Composite materials based on water-soluble binders for electrochemical capacitors

Authors

Kyiv National University of Technologies and Design, Ukraine
https://orcid.org/0000-0003-0013-8010
Kyiv National University of Technologies and Design, Ukraine
https://orcid.org/0000-0002-9402-1595
Kyiv National University of Technologies and Design, Ukraine
https://orcid.org/0000-0002-3041-2474
Kyiv National University of Technologies and Design, Ukraine
https://orcid.org/0000-0002-5764-9842
Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine, Ukraine
https://orcid.org/0000-0001-9328-6586
Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine, Ukraine
https://orcid.org/0000-0001-5901-873X

Keywords:

electrochemical capacitor, cellular carbonaceous material, activated carbon, graphite, polymer-carbon composite, water-based polymers

Synopsis

Today, more and more attention is paid to non-traditional rechargeable sources of electric current, which are able to quickly charge and discharge (in a few seconds or minutes), have high power (kW/kg) and a long service life (tens of thousands of charge-discharge cycles). Such current sources include electrochemical capacitors (EC), which in the special literature are called supercapacitors, ultracapacitors, ionistors, or molecular storage devices.
The principle of operation of such current sources is based on their ability to store and release electrical energy at a given time through the internal redistribution of electrolyte ions in a double electric layer (DEL). The rate of redistribution of ions in the DEL is several orders of magnitude higher than the rate of ion transfer through the “electrode-electrolyte” phase boundary during classical redox transformations in batteries. That is why ECs are non-traditional current sources, they have significant advantages over batteries in terms of their specific power, the rate of charge-discharge processes and service life, although they are inferior to batteries in terms of their capacity and energy density. Particular attention has been paid to EC in connection with the start of production in many countries of the world of environmentally friendly cars and buses with electric motors that require high power at the time of engine start. In addition to being used in transport, ECs are widely used in military and space technology, in energy storage systems at peak loads, for regulating wind generator turbines, etc.
The production of electrochemical capacitors requires fairly large capital investments. This is due to the requirements for the environmental friendliness of the production itself, where a significant amount of costs is spent on ensuring safe working conditions for personnel, on capturing harmful substances and their disposal. That is why the issue of developing EC to reduce the cost of production through the use of new materials and the improvement of technological processes becomes especially relevant.
The main scientific research in recent years in the field of EC has been associated with the study of new electrochemical systems, electrode materials and electrolytes. To a certain, but insufficient extent, attention was also paid to the improvement of the technology of combining the active material and the current collector. Even less research work is related to the development of environmentally friendly technologies for the production of composite active materials for capacitors, although the development of these components can potentially provide high electrical performance of capacitors and significantly reduce the cost of their production. These circumstances put forward the research and development of environmentally friendly methods for obtaining composite materials for electrochemical capacitors into the category of complex, but relevant scientific and technical problems.

References

Wang, Y., Song, Y., Xia, Y. (2016). Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45 (21), 5925–5950. doi: https://doi.org/10.1039/c5cs00580a

Ali, A., Andriyana, A. (2020). Properties of multifunctional composite materials based on nanomaterials: a review. RSC Advances, 10 (28), 16390–16403. doi: https://doi.org/10.1039/c9ra10594h

Malietin, Yu., Stryzhakova, N., Zelinskyi, S. et al. (2011). Cuperkondensatory – nakopychuvachi elektrychnoi enerhii z vykorystanniam nanorozmirnykh vuhletsevykh materialiv. Visnyk NAN Ukrainy, 12, 23–29.

Vivekchand, S. R. C., Rout, C. S., Subrahmanyam, K. S., Govindaraj, A., Rao, C. N. R. (2008). Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 120 (1), 9–13. doi: https://doi.org/10.1007/s12039-008-0002-7

Stoller, M., Zhu, Y., Ruoff, R. (2008). Graphene-based ultracapacitors. Proc. 18th Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, 4–7.

Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011

Kurzweil, P. (2009). HISTORY | Electrochemical Capacitors. Encyclopedia of Electrochemical Power Sources, 596–606. doi: https://doi.org/10.1016/b978-044452745-5.00006-x

Noori, A., El-Kady, M. F., Rahmanifar, M. S., Kaner, R. B., Mousavi, M. F. (2019). Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 48 (5), 1272–1341. doi: https://doi.org/10.1039/c8cs00581h

Murphy, T. C., Wright, R. B., Sutula, R. A. (1997). Electrochemical Capacitors II, Proceedings. The Electrochemical Society. Pennington, 96, 258.

Miller, J. R., Burke, A. (2008). Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. The Electrochemical Society Interface, 17 (1), 53–57. doi: https://doi.org/10.1149/2.f08081if

Delhaes, P. (2019). Graphite and Precursors. CRC Press, 312.

Drobnyi, D. M., Tychyna, S. O., Stryzhakova, N. H., Malietin, Yu. A. (2015). Polimerni materialy dlia kompozytnykh elektrodiv superkondensatoriv. Perspektyvni polimerni materialy ta tekhnolohii. Kyiv, 19–23.

Malietin, Yu. A., Shembel, O. M., Novak, P., Podmohilnyi, S. M., Stryzhakova, N. H., Izotov, V. Yu. et al. (2010). Pat. Ukrainy No. 90448 UA. Metod vyhotovlennia elektrodiv z nyzkym kontaktnym oporom dlia batarei ta kondensatoriv podviinoho sharu. MPK: H01G 9/00, H01G 9/155 (2006.01). No. a200506296. declareted: 25.06.2005; published: 11.15.2010.

Izotov, V. Yu., Biriukova, Yu. V. (2008). Pat. No. 35069U. Elektrod dlia kondensatoriv podviinoho elektrychnoho sharu. MPK: H01G 9/00. No. u200805440. declareted: 25.04.2008; published: 26.08.2008.

Baklan, V. Yu., Korolenko, S. D. (2010). Stan ta perspektyvy rozvytku khimichnykh dzherel strumu. Visnyk KNUTD, 5, 227–232.

Merena, R. I., Budzuliak, I. M., Hryhorchak, I. I. et al. (2004). Doslidzhennia kharakterystyk elektrokhimichnykh kondensatoriv, sformovanykh na osnovi aktyvovanoho vuhletsiu, modyfikovanoho vysokotemperaturnoiu obrobkoiu. Fizyka i khimiia tverdoho tila, 5 (4), 836–839.

Béguin, F., Presser, V., Balducci, A., Frackowiak, E. (2014). Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 26 (14), 2219–2251. doi: https://doi.org/10.1002/adma.201304137

Conway, B. E. (1999). Electrochemical supercapacitors. Scientific fundamentals and technological applications. New York, 698.

Drobnyi, D. (2017). Pat. No. WO2017025792 A1. Sposob izgotovleniia elektroda dlia elektrokhimicheskogo kondensatora dvoinogo sloia. MPK: H01G11/86; declareted: 09.08.2016; published: 16.02.2017.

Pashkevich, K., Yezhova, O., Kolosnichenko, M., Ostapenko, N., Kolosnichenko, E. (2018). Designing of the complex forms of women's clothing, considering the former properties of the materials. Man-Made Textiles in India, 46 (11), 372–380.

Ellis, B., Smith, R. (2020). Polymers A Property Database. CRC Press, 1052.

Horonovskyi, Y. T., Nazarenko, Yu. P., Nekreh, E. F. (1974). Kratkyi spravochnyk po khymyy. Kyiv: Naukova dumka, 830.

Barzic, A. I., Rawat, N. K., Haghi, A. K. (Eds.) (2021). Imidic Polymers and Green Polymer Chemistry. New York: Apple Academic Press, 380. doi: https://doi.org/10.1201/9781003057918

Schwartz, M. (2008). Smart Materials. CRC Press, 554.

Marphy, R., Krehl, P., Liang, C. (1981). Technologies for the Transition. 16th Intersociety Energy Conversion Engineering Conference. New York, 1, 97.

Perelmuter, V. (2017). Electrotechnical Systems. Simulation with Simulink® and SimPower- Systems™. CRC Press, 450.

Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11 (10), 2696–2767. doi: https://doi.org/10.1039/c8ee01419a

Broussely, M., Bodet, J. M., Staniewicz, R. J. (1994). Proceedings of the Symposium on Rechargeable Lithium and Litium-ion Batteries. Extended Abstracts of Fall Meeting of the Electrochemical Society. Maimi Beach, 224.

Pat. No. 2249455 FR. Kondensator pereminnoi yemnosti (1975). Kl. NO1 m 13/06, declareted: 29.10.73, published: 23.05.75.

Haghi, A. K., Ribeiro, A. C. F., Pogliani, L., Balköse, D., Torrens, F., Mukbaniani, O. V. (2021). Applied Chemistry and Chemical Engineering, Research Methodologies in Modern Chemistry and Applied Science. Apple Academic Press, 390.

Moore, J. H., Spencer, N. D. (2001). Encyclopedia of Chemical Physics and Physical Chemistry. CRC Press, 2814.

Uendland, U. (1978). Termicheskie metody analiza. Moscow, 279.

Song, M.-K., Cairns, E. J., Zhang, Y. (2013). Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 5 (6), 2186–2204. doi: https://doi.org/10.1039/c2nr33044j

Kolosnichenkо, O., Yakovlev, M., Prykhodko-Kononenko, I., Tretyakova, L., Ostapenko, N., Pashkevich, K., Ripka, G. (2020). Study of dominant quality indicators of materials and designs of railroad conductors’ uniforms. Vlákna a textile, 3 (27), 90–96.

Shlaiker, C., Young, С. (1980). Batteries for implantable biomedical devices. 29th Power Sources Symposium, 129.

Borshch, A. V., Chernysh, O. V. (2016). Porivniannia kharakterystyk polivinilidenftorydiv 6020 ta 5130 v elektrodnykh kompozytnykh materialakh. Naukovi rozrobky molodi na suchasnomu etapi, 1, 297.

Zaiets, O. V., Tverdokhlib, V. S. (2004). Vlastyvosti polimernoho zv’iazuiuchoho aktyvnykh mas litii-ionnykh dzherel strumu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 159.

Zaiets, O. V., Tverdokhlib, V. S. (2005). Vyvchennia vlastyvostei polimernoho zv’iazuiuchoho PVDF u yon-litiievykh dzherelakh strumu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 184.

Chernysh, O. V., Khomenko, V. H., Barsukov, V. Z., Borshch, A. V. (2016). Vplyv tekhnolohichnykh modyfikatsii polivinilidenftorydu na fizyko-mekhanichni vlastyvosti elektrodiv khimichnykh dzherel strumu. Visnyk KNUTD, 5, 141–148.

Wang, F., Wu, X., Yuan, X., Liu, Z., Zhang, Y., Fu, L., Zhu, Y., Zhou, Q., Wu, Y., Huang, W. (2017). Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 46 (22), 6816–6854. doi: https://doi.org/10.1039/c7cs00205j

Zaiets, O. V., Kolodii, I. O., Mykoliuk, S. V. (2006). Optymizatsiia umov vysushuvannia aktyvnykh mas litii-ionnykh KhDS. Naukovi rozrobky molodi na suchasnomu etapi, 1, 232.

Veres, A. R., Drahan, D. R., Chernysh, O. V. (2014). Mozhlyvosti vykorystannia vodorozchynnykh zv’iazuiuchykh v kompozytnykh elektrodnykh materialakh. Naukovi rozrobky molodi na suchasnomu etapi, 1, 367–368.

Zhao, W. (2020). Handbook for Chemical Process Research and Development. CRC Press, 858.

Simon, P., Gogotsi, Y. (2020). Perspectives for electrochemical capacitors and related devices. Nature Materials, 19 (11), 1151–1163. doi: https://doi.org/10.1038/s41563-020-0747-z

Wypych, G. (2016). Handbook of Polymers. ChemTec Publishing, 706. doi: https://doi.org/10.1016/c2015-0-01462-9

Namsheer, K., Rout, C. S. (2021). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 11 (10), 5659–5697. doi: https://doi.org/10.1039/d0ra07800j

Barsukov, V. Z., Khomenko, V. G., Chernysh, O. V. et al. (2016). Perspektivnye materialy i tekhnologii dlia sovremennykh KhIT i elektronnoi tekhniki. Sovremennye elektrokhimicheskie tekhnologii i oborudovanie. Minsk, 147–148.

Barsukov, V., Khomenko, V., Chernysh, O., Makyeyeva, I. (2016). Modern materials for lithium-ion batteries and supercapacitors. 11th International conference on physics of advanced materials. Cluj-Napoca, 122.

Hank Ellison, D. (2022). Handbook of Chemical and Biological Warfare Agents. CRC Press, 838. doi: https://doi.org/10.4324/9781003230564

Saldívar-Guerra, E., Vivaldo-Lima, E. (Eds.) (2013). Handbook of Polymer Synthesis, Characterization, and Processing. John Wiley & Sons, Inc., 622. doi: https://doi.org/10.1002/9781118480793

Lendlein, A., Sisson, A. (Eds.) (2001). Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications. WILEY-VCH, 426.

Balköse, D., Horak, D., Šoltés, L. (2021). Key Engineering Materials, Current State-of-the-Art on Novel Materials. Apple Academic Press, 584.

Roy Crompton, T. (2017). Organic Compounds in Natural Waters Analysis and Determination. CRC Press, 306.

Peebles, L. H. (1995). Carbon Fibers Formation, Structure, and Properties. CRC Press, 218.

Dragan, E. S. (2021). Advanced Separations by Specialized Sorbents. CRC Press, 358.

Webster, G. K., Kott, L. (Eds.) (2019). Chromatographic Methods Development. Jenny Stanford Publishing, 566. doi: https://doi.org/10.1201/9780429201721

Uwamariya, V. (2014). Adsorptive Removal of Heavy Metals from Groundwater by Iron Oxide Based Adsorbents. CRC Press, 160.

Barsukov, V. Z., Il’in, E. A., Likhnitskii, K. V., Zayats, O. V., Tverdokhleb, V. S., Kryukov, V. V. et al. (2008). Graphites from the Zavalie deposit as active materials for lithium-ion batteries. Russian Journal of Electrochemistry, 44 (5), 579–584. doi: https://doi.org/10.1134/s1023193508050121

Lynch, C. T. (2021). CRC Handbook of Materials Science. Material Composites and Refractory Materials. CRC Press, 654.

Barsukov, V. Z., Chernysh, O. V., Plavan, V. P. (2013). Stiikist do okyslennia zvychainoho i modyfikovanoho rozshyrenoho hrafitu. Tekhnolohii ta dyzain. Khimichni tekhnolohii ta ekolohichna bezpeka, 3, 1–8.

Khomenko, V. H., Barsukov, V. Z., Makieieva, I. S., Chernysh, O. V. (2016). Vplyv hrafitovykh materialiv na elektrychni kharakterystyky litii-ionnykh kondensatoriv. Perspektyvni materialy ta protsesy v tekhnichnii elektrokhimii. Kyiv, 22–26.

Zaiets, O. V., Shkromyda, R. V., Davydov, O. S. (2006). Vplyv dyspersnosti chastochok na vlastyvosti pryrodnoho hrafitu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 233.

Barsukov, V., Langouche, F., Khomenko, V., Makyeyeva, I., Chernysh, O., Gauthy, F. (2015). Modeling of porous graphite electrodes of hybride electrochemical capacitors and lithiumion batteries. Journal of Solid State Electrochemistry, 19 (9), 2723–2732. doi: https://doi.org/10.1007/s10008-015-2835-6

Kim, J.-A., Park, I.-S., Seo, J.-H., Lee, J.-J. (2014). A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes. Transactions on Electrical and Electronic Materials, 15 (2), 81–86. doi: https://doi.org/10.4313/teem.2014.15.2.81

Chernysh, S. I., Chernysh, I. H., Nikitin, Yu. O., Loboda, P. I. (2008). Pro vplyv metodiv dysperhuvannia na mikrostrukturu i morfolohiiu dyspersnykh chastynok pryrodnoho hrafitu ta termohrafenitu. Naukovi visti NTUU "KPI", 1, 76–80.

Wang, G., Yu, M., Feng, X. (2021). Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 50 (4), 2388–2443. doi: https://doi.org/10.1039/d0cs00187b

Struminska, T. V., Kolosnichenko, S. I., Chuprina, E. V., Ostapenko, N. V. (2019). Designing of special clothing based on experimental researches of material properties. Fibres and Textiles, 26 (4), 84–95.

Khomenko, V., Raymundo-Piñero, E., Béguin, F. (2008). High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources, 177 (2), 643–651. doi: https://doi.org/10.1016/j.jpowsour.2007.11.101

Cao, W. J., Zheng, J. P. (2012). Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. Journal of Power Sources, 213, 180–185. doi: https://doi.org/10.1016/j.jpowsour.2012.04.033

Schroeder, M., Winter, M., Passerini, S., Balducci, A. (2012). On the Use of Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Capacitors. Journal of The Electrochemical Society, 159 (8), A1240–A1245. doi: https://doi.org/10.1149/2.050208jes

Rezqita, A., Hamid, R., Schwarz, S., Kronberger, H., Trifonova, A. (2015). Conductive Additive for Si/Mesoporous Carbon Anode for Li-Ion Batteries: Commercial Graphite vs Carbon Black C65. ECS Transactions, 66 (9), 17–27. doi: https://doi.org/10.1149/06609.0017ecst

Schütter, C., Ramirez-Castro, C., Oljaca, M., Passerini, S., Winter, M., Balducci, A. (2014). Activated Carbon, Carbon Blacks and Graphene Based Nanoplatelets as Active Materials for Electrochemical Double Layer Capacitors: A Comparative Study. Journal of The Electrochemical Society, 162 (1), A44–A51. doi: https://doi.org/10.1149/2.0381501jes

Chernysh, O. V., Khomenko, V. H., Barsukov, V. Z. (2016). Vplyv morfolohii poverkhni aliuminiievoho strumovidvodu na adheziiu elektrodnoho materialu i opir elektrokhimichnoho kondensatora. Visnyk KNUTD, 6, 188–194.

Borshch, A. V., Chernysh, O. V. (2015). Doslidzhennia nadiinosti kontaktu robochoi masy superkondensatora do metalevoho strumovidvodu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 316.

Khomenko, V., Barsukov, V., Chernysh, O., Makyeyeva, I., Isikli, S., Gauthy, F. (2016). Green Alternative binders for high-voltage electrochemical capacitors. IOP Conference Series: Materials Science and Engineering, 111, 012025. doi: https://doi.org/10.1088/1757-899x/111/1/012025

Chernysh, O. V., Khomenko, V. H., Makieieva, I. S., Barsukov, V. Z. (2015). Vodorozchynni polimerni kompozytsii dlia khimichnykh dzherel strumu. Perspektyvni polimerni materialy ta tekhnolohii. Kyiv, 101–106.

Barsukov, V., Khomenko, V., Chernysh, O. et al. (2015). Green alternative binders for high voltage electrochemical capacitors and lithium-ion batteries. Baltic Polymer Symposium. Sigulda, 35.

Barsukov, V. Z., Khomenko, V. G., Senik, I. V., Chernysh, O. V. (2013). Litievye batarei dlia primeneniia na transporte: sovremennye problemy i perspektivy. Voprosy khimii i khimicheskoi tekhnologi, 4, 127–131.

Khomenko, V., Barsukov, V., Chernysh, O. et al. (2015). Development of Advanced Lithium-Ion Capacitors. 6th International Conference on Carbon for Energy Storage, Conversion and Environment Protection "CESEP' 2015". Poznan, 64.

Downloads

Pages

76-138

Published

December 31, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-7319-63-3

How to Cite

Khomenko, V., Chernysh, O., Barsukov, V., Tverdokhlib, V., Berezovskij, A., & Slobodianyk, V. (2022). Composite materials based on water-soluble binders for electrochemical capacitors. In ENERGY FACILITIES: MANAGEMENT AND DESIGN AND TECHNOLOGICAL INNOVATIONS (pp. 76–138). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-7319-63-3.ch3