Solar concentrator applications in agriculture
Keywords:
agricultural crops, mathematical model, solar concentrator, Micro Equipment Technology (MET), flat triangular mirrors, assembly, automatizationSynopsis
We have developed several prototypes of solar concentrators that are compact, light, and inexpensive. As an example of solar concentrators, we selected parabolic solar concentrators with plane mirrors that approximate the parabolic surface. A methodology is proposed for the evaluation of the impact of combinations of solar concentrators together with certain agricultural crops. The proposed mathematical model is simple and applicable for different cases of combination of solar concentrators and agricultural fields. This study is dedicated to renewable energy on the example of two countries, Mexico and Azerbaijan. The relief and climate of both countries have many common features, which are expressed particularly in the abundance of solar radiation, the predominance of mountainous regions with remote and hard-to-reach settlements that need to create autonomous life support systems. The main problem for proposed solar concentrators is the automatization of the assembly process of these solar concentrators. We proposed two methods of assembly that is, using a parabolic rule and using a robotic arm with a stereoscopic vision system. Both methods are described in this chapter.
References
Analysis of climate policies of the countries of Eastern Europe, Caucasus and Central Asia (EECCA) (2020). CAN, 36. Available at: https://infoclimate.org/wp-content/uploads/2020/12/overview-of-climate-policies-eecca.pdf Last accessed: 19.08.2022
The Paris Agreement (2015). Available at: https://unfccc.int/process-and-meetings/theparis-agreement/the-paris-agreement Last accessed: 19.08.2022
FAO Strategy on Climate Change (2017). Food and Agriculture Organization of the United Nations. Rome. Available at: https://agris.fao.org/agris-search/search.do?recordID=XF2018000291 Last accessed: 19.08.2022
Viana, C. M., Freire, D., Abrantes, P., Rocha, J., Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment, 806, 150718. doi: https://doi.org/10.1016/j.scitotenv.2021.150718
Majumdar, D., Pasqualetti, M. J. (2018). Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landscape and Urban Planning, 170, 150–168. doi: https://doi.org/10.1016/j.landurbplan.2017.10.011
Skuras, D., Psaltopoulos, D. (2012). A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. Building Resilience for Adaptation to Climate Change in the Agriculture Sector, 23, 217–260.
Zhu, X., Zhang, Z., Chen, X., Jia, F., Chai, Y. (2022). Nexus of mixed-use vitality, carbon emissions and sustainability of mixed-use rural communities: The case of Zhejiang. Journal of Cleaner Production, 330, 129766. doi: https://doi.org/10.1016/j.jclepro.2021.129766
World Population Prospects 2022. (2022). United Nation, 54. Available at: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf Last accessed: 19.08.2022
Global Report on Food Crises (2019). Food Security Information Network. Available at: http://www.fsinplatform.org/global-report-food-crises-2019 Last accessed: 19.08.2022
Dinesh, H., Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. doi: https://doi.org/10.1016/j.rser.2015.10.024
Global Renewables Outlook: Energy Transformation 2050 (2020). International Renewable Energy Agency. Abu Dhabi.
Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39 (4). doi: https://doi.org/10.1007/s13593-019-0581-3
Santra, P., Pande, P.C., Kumar, S., Mishra, D., Singh, R. K. (2017). Agri-voltaics or solar farming: the concept of integrating solar PV based electricity generation and crop production in a single land use system. International Journal of Renewable Energy Research, 7 (2), 694–699. doi: https://doi.org/10.20508/ijrer.v7i2.5582.g7049
Coşgun, A. E. (2021). The potential of Agrivoltaic systems in Turkey. Energy Reports, 7, 105–111. doi: https://doi.org/10.1016/j.egyr.2021.06.017
Zainol Abidin, M. A., Mahyuddin, M. N., Mohd Zainuri, M. A. A. (2021). Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review. Sustainability, 13 (14), 7846. doi: https://doi.org/10.3390/su13147846
Cho, J., Park, S. M., Park, A. R., Lee, O. C., Nam, G., Ra, I.-H. (2020). Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies, 13 (18), 4815. doi: https://doi.org/10.3390/en13184815
Kussul, E., Baydyk, T., Estrada, A. E., González, M. T. R., Wunsch II, D. (2019). Solar concentrators manufacture and automation. Open Physics, 17 (1), 93–103. doi: https://doi.org/10.1515/phys-2019-0011
Ravi, S., Macknick, J., Lobell, D., Field, C., Ganesan, K., Jain, R., Elchinger, M., Stoltenberg, B. (2016). Colocation opportunities for large solar infrastructures and agriculture in drylands. Applied Energy, 165, 383–392. doi: https://doi.org/10.1016/j.apenergy.2015.12.078
Sekiyama, T., Nagashima, A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments, 6 (6), 65. doi: https://doi.org/10.3390/environments6060065
Alemán-Nava, G. S., Casiano-Flores, V. H., Cárdenas-Chávez, D. L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J. et al. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140–153. doi: https://doi.org/10.1016/j.rser.2014.01.004
Agostini, A., Colauzzi, M., Amaducci, S. (2021). Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy, 281, 116102. doi: https://doi.org/10.1016/j.apenergy.2020.116102
World Bank list of economies (2021). Available at: https://cdn.ymaws.com/www.autisminsar.org/resource/resmgr/docs/world_bank_lists/world_bank_list_of_economies.pdf Last accessed: 19.08.2022
In-depth Review of the Energy Efficiency Policy of the Republic of Azerbaijan (2020). Available at: https://www.energycharter.org/what-we-do/energy-efficiency/energy-efficiency-country-reviews/in-depth-review-of-energy-efficiency-policies-and-programmes/in-depth-review-of-the-energy-efficiency-policy-of-the-republic-of-azerbaijan Last accessed: 19.08.2022
The use of renewable energy resources in Azerbaijan. Ministry of Energy of the Republic of Azerbaijan (2022). Available at: https://minenergy.gov.az/en/alternativ-ve-berpa-olunanenerji/azerbaycanda-berpa-olunan-enerji-menbelerinden-istifade Last accessed: 19.08.2022
Veysey, J., Octaviano, C., Calvin, K., Martinez, S. H., Kitous, A., McFarland, J., van der Zwaan, B. (2016). Pathways to Mexico’s climate change mitigation targets: A multi-model analysis. Energy Economics, 56, 587–599. doi: https://doi.org/10.1016/j.eneco.2015.04.011
Energy Resource Guide. Mexico – Renewable Energy (2021). Available at: https://www.trade.gov/energy-resource-guide-mexico-renewable-energy Last accessed: 19.08.2022
Our World in Data based on BP Statistical Review of World Energy (2021). Available at: https://ourworldindata.org/energy/country/
Azerbaijan Renewable Energy Agency (2020). Decree No. 1159 of the President of the Republic of Azerbaijan dated 22 September 2020. Available at: https://minenergy.gov.az/en/ministry/nazirliyin-tabeliyinde-olan-qurumlar Last accessed: 20.08.2022
On the use of renewable energy sources in the production of electricity (2021). Тhe law of the Republic of Azerbaijan No. 339-VIQ. 31.05.2021. Available at: https://minenergy.gov.az/en/qanunlar Last accessed: 20.08.2022
General Law on Climate Change Mеxico. Available at: https://iea.blob.core.windows.net/assets/imports/events/13/GeneralClimateChangeLaw_Englishversion.pdf Last accessed: 20.08.2022
Development Program of the National Electrical System, 2022–2036 (2022). Secretaría de Energía. Available at: https://www.gob.mx/sener/articulos/programa-para-el-desarrollodel-sistema-electrico-nacional-304042 Last accessed: 20.08.2022
Population. Available at: https://stat.gov.az/source/demoqraphy/?lang=en Last accessed: 20.08.2022
General information on nature of Azerbaijan. Available at: https://azerbaijan.az/en/information/201 Last accessed: 20.08.2022
Mexico population. Available at: https://countrymeters.info/en/Mexico#population_2022 Last accessed: 20.08.2022
Geography of Mexico. Available at: http://worldfacts.us/Mexico-geography.htm Last accessed: 20.08.2022
Agricultural land (% of land area). Available at: https://tradingeconomics.com/mexico/agricultural-land-percent-of-land-area-wb-data.html Last accessed: 20.08.2022
Climate-Azerbaijan. Available at: https://www.azerbaijans.com/content_457_en.html Last accessed: 20.08.2022
RAE Aliyev, Z. H. (2018). Agriculture in Azerbaijan and its Development Prospects. JOJ Sciences, 5, 555–572.
A Mexico Climate Overview. Available at: https://focusonmexico.com/climate-mexico/ Last accessed: 20.08.2022
Mexico sets world’s lowest solar price; Energy storage to hit 125 GW by 2030. Available at: https://www.reutersevents.com/renewables/pv-insider/mexico-sets-worlds-lowestsolar-price-energy-storage-hit-125-gw-2030 Last accessed: 20.08.2022
Azerbaijan 2030: National Priorities for Socio-Economic Develpment (2021). Order of the President of the Azerbaijan Republic 02.02.2021. Available at: https://president.az/en/articles/view/50474 Last accessed: 20.08.2022
On measures in connection with the creation of a "green energy" zone in the liberated territories of the Republic of Azerbaijan (2021). Order of the President of the Republic of Azerbaijan No. 2620. 03.05.2021. Available at: https://president.az/az/articles/view/51355/print Last accessed: 20.08.2022
On approval of the Action Plan on establishment of a "green zone" in the territories of the Republic of Azerbaijan liberated from occupation in 2022–2026 (2022). Order of the Cabinet of Ministers No. 357. 21.06.2022. Available at: https://nk.gov.az/az/document/6209/Last accessed: 20.08.2022
Valiyev, A.H. (2020). Evaluation of the potential of agricultural soils in the occupied territories. Agricultural economics, 3 (33), 60–70.
Mexico Clean Energy Report – Executive Summary (2021). NREL, 64. Available at: https://www.nrel.gov/docs/fy22osti/82580.pdf Last accessed: 20.08.2022
Industrial solar power plant and solar farms in Mexico. Available at: https://www.solarenergymexico.com/solar-energy-industrial-use/ Last accessed: 20.08.2022
Solar resource maps of Mexico. Available at: https://solargis.com/maps-and-gis-data/download/mexicot
Mustafayev, F., Kulawczuk, P., Orobello, C. (2022). Renewable Energy Status in Azerbaijan: Solar and Wind Potentials for Future Development. Energies, 15 (2), 401. doi: https://doi.org/10.3390/en15020401
The photovoltaic power potential of Azerbaijan (2021). The World Bank Group Global Solar Atlas. Global Solar Atlas. Available at: http://www.globalsolaratlas.info/ Last accessed: 20.08.2022
A Solar Farm That Doubles As A Tequila Plant Operation (2014). Sidney Brownstone. Fast Company. Available at: https://www.fastcompany.com/3029260/a-solar-farm-that-doublesas-a-tequila-making-operation Last accessed: 20.08.2022
As part of the «Agrivoltaics» pilot project, various agricultural plants sown on a plot with solar panels. Available at: https://agro.gov.az/az/news/aqrovoltaika-layihesicercivesinde-guenes-panelleri-olan-erazide-muextelif-kend-teserruefati-bitkilerininsepini-heyata-kecirilib Last accessed: 20.08.2022
Renewable Energy Prospects: Mexico (2015). REmap2030. Available at: https://www.irena.org/publications/2015/May/Renewable-Energy-Prospects-Mexico Last accessed: 20.08.2022
Nonhebel, S. (2005). Renewable energy and food supply: will there be enough land? Renewable and Sustainable Energy Reviews, 9 (2), 191–201. doi: https://doi.org/10.1016/j.rser.2004.02.003
Fthenakis, V., Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), 1465–1474. doi: https://doi.org/10.1016/j.rser.2008.09.017
Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology, 177, 117–132. doi: https://doi.org/10.1016/j.agrformet.2013.04.012
Goetzberger, A., Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy, 1 (1), 55–69. doi: https://doi.org/10.1080/01425918208909875
Scognamiglio, A. (2014). Photovoltaic Greenhouses: A Feasible Solution for Islands? Design, Operation Monitoring and Lessons Learned from a Real Case Study. The 6th World Conf. on Photovoltaic Energy Conversion. Kyoto.
Kussul, E., Baydyk, T., Olvera-Tapia, O., Rodríguez Andrade, J. (2019). Comparison of Collocation of Solar Concentrators with Bean Fields in Mexico and Potato Fields in Canada and Micromechanical Equipment for Their Production. Journal of Energy and Power Engineering, 13 (1), 24–31. doi: https://doi.org/10.17265/1934-8975/2019.01.002
Kussul, E., Baydyk, T., Garcia, N., Velasco Herrera, G., Curtidor Lopez, A. V. (2020). Combinations of Solar Concentrators with Agricultural Plants. Journal of Environmental Science and Engineering B, 9 (5), 168–181. doi: https://doi.org/10.17265/2162-5263/2020.05.002
Amaducci, S., Yin, X., Colauzzi, M. (2018). Agrivoltaic systems to optimise land use for electric energy production. Applied Energy, 220, 545–561. doi: https://doi.org/10.1016/j.apenergy.2018.03.081
Scilab Enterprises and Consortium Scilab. Digiteo. Scilab: Free and Open Source software for numerical computation (OS, Version 5.4.1) (2012). Available at: http://www.scilab.org Last accessed: 20.08.2022
Yin, X., Van Laar, H. (2005). Crop systems dynamics: an ecophysiological simulation model for genotype-by-environment interactions. Wageningen Academic Pub. doi: https://doi.org/10.3920/978-90-8686-539-0
Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J. M., Bruce, N. (2007). Development of Micro Mirror Solar Concentrator. WSEAS Trans on Power Systems, 8 (2), 188–194.
Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J. M., Bruce, N. (2008). Flat Facet Parabolic Solar Concentrator with Support Cell for One and More Mirrors. WSEAS Trans on Power Systems, 8 (3), 577–586.
Kussul, E., Makeyev, O., Baidyk, T., SanigerBlesa, J., Bruce, N., Lara-Rosano, F. (2011). Adjustment of Solar Concentrator Support Frame. Proc. of the Intern. Conf. on Innovative Technologies. Bratislava, 314–316.
Kussul, E., Makeyev, O., Baidyk, T., Blesa, J. S., Bruce, N., Lara-Rosano, F. (2011). The Problem of Automation of Solar Concentrator Assembly and Adjustment. International Journal of Advanced Robotic Systems, 8 (4), 150–157. doi: https://doi.org/10.5772/45685
Kussul, E., Makeyev, O., Baidyk, T., Blesa, J. S., Bruce, N. (2012). Ericsson Heat Engine with Microchannel Recuperator for Solar Concentrator with Flat Mirrors. International Journal of Energy Research, 4, 165–177.
Rodríguez Mendoza, J. L. (2011). Sistema robótico para ajuste de concentradores solares, Tesis para obtener el grado de Maestro en Ingeniería Mecánica-Mecatrónica. UNAM.
Kussul, E., Baidyk, T., Lara-Rosano, F., Saniger Blesa, J. M., Ascanio, G., Bruce, N. (2011). Pat. No. US 8,631,995 B2. Method and Device for Mirrors Position Adjustment of a Solar Concentrator, Notice of Allowance. 02.03.2010 (Mexico), 02.03.2011 (USA).
Kussul, E., Baydyk, T., Saniger Blesa, J. M., Bruce Davidson, N. Ch., Lara Rosano, F., Rodríguez Mendoza, J. L. (2015). Pat. No 334742. Dispositivo de soporte para concentrador solar con espejos planos, 7.02.2012. Instituto Mexicano de Propiedad Industrial. Solicitud MX/a/2012/001598. Fecha de expedición 9.10.2015.
Kussul, E., Baydyk, T., Saniger Blesa, J. M., Bruce Davidson, N. Ch., Lara Rosano, F., Rodríguez Mendoza, J. L. (2015). Pat. No. ES2525276 Dispositivo de soporte para concentrador solar con espejos planos, 21.07.2014, Oficina Española de Patentes y Marca. Solicitud P201490078l. Fecha de la concesión 25.09.2015.
Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G., Kasatkina, L. (2002). Development of micromachine tool prototypes for microfactories. Journal of Micromechanics and Microengineering, 12 (6), 795–812. doi: https://doi.org/10.1088/0960-1317/12/6/311
