.

