IMMUNODIAGNOSTICS AND IMMUNOTHERAPY OF NEUROPSYCHIATRIC DISORDERS IN CHILDREN
Keywords:
Immunodiagnostics, immunotherapy, neuropsychiatric disorders, children, diagnostics, therapySynopsis
This scientific monograph presents a review of the current literature and the results of original controlled clinical studies on the immunogenetic, biochemical, microbiological, immunological and rheumatological aspects of the pathogenesis of neuropsychiatric syndromes in children, such as autism spectrum disorders, attention-deficit/hyperactivity disorder and other common mental disorders. The data of this scientific monograph complement and systematize existing approaches to the diagnosis and immunotherapy of immune-dependent lesions of the body of children, leading to psychiatric diseases. The presented scientific work puts forward a folate-centric concept of the pathogenesis of neuropsychiatric syndromes and develops an original approach to clinical patient management under the acronym GBINC, which is an important step forward in the fight against the threatening epidemic of mental disorders in the modern child population.
Chapters
References
Pu, D., Shen, Y., Wu, J. (2013). Association between MTHFR Gene Polymorphisms and the Risk of Autism Spectrum Disorders: A Meta‐Analysis. Autism Research, 6 (5), 384–392. https://doi.org/10.1002/aur.1300
Shaik Mohammad, N., Sai Shruti, P., Bharathi, V., Krishna Prasad, C., Hussain, T., Alrokayan, S. A. et al. (2016). Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatric Genetics, 26 (6), 281–286. https://doi.org/10.1097/ypg.0000000000000152
Rai, V. (2016). Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metabolic Brain Disease, 31 (4), 727–735. https://doi.org/10.1007/s11011-016-9815-0
Sadeghiyeh, T., Dastgheib, S. A., Mirzaee-Khoramabadi, K., Morovati-Sharifabad, M., Akbarian-Bafghi, M. J., Poursharif, Z. et al. (2019). Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian Journal of Psychiatry, 46, 54–61. https://doi.org/10.1016/j.ajp.2019.09.016
Li, Y., Qiu, S., Shi, J., Guo, Y., Li, Z., Cheng, Y., Liu, Y. (2020). Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatrics, 20 (1). https://doi.org/10.1186/s12887-020-02330-3
Haghiri, R., Mashayekhi, F., Bidabadi, E., Salehi, Z. (2016). Analysis of methionine synthase (rs1805087) gene polymorphism in autism patients in Northern Iran. Acta Neurobiologiae Experimentalis, 76 (4), 318–323. https://doi.org/10.21307/ane-2017-030
Frustaci, A., Neri, M., Cesario, A., Adams, J. B., Domenici, E., Dalla Bernardina, B., Bonassi, S. (2012). Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses. Free Radical Biology and Medicine, 52 (10), 2128–2141. https://doi.org/10.1016/j.freeradbiomed.2012.03.011
Chen, L., Shi, X.-J., Liu, H., Mao, X., Gui, L.-N., Wang, H., Cheng, Y. (2021). Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Translational Psychiatry, 11 (1). https://doi.org/10.1038/s41398-020-01135-3
Yonk, L. J., Warren, R. P., Burger, R. A., Cole, P., Odell, J. D., Warren, W. L. et al. (1990). CD4+ helper T cell depression in autism. Immunology Letters, 25 (4), 341–345. https://doi.org/10.1016/0165-2478(90)90205-5
Warren, R. P. (1994). Decreased Plasma Concentrations of the C4B Complement Protein in Autism. Archives of Pediatrics & Adolescent Medicine, 148 (2), 180–183. https://doi.org/10.1001/archpedi.1994.02170020066011
Warren, R. P., Foster, A., Margaretten, N. C. (1987). Reduced Natural Killer Cell Activity in Autism. Journal of the American Academy of Child & Adolescent Psychiatry, 26 (3), 333–335. https://doi.org/10.1097/00004583-198705000-00008
Warren, R. P., Odell, J. D., Warren, W. L., Burger, R. A., Maciulis, A., Daniels, W. W., Torres, A. R. (1997). Brief report: immunoglobulin A deficiency in a subset of autistic subject. Journal of Autism and Developmental Disorders, 27(2), 187–192. https://doi.org/10.1023/a:1025895925178
Russo, A., Krigsman, A., Jepson, B., Wakefield, A. (2009). Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology, 2, 85–94. https://doi.org/10.2147/ceg.s6051
Salehi Sadaghiani, M., Aghamohammadi, A., Ashrafi, M. R., Hosseini, F., Abolhassani, H., Rezaei, N. (2013). Autism in a child with common variable immunodeficiency. Iranian Journal of Allergy, Asthma and Immunology, 12 (3), 287–289.
Gazit, Y., Mory, A., Etzioni, A., Frydman, M., Scheuerman, O., Gershoni-Baruch, R., Garty, B.-Z. (2010). Leukocyte Adhesion Deficiency Type II: Long-Term Follow-Up and Review of the Literature. Journal of Clinical Immunology, 30 (2), 308–313. https://doi.org/10.1007/s10875-009-9354-0
Vinck, A., Verhagen, M. M. M., Gerven, M. van, de Groot, I. J. M., Weemaes, C. M. R. et al. (2011). Cognitive and speech-language performance in children with ataxia telangiectasia. Developmental Neurorehabilitation, 14 (5), 315–322. https://doi.org/10.3109/17518423.2011.603368
Shin, S., Yu, N., Choi, J. R., Jeong, S., Lee, K.-A. (2015). Routine Chromosomal Microarray Analysis is Necessary in Korean Patients With Unexplained Developmental Delay/Mental Retardation/Autism Spectrum Disorder. Annals of Laboratory Medicine, 35 (5), 510–518. https://doi.org/10.3343/alm.2015.35.5.510
Liao, P., Soong, T. W. (2009). CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency. Pflügers Archiv – European Journal of Physiology, 460 (2), 353–359. https://doi.org/10.1007/s00424-009-0753-0
Grimbacher, B., Dutra, A. S., Holland, S. M., Fischer, R. E., Pao, M., Gallin, J. I., Puck, J. M. (1999). Analphoid marker chromosome in a patient with hyper-IgE syndrome, autism, and mild mental retardation. Genetics in Medicine, 1 (5), 213–218. https://doi.org/10.1097/00125817-199907000-00008
Isung, J., Williams, K., Isomura, K., Gromark, C., Hesselmark, E., Lichtenstein, P. et al. (2020). Association of Primary Humoral Immunodeficiencies With Psychiatric Disorders and Suicidal Behavior and the Role of Autoimmune Diseases. JAMA Psychiatry, 77 (11), 1147–1154. https://doi.org/10.1001/jamapsychiatry.2020.1260
Mead, J., Ashwood, P. (2015). Evidence supporting an altered immune response in ASD. Immunology Letters, 163 (1), 49–55. https://doi.org/10.1016/j.imlet.2014.11.006
Noriega, D. B., Savelkoul, H. F. J. (2013). Immune dysregulation in autism spectrum disorder. European Journal of Pediatrics, 173 (1), 33–43. https://doi.org/10.1007/s00431-013-2183-4
Hughes, H. K., Mills Ko, E., Rose, D., Ashwood, P. (2018). Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00405
van der Weyden, M. B., Hayman, R. J., Rose, I. S., Brumley, J. (1991). Folate‐deficient human lymphoblasts: Changes in deoxynucleotide metabolism and thymidylate cycle activities. European Journal of Haematology, 47 (2), 109–114. https://doi.org/10.1111/j.1600-0609.1991.tb00131.x
Partearroyo, T., Úbeda, N., Montero, A., Achón, M., Varela-Moreiras, G. (2013). Vitamin B12 and Folic Acid Imbalance Modifies NK Cytotoxicity, Lymphocytes B and Lymphoprolipheration in Aged Rats. Nutrients, 5 (12), 4836–4848. https://doi.org/10.3390/nu5124836
Courtemanche, C., Elson-Schwab, I., Mashiyama, S. T., Kerry, N., Ames, B. N. (2004). Folate Deficiency Inhibits the Proliferation of Primary Human CD8+ T Lymphocytes In Vitro. The Journal of Immunology, 173 (5), 3186–3192. https://doi.org/10.4049/jimmunol.173.5.3186
Abe, I., Shirato, K., Hashizume, Y., Mitsuhashi, R., Kobayashi, A., Shiono, C. et al. (2012). Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats. Environmental Health and Preventive Medicine, 18 (1), 78–84. https://doi.org/10.1007/s12199-012-0286-6
Troen, A. M., Mitchell, B., Sorensen, B., Wener, M. H., Johnston, A., Wood, B. et al. (2006). Unmetabolized Folic Acid in Plasma Is Associated with Reduced Natural Killer Cell Cytotoxicity among Postmenopausal Women. The Journal of Nutrition, 136 (1), 189–194. https://doi.org/10.1093/jn/136.1.189
Bhatnagar, N., Wechalekar, A., McNamara, C. (2012). Pancytopenia due to severe folate deficiency. Internal Medicine Journal, 42 (9), 1063–1064. Portico. https://doi.org/10.1111/j.1445-5994.2012.02849.x
Binstock, T. (2001). Intra-monocyte pathogens delineate autism subgroups. Medical Hypotheses, 56 (4), 523–531. https://doi.org/10.1054/mehy.2000.1247
Nicolson, G. L., Gan, R., Nicolson, N. L., Haier, J. (2007). Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus‐6 coinfections in the blood of patients with autistic spectrum disorders. Journal of Neuroscience Research, 85 (5), 1143–1148. https://doi.org/10.1002/jnr.21203
Sakamoto, A., Moriuchi, H., Matsuzaki, J., Motoyama, K., Moriuchi, M. (2015). Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain and Development, 37 (2), 200–205. https://doi.org/10.1016/j.braindev.2014.03.016
Valayi, S., Eftekharian, M. M., Taheri, M., Alikhani, M. Y. (2018). Evaluation of antibodies to cytomegalovirus and Epstein-Barr virus in patients with autism spectrum disorder. Human Antibodies, 26 (3), 165–169. https://doi.org/10.3233/hab-180335
Jyonouchi, H., Geng, L., Streck, D. L., Toruner, G. A. (2012). Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. Journal of Neuroinflammation, 9 (1). https://doi.org/10.1186/1742-2094-9-4
Hughes, H. K., Ashwood, P. (2018). Anti-Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders. Frontiers in Psychiatry, 9. https://doi.org/10.3389/fpsyt.2018.00627
Nayeri, T., Sarvi, S., Moosazadeh, M., Hosseininejad, Z., Sharif, M., Amouei, A., Daryani, A. (2020). Relationship between toxoplasmosis and autism: A systematic review and meta-analysis. Microbial Pathogenesis, 147, 104434. https://doi.org/10.1016/j.micpath.2020.104434
Kuhn, M., Grave, S., Bransfield, R., Harris, S. (2012). Long term antibiotic therapy may be an effective treatment for children co-morbid with Lyme disease and Autism Spectrum Disorder. Medical Hypotheses, 78 (5), 606–615. https://doi.org/10.1016/j.mehy.2012.01.037
Rout, U. K., Mungan, N. K., Dhossche, D. M. (2012). Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. European Child & Adolescent Psychiatry, 21 (3), 141–147. https://doi.org/10.1007/s00787-012-0245-1
Frye, R. E., Sequeira, J. M., Quadros, E. V., James, S. J., Rossignol, D. A. (2012). Cerebral folate receptor autoantibodies in autism spectrum disorder. Molecular Psychiatry, 18 (3), 369–381. https://doi.org/10.1038/mp.2011.175
Cabanlit, M., Wills, S., Goines, P., Ashwood, P., Van de Water, J. (2007). Brain‐Specific Autoantibodies in the Plasma of Subjects with Autistic Spectrum Disorder. Annals of the New York Academy of Sciences, 1107 (1), 92–103. https://doi.org/10.1196/annals.1381.010
Gonzalez-Gronow, M., Cuchacovich, M., Francos, R., Cuchacovich, S., Blanco, A., Sandoval, R. et al. (2015). Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus. Journal of Neuroimmunology, 287, 1–8. https://doi.org/10.1016/j.jneuroim.2015.07.006
Gesundheit, B., Rosenzweig, J. P., Naor, D., Lerer, B., Zachor, D. A., Procházka, V. et al. (2013). Immunological and autoimmune considerations of Autism Spectrum Disorders. Journal of Autoimmunity, 44, 1–7. https://doi.org/10.1016/j.jaut.2013.05.005
Platt, M. P., Agalliu, D., Cutforth, T. (2017). Hello from the Other Side: How Autoantibodies Circumvent the Blood–Brain Barrier in Autoimmune Encephalitis. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00442
Liu, C., Zhu, J., Zheng, X.-Y., Ma, C., Wang, X. (2017). Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis. Mediators of Inflammation, 2017, 1–14. https://doi.org/10.1155/2017/6361479
González Toro, M. C., Jadraque Rodríguez, R., Sempere Pérez, Á., Martínez Pastor, P., Jover Cerdá, J., Gómez Gosálvez, F. A. (2013). Encefalitis antirreceptor de NMDA: dos casos pediátricos. Revista de Neurología, 57 (11), 504–508. https://doi.org/10.33588/rn.5711.2013272
Kiani, R., Lawden, M., Eames, P., Critchley, P., Bhaumik, S., Odedra, S., Gumber, R. (2015). Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism. BJPsych Bulletin, 39 (1), 32–35. https://doi.org/10.1192/pb.bp.112.041954
Garg, A., Chedrawi, A., Pardo, C., Johnston, M., Menon, D. (2015). Subacute encephalitis in a child seropositive for alpha-3 subunit of neuronal nicotinic acetylcholine receptors antibody. Journal of Pediatric Neurology, 12 (3), 161–166. https://doi.org/10.3233/jpn-140658
Wu, S., Ding, Y., Wu, F., Li, R., Xie, G., Hou, J., Mao, P. (2015). Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 55, 322–332. https://doi.org/10.1016/j.neubiorev.2015.05.004
Vojdani, A., Mumper, E., Granpeesheh, D., Mielke, L., Traver, D., Bock, K. et al. (2008). Low natural killer cell cytotoxic activity in autism: The role of glutathione, IL-2 and IL-15. Journal of Neuroimmunology, 205 (1-2), 148–154. https://doi.org/10.1016/j.jneuroim.2008.09.005
Ramirez-Celis, A., Becker, M., Nuño, M., Schauer, J., Aghaeepour, N., Van de Water, J. (2021). Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Molecular Psychiatry, 26 (5), 1551–1560. https://doi.org/10.1038/s41380-020-00998-8
Xu, M., Xu, X., Li, J., Li, F. (2019). Association Between Gut Microbiota and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Frontiers in Psychiatry, 10. https://doi.org/10.3389/fpsyt.2019.00473
Theoharides, T. C., Tsilioni, I., Patel, A. B., Doyle, R. (2016). Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Translational Psychiatry, 6 (6), e844–e844. https://doi.org/10.1038/tp.2016.77
Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., Guastella, A. J. (2014). Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Molecular Psychiatry, 20 (4), 440–446. https://doi.org/10.1038/mp.2014.59
Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., Rezaei, N. (2019). A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of Psychiatric Research, 115, 90–102. https://doi.org/10.1016/j.jpsychires.2019.05.019
Jyonouchi, H., Geng, L., Davidow, A. L. (2014). Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: an inflammatory subtype? Journal of Neuroinflammation, 11 (1). https://doi.org/10.1186/s12974-014-0187-2
Marí-Bauset, S., Zazpe, I., Mari-Sanchis, A., Llopis-González, A., Morales-Suárez-Varela, M. (2014). Evidence of the Gluten-Free and Casein-Free Diet in Autism Spectrum Disorders. Journal of Child Neurology, 29 (12), 1718–1727. https://doi.org/10.1177/0883073814531330
Ng, Q., Loke, W., Venkatanarayanan, N., Lim, D., Soh, A., Yeo, W. (2019). A Systematic Review of the Role of Prebiotics and Probiotics in Autism Spectrum Disorders. Medicina, 55 (5), 129. https://doi.org/10.3390/medicina5505012
Kang, D.-W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A. et al. (2017). Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 5 (1). https://doi.org/10.1186/s40168-016-0225-7
Li, Y.-J., Li, Y.-M., Xiang, D.-X. (2017). Supplement intervention associated with nutritional deficiencies in autism spectrum disorders: a systematic review. European Journal of Nutrition, 57 (7), 2571–2582. https://doi.org/10.1007/s00394-017-1528-6
Marchezan, J., Winkler dos Santos, E. G. A., Deckmann, I., Riesgo, R. dos S. (2018). Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy. Neuroimmunomodulation, 25 (5-6), 300–319. https://doi.org/10.1159/000492225
Maltsev, D., Natrus, L. (2020). The Effectiveness of Infliximab in Autism Spectrum Disorders Associated with Folate Cycle Genetic Deficiency. Psychiatry, Psychotherapy and Clinical Psychology, 3, 583–594. https://doi.org/10.34883/pi.2020.11.3.015
Maltsev, D. (2021). Efficacy of Rituximab in Autism Spectrum Disorders Associated with Genetic Folate Cycle Deficiency with Signs of Antineuronal Autoimmunity. Psychiatry, Psychotherapy and Clinical Psychology, 3, 472–486. https://doi.org/10.34883/pi.2021.12.3.010
Rossignol, D. A., Frye, R. E. (2011). A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Molecular Psychiatry, 17 (4), 389–401. https://doi.org/10.1038/mp.2011.165

Downloads
Published
Categories
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.