Study of reliability of technical systems reliability
Keywords:
Technical system, reliability, vibration platform, prefabricated units, complex indicators, distribution laws, technical utilization factors, availability and durabilitySynopsis
The main states of reliability of a technical system and its elements are investigated by the example of vibration platforms for compacting concrete mixtures. Experimental studies on the development of vibration platforms for failure have been carried out. Complex indicators were used, which were the coefficient of technical utilization, the coefficient of availability and durability. The received data of malfunctions was made by fixing by groups of prefabricated units, parts and ele- ments to determine the data on their operating time. Based on these data, the analysis of the operating time of the main elements to failure and the most frequently out of order was carried out. The conducted research identified the main prefabricated units and failing parts: engine, gearbox, synchronizer, vibration exciter, propeller shafts, couplings. At the same time, propeller shafts and couplings most often failed. In some cases, the destruction of bearings in vibration exciters has been evidenced. The parameters of the Weibull distribution law have been determined and graphs have been constructed for the model of reliability and failures of propeller shafts of vibration platforms. A graph of the dependence of reliability on the operating time and graphs of the regularities of the distribution of resource indicators and the distribution function, which served as information for the development of recommendations, were built.
References
Nazarenko, I. I., Sviderskyi, A. T., Delembovskyi, M. M. (2013). Doslidzhennia nadiinosti kardannykh valiv vibromashyn budivelnoi industrii. Vibratsii v tekhnitsi ta tekhnolohiiakh. VNAU, 3 (71), 72–77.
Delembovskyi, M., Klymenko, M., Korniichuk, B. (2020). Doslidzhennia na osnovi nechitkoi lohiky modeli vyiavlennia vidmov vibroploshchadok. Zbirnyk naukovykh prats ΛΌHOΣ, 111–112. doi: https://doi.org/10.36074/25.12.2020.v1.38
Delembovskyi, M., Klymenko, M. (2020). Metody pidvyshchennia nadiinosti ta efektyvnosti vibratsiinykh mashyn budivelnoi industrii. ICSR Conference Proceedings, 48–49. doi: http://doi.org/10.36074/23.10.2020.v1.04
Delembovskyi, M., Klymenko, M. (2020). Zabezpechennia nadiinosti vibratsiinykh maidanchykiv budivelnoi industrii z urakhuvanniam metodiv analizu. Zbirnyk naukovykh prats ΛΌHOΣ, 26–28. doi: http://doi.org/10.36074/09.10.2020.v2.06
Delembovskyi, M., Terentiev, O., Shabala, Ye. (2020). Echnology of implementation of the matlab environment in the investigation model of information security threatS. ΛΌHOΣ mystetstvo naukovoi dumky. doi: http://doi.org/10.36074/2663-4139.15.08
Delembovskyi, M., Klymenko, M., Korniichuk, B. (2020). Rozrobka modeli otsinky nadiinosti vibroploshchadky na osnovi nechitkoi lohiky. Zbirnyk naukovykh prats ΛΌHOΣ, 98–102. doi: http://doi.org/10.36074/11.12.2020.v2.28
Nazarenko, I., Sviderskii, A. T., Delembovskii, M. M. (2015). Issledovanie nadezhnosti vibromashin stroitelnoi industrii. Mekhanizatsiia stroitelstva, 3, 44–49.
Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: http://doi.org/10.1615/jautomatinfscien.v44.i7.40
Domin, D. (2013). Artificial orthogonalization in searching of optimal control of technological processes under uncertainty conditions. Eastern-European Journal of Enterprise Technologies, 5 (9 (65)), 45–53. doi: http://doi.org/10.15587/1729-4061.2013.18452
Rogovskii, I. L., Delembovskyi, M. M., Voinash, S. A., Scherbakov, A. P., Teterina, I. A., Sokolova, V. A. (2021). Reliability indexes of vibrating platforms for compaction of construction mixtures. IOP Conference Series: Materials Science and Engineering, 1047 (1), 012026. doi: http://doi.org/10.1088/1757-899x/1047/1/012026
Nazarenko, I. I., Ruchynskyi, M. M., Sviderskyi, A. T., Kobylanska, I. M., Harasim, D., Kalizhanova, A., Kozbakova, A. (2019). Development of energy-efficient vibration machines for the buiding-and-contruction industry. Przeglad Elektrotechniczny, 95 (4), 53–59. doi: http://doi.org/10.15199/48.2019.04.10
Nazarenko, I., Gavryukov, O., Klyon, A., Ruchynsky, N. (2018). Determination of the optimal parameters of a tubular belt conveyor depending on such an economical. Eastern-European Journal of Enterprise Technologies, 3 (1 (93)), 34–42. doi: http://doi.org/10.15587/1729-4061.2018.131552
Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2017). Investigation of vibration machine movement with a multimode oscillation spectrum. Eastern-European Journal of Enterprise Technologies, 6 (1 (90)), 28–36. doi: http://doi.org/10.15587/1729-4061.2017.118731
Nazarenko, I., Mishchuk, Y., Mishchuk, D., Ruchynskyi, M., Rogovskii, I., Mikhailova, L. et. al. (2021). Determiantion of energy characteristics of material destruction in the crushing chamber of the vibration crusher. Eastern-European Journal of Enterprise Technologies, 4 (7 (112)), 41–49. doi: http://doi.org/10.15587/1729-4061.2021.239292
Luchko, J., Kovalchuk, V., Kravets, I., Gajda, O., Onyshchenko, A. (2020). Determining patterns in the stresseddeformed state of the railroad track subgrade reinforced with tubular drains. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 6–13. doi: http://doi.org/10.15587/1729-4061.2020.213525
Kovalchuk, V., Onyshchenko, A., Fedorenko, O., Habrel, M., Parneta, B., Voznyak, O. et. al. (2021). A comprehensive procedure for estimating the stressed-strained state of a reinforced concrete bridge under the action of variable environmental temperatures. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 23–30. doi: http://doi.org/10.15587/1729-4061.2021.228960
Nazarenko, I., Svidersky, A., Kostenyuk, A., Dedov, O., Kyzminec, N., Slipetskyi, V. (2020). Determination of the workflow of energy-saving vibration unit with polyphase spectrum of vibrations. Eastern-European Journal of Enterprise Technologies, 1 (7 (103)), 43–49. doi: http://doi.org/10.15587/1729-4061.0.184632
Bernyk, I., Luhovskyi, O., Nazarenko, I. (2018). Effect of rheological properties of materials on their treatment with ultrasonic cavitation. Materiali in Tehnologije, 52 (4), 465–468. doi: http://doi.org/10.17222/mit.2017.021
Luhovskaia, E. A., Yakhno, O. M., Bernyk, Y. N. (2012). Model of Technological Process of Ultrasonic Clearing of Elastic Surfaces Management. Naukovi pratsi Don NTU. Seriia: Hirnycho-elektromekhanichna, 23 (196), 154–166.
