Choice optimization of the type of energy resource for the region

Authors

National University "Odesa рolytechnic", Ukraine
https://orcid.org/0000-0003-0435-6373
National University "Odesa рolytechnic", Ukraine
https://orcid.org/0000-0001-8696-4414
National University "Odesa рolytechnic", Ukraine
https://orcid.org/0009-0000-2289-2490
National University "Odesa рolytechnic", Ukraine
https://orcid.org/0009-0005-2534-2239
National University "Odesa рolytechnic", Ukraine
https://orcid.org/0000-0002-9132-1541
National University "Odesa рolytechnic", Ukraine
https://orcid.org/0000-0002-1834-6902

Keywords:

Energy resource, hydropower, wind power, solar power plants, bioenergy, thermal power, nuclear power, efficiency and pollution index, energy strategies, regions

Synopsis

The work is devoted to a close analysis of the state and prospects for the development of the energy complex of Ukraine. The aim of the study is to develop a methodology for selecting and substantiating the predominant type of energy resources for energy supply of regions.

The state of use of available energy resources, their share in the total volume of energy production is clarified. The advantages and disadvantages of available resources in connection with their impact on the environment are considered.

It is proved that the predominant amount of energy is produced using traditional fossil and produced resources: coal, oil, gas and nuclear fuel. Energy production traditionally follows the availability of resources in the region and the need for energy, which creates an uneven concentration of industry and its accompanying environmental impact.

The use of a complex indicator for assessing the efficiency of types of energy resources and the impact of their use on the state of the environment is proposed. A methodology for using the proposed complex indicator to substantiate the energy strategies of regions is developed.

References

Statistical Review of World Energy (2023). Energy Institute. Available at: https://www.energyinst.org/__data/assets/pdf_file/0004/1055542/EI_Stat_Review_PDF_single_3.pdf

Harvey, R. (2024). Fossil fuel use, emissions hit records in 2023, report says. Reuters. Available at: https://www.reuters.com/business/environment/fossil-fuel-use-emissions-hit-records-2023-report-says-2024-06-19/

Yermolenko, H. (2023). Global electricity demand to grow by 3.3% in 2024. GMK Center. Available at: https://gmk.center/news/globalnyj-spros-na-elektroenergiju-v-2024-godu-vyrastet-na-3-3/

Heletukha, H. H., Zheliezna, T. A., Prakhovnik, A. K. (2015). Analiz enerhetychnykh stratehii krain YeS ta svitu i roli v nykh vidnovliuvanykh dzherel enerhii. Analitychna zapyska BAU № 13. Available at: https://uabio.org/wp-content/uploads/2020/04/uabio-position-paper-13-ua.pdf

Potreblenie elektroenergii v Ukraine k 2030 godu udvoitsya, - prognoz (2012). LB.ua. Available at: https://lb.ua/economics/2012/03/27/142943_potreblenie_elektroenergii.html

Pro skhvalennia Enerhetychnoi stratehii Ukrainy na period do 2030 roku (2013). Rozporiadzhennia Kabinetu Ministriv Ukrainy No. 1071-р. 24.07.2013. Available at: https://zakon.rada.gov.ua/laws/show/1071-2013-%D1%80#Text

Omelchenko, V. (2022). Ukraine’s renewable energy sector before, during and after the war. Razumkov Centre. Available at: https://razumkov.org.ua/en/articles/ukraines-renewable-energy-sector-before-during-and-after-the-war

Zvit z otsinky vidpovidnosti (dostatnosti) heneruiuchykh potuzhnostei (2019). NPC «Ukrenergo». Available at: https://ua.energy/zvit-z-otsinky-vidpovidnosti-dostatnosti-generuyuchyh-potuzhnostej/

Landau, Yu. A. (2020). Analysis of the state and prospects of using hydropower resources in the development of the United power system (UES) of Ukraine. Hidroenerhetyka Ukrainy, 3–4, 16–21. Available at: https://uhe.gov.ua/sites/default/files/2020-12/8.pdf

Suchasnyi stan, problemy ta perspektyvy rozvytku hidroenerhetyky Ukrainy. Analitychna dopovid (2014). Natsionalnyi instytut stratehichnykh doslidzhen, 54.

Atlas enerhetychnoho potentsialu vidnovliuvanykh ta netradytsiinykh dzherel enerhii Ukrainy (2001). Natsionalna akademiia nauk Ukrainy, 41.

Solovev, A., Degtiarev, K. (2013). Vetrenaia vetrianaia energetika. Nauka i zhizn, 7, 42–47.

Yatseno, O. (2021). Nazvano oblasti Ukrainy, de naibilshe vitroelektrostantsii. EcoPolitic. Available at: https://ecopolitic.com.ua/ua/news/nazvano-oblasti-ukraini-de-najbilshe-vitroelektrostancij/

Palchevskaia, E. S., Kuimova, M. V. (2015). O preimushchestvakh i nedostatkakh vetroelektrostantsii. Molodoi uchenyi, 9 (89), 479–480.

Solar Service. Available at: https://solarservice.pro/karta-solnechnoj-aktivnosti-ukrainy

Renewable energy sector: Unlocking sustainable energy potential (2018). National Investment Council of Ukraine. Available at: https://publications.chamber.ua/Renewable%20energy%20sector.pdf

Surface meteorology and Solar Energy (2013). Available at: https://ntrs.nasa.gov/citations/20080012200

Labeish, V. G. (2003). Netraditsionnye i vozobnovliaemye istochniki energii, 79.

Babyna, O. M. (2018). The role of bioenergy in the development of agrarian sector of Ukraine. Black sea economic studies, 30–1, 28–32. Available at: http://www.bses.in.ua/journals/2018/30_1_2018/8.pdf

Omolchenko, V. (2022). Ukraine’s renewable energy sector before, during and after the war. Razumkov Centre. Available at: https://razumkov.org.ua/en/articles/ukraines-renewable-energy-sector-before-during-and-after-the-war

Bioenerhetyka v Ukraini vzhe zamishchuie 5,2 mlrd kubometry pryrodnoho hazu (2021). Mirror of the Week. Available at: https://zn.ua/ukr/ECONOMICS/bioenerhetika-v-ukrajini-vzhe-zamishchuje-5-2-mlrd-kubometri-prirodnoho-hazu.html

Geletukha, G., Zheliezna, T., Matveev, Yu., Kucheruk, P., Kramar, V. (2020). Roadmap for bioenergy development in Ukraine until 2050. UABIO Position Paper № 26. Bioenergy Association of Ukraine. Available at: https://uabio.org/wp-content/uploads/2020/11/uabio-position-paper-26-en.pdf

Biopalyvo. Alternatyvna enerhetyka u sviti ta Ukraini (2016). Enerhiia pryrody. Available at: https://alternative-energy.com.ua/uk/vocabulary/біопаливо/

Shevchenko, V. V., Don, A. V., Kononova, T. G. (2019). Problems of modern electric power industry, ways of its development and estimation of electric power sources. Collection of works XVI International Scientific Conference «Science and Society», 61–73. https://doi.org/10.5281/zenodo.3892964

Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance. (1997). U.S. Geological Survey Fact Sheet FS-163-97. Available at: https://pubs.usgs.gov/fs/1997/0163/report.pdf

Mauricheva, T. S., Kiselev, G. P. (2006). Osnovnye polozheniia kolichestvennoi otsenki radioaktivnogo vozdeistviia ugolnykh TETS na okruzhaiushchuiu sredu. Vestnik Pomorskogo universiteta, 1 (9), 110.

Mauricheva, T. S. (2007). Kolichestvennaia otsenka postupleniia radionuklidov v okruzhaiushchuiu sredu pri rabote ugolnykh TETS na primere TETS-1 g Severodvinska. [Doctoral dissertation].

Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units (1998). Final Report to Congress. Available at: https://www.epa.gov/airtoxics/combust/utiltox/eurtc1.pdf

Puchkov, L. A., Vorobev, A. E. (2000). Chelovek i biosfera: vkhozhdenie v tekhnosferu, 335.

Warner, F., Harrison, R. M. (1993). Radioecology after Chernobyl: Biogeochemical Pathways of Artificial Radionuclides. Wiley, 400.

Kovalenko, G., Piven, G. (2010). Environmental Risk for the Public Health from Releases from Thermal and Nuclear Power Plants of Ukraine. Nuclear and Radiation Safety, 4 (48), 50–56. https://doi.org/10.32918/nrs.2010.4(48).11

Kryshev, I. I. (2010). Ekologicheskaia bezopasnost iaderno-energeticheskogo kompleksa Rossii, 382.

V. A. Maliarenko, V. A., Kanilo, P. M. (2012). Incineration of organic fuels and ekologo-chemical safety. Energy saving. Power engineering. Energy audit, 11 (105), 30–37. Available at: http://eee.khpi.edu.ua/article/view/20805

Nuclear Power: Myth and Reality. Second Edition. (2010). Heinrich Boell Foundation, 352.

Novak, A. (2021). Razvitie atomnoi energetiki neobkhodimoe uslovie globalnoi klimaticheskoi povestki. Energeticheskaia politika, 9 (163), 6–11.

Technical assessment of nuclear energy with respect to the ‘do no significant harm’ criteria of Regulation (EU) 2020/852 (‘Taxonomy Regulation’) (2021). JRC Science for Policy Report. Available at: https://finance.ec.europa.eu/system/files/2021-03/210329-jrc-report-nuclear-energy-assessment_en.pdf

Core Writing Team, Pachaurim R. K., Meyer, L. A. (Eds.) (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151. Available at: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf

IAEA. The Power Reactor Information System (PRIS). Available at: https://pris.iaea.org/pris/home.aspx

Naskolko ekologichna atomnaia energetika Na samom dele tak zhe kak solnechnaia i vetrovaia. ITSOFT. Available at: https://habr.com/ru/articles/552964/

Ustanovlennaia moshchnost elektrostantsii. Available at: https://www.eeseaec.org/ustanovlennaa-mosnost-elektrostancij

Roberts, J. W. (2018). If nuclear energy is the answer, why doesn’t everyone agree? Physics Education, 53, 024003. http://doi.org/10.1088/1361-6552/aa9f7c

Petrus, O., Zemerov, E., Pogosov, O. (2024). Technical and economic analysis of electricity supply to energy deficit regions using small modular reactors (SRM). Science and Technology Today, Series “Physical and Mathematical Sciences”, 3 (31), 1035–1054. https://doi.org/10.52058/2786-6025-2024-3(31)-1035-1054

Advances in Small Modular Reactor Technology Developments (2022). International Atomic Energy Agency. Available at: https://aris.iaea.org/publications/SMR_booklet_2022.pdf

Lee, J. S., Kim, Y. S., Kim, J. H. (2022). A review of small modular reactors for power generation. Renewable and Sustainable Energy Reviews, 169, 108–109.

Zohuri, B. (2020). Nuclear Micro Reactors. Springer Nature, 120. https://doi.org/10.1007/978-3-030-47225-2

Ghimire, L., Waller, E. (2023). Small Modular Reactors: Opportunities and Challenges as Emerging Nuclear Technologies for Power Production. Journal of Nuclear Engineering and Radiation Science, 9 (4), 044501. https://doi.org/10.1115/1.4062644

Stadzhi, D. (2022). Matematika zelenoi energetiki khorosho no malo. Energy Business Magazine, 1–2, 1245–1246. Available at: https://e-b.com.ua/matematika-zelenoi-energetiki-xoroso-no-malo-3003

HOST 19431-84. Enerhetyka ta elektryfikatsiia. Terminy ta vyznachennia. (1986). Ministerstvo enerhetyky i elektryfikatsii SRSR.

Adoption of the Paris Agreement (2015). FCCC/CP/2015/L.9/Rev.1, 32. Available at: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

Maksmadiev, B. S., Ochilov, M. A., Mirzaev, Sh. N., Iuldashov, S. Sh. (2019). Types of Energy Resources and Possibilities of Development of Alternative Energy Based on Renewable Energy Sources in Uzbekistan. International Academy Journal Web of Scholar, 6 (36), 12–16. https://doi.org/10.31435/rsglobal_wos/30062019/6550

Struktura elektroheneratsii v Ukraini ta yii zviazok iz taryfamy na elektroenerhiiu (2021). Torhova Elektrychna Kompaniia. Available at: https://tek.energy/news/struktura-elektrogeneratsii-v-ukraini-ta-ii-zvyazok-iz-tarifami-na-elektroenergiyu

IPCC Report on Impacts, Adaptation and Vulnerability: Key Takeaways (2022). United Nations. Available at: https://www.un.org/climatechange/ipcc-wgii-report

Khalafian, A. A., Borovikov, V. P., Kalaidina. G. V. (2017). Teoriia veroiatnostei, matematicheskaia statistika i analiz dannykh: Osnovy teorii i praktika na kompiutere. STATISTICA. EXCEL, 320.

Pro skhvalennia Enerhetychnoi stratehii Ukrainy na period do 2035 roku “Bezpeka, enerhoefektyvnist, konkurentospromozhnist” (2017). Rozporiadzhennia Kabinetu Ministriv Ukrainy No. 605-р. 18.08.2017. Available at: https://zakon.rada.gov.ua/laws/show/605-2017-%D1%80#Text

Kozlov, I., Kovalchuk, V., Klymchuk, O., Dorozh, O., Sigal, A., Aksyonova, I., et. al. (2022). Assessing the region’s energy provision. Eastern-European Journal of Enterprise Technologies, 2 (8 (116)), 13–20. https://doi.org/10.15587/1729-4061.2022.255740

Biliaiev, N. N., Shynkarenko, V. S., Gabrinets, V. A., Kalashnikov, I. V., Berlov, O. V. (2018). Modeling of atmosphere pollution and territorial risk assessment at emission of hazardous substances. Geо-Technical Mechanics, 140, 158–165. https://doi.org/10.15407/geotm2018.03.158

Zviagintseva, A. V. (2016). Veroiatnostnye metody kompleksnoi otsenki prirodno-antropogennykh sistem, 257.

Iaili, E. A. (2006). Nauchnye i prikladnye aspekty otsenki i upravleniia urbanizirovannymi territoriiami na osnove instrumenta riska i novykh pokazatelei kachestva okruzhaiushchei sredy, 448.

Savchuk, I. H. Konkordatsii koefitsiient. Slovnyk suspilnoi heohrafii. Available at: https://geohub.org.ua/node/4219

Downloads

Pages

106-143

Published

December 30, 2024

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-02-3

How to Cite

Kozlov, I., Kovalchuk, V., Miliev, V., Holovin, M., Vistiak, S., & Kozlov, O. (2024). Choice optimization of the type of energy resource for the region. In T. Baydyk (Ed.), ENERGY SYSTEMS AND RESOURCES: OPTIMISATION AND RATIONAL USE (pp. 106–143). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-02-3.ch4