INTELLIGENT CYBER DEFENCE SYSTEMS: DETECTION OF RANSOMWARE AND PROTECTION OF WIRELESS NETWORKS BASED ON ARTIFICIAL INTELLIGENCE TECHNOLOGIES
Keywords:
Cybersecurity, ransomware, eBPF, artificial intelligence, machine learning, deep neural networks, wireless networks, IEEE 802.11, ireless Honeypot as a Service, K-nearest neighbors (KNN), cryptographic ransomware, real-time, cloud computing, metadata, geolocation, information protection, system call monitoring, malware classification, evil twin attack, honeypotSynopsis
The monograph is devoted to a comprehensive study of two critical areas of cybersecurity: countering ransomware and protecting IEEE 802.11 wireless networks. The work combines theoretical research and practical solutions for creating effective information security systems.
The first part of the monograph explores methods for detecting and countering ransomware viruses in real time using eBPF technology and machine learning models. An innovative model of an integrated data collection system is presented, combining monitoring of system calls, file and cryptographic activity with network traffic analysis. A comprehensive classification model based on an ensemble of decision trees and random forests is proposed, demonstrating malware detection accuracy above 95%. A methodology for applying deep neural networks to identify complex ransomware behaviour patterns has been developed, providing 97.8% identification accuracy.
The second part of the work is devoted to the development of innovative approaches to protecting wireless Wi-Fi networks. A conceptual model of the Wireless Honeypot as a Service information protection system using cloud computing is presented, which provides improved speed and deployment flexibility. A unique method for tracking attackers based on metadata with 90–100% geolocation accuracy has been developed. A diagnostic model of a decoy system has been proposed, which allows configurations to be automatically generated according to the attacker's profile. A method for detecting intrusions based on the K-nearest neighbours algorithm has been presented, which provides 100% accuracy in detecting ‘evil twin’ attacks.
The practical value of the monograph lies in the possibility of directly implementing the developed methods and tools in cybersecurity systems. The research results can be used to protect both corporate and private networks. The proposed solutions significantly increase the level of protection against modern cyber threats, including ransomware and attacks on wireless networks.
The monograph will be useful for cybersecurity specialists, system administrators, software developers, researchers, teachers, and students of relevant specialities. The materials of the work are also of interest to managers of organisations and specialists responsible for the information security of enterprises of various forms of ownership.
References
Kamalrul Bin Mohamed Yunus, Y., & Ngah, S. B. (2023). Ransomware: Stages, detection and evasion. 2023 International Workshop on Engineering Technologies and Computer Science (ENT). IEEE. https://doi.org/10.1109/ICSECS52883.2021.00048
Wang, S.-Y., & Chang, J.-C. (2022). Design and implementation of an intrusion detection system by using Extended BPF in the Linux kernel. Journal of Network and Computer Applications, 198, Article 103283. https://doi.org/10.1016/j.jnca.2021.103283
Miano, S. (2019). Creating complex network services with eBPF: Experience and lessons learned. 2019 IEEE International Conference on Software Analysis, Testing and Evolution (SATE). IEEE. https://doi.org/10.1109/HPSR.2018.8850758
Hohlfeld, O. (2019). Demystifying the performance of XDP BPF. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE. https://doi.org/10.1109/NETSOFT.2019.8806651
Liu, C. (2020). A protocol-independent container network observability analysis system based on eBPF. 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). IEEE. https://doi.org/10.1109/ICPADS51040.2020.00099
Sadiq, A., & Syed, H. (2023). Detection of denial-of-service attack in cloud-based Kubernetes using eBPF. Applied Sciences, 13(8), Article 4700. https://doi.org/10.3390/app13084700.
Miano, S., Risso, F., Vaquero, L. M., Sanvito, D., & Bianco, A. (2019). Introducing SmartNICs in server-based data plane processing: The DDoS mitigation use case. IEEE Access, 7, 107161–107170. https://doi.org/10.1109/access.2019.2933491
Miano, S., Bertrone, M., Risso, F., Vásquez Bernal, M., Lucrezia, M., & Piñero, D. R. L. (2021). A framework for eBPF-based network functions in an era of microservices. IEEE Transactions on Network and Service Management, 18(1), 133–151. https://doi.org/10.1109/tnsm.2021.3055676
Chandrakala, D. (2023). Detection and classification of malware. IEEE Transactions on Industrial Electronics. IEEE. https://doi.org/10.1109/ICAECA52838.2021.9675792
Sobesto, B., Cukier, M., Berthier, R., & Hiltunen, M. (2011). DarkNOC: Dashboard for Honeypot Management. Proceedings of the 25th Large Installation System Administration Conference (LISA). https://www.usenix.org/legacy/event/lisa11/tech/full_papers/Sobesto.pdf
Smith, J. (2020). Analyzing Honeypot Data Using Kibana and Elasticsearch. Towards Data Science.
Fan, W., Fernández, D., & Du, Z. (2017). Versatile Virtual Honeynet Management Framework. IET Information Security, 11(1), 38–45. https://doi.org/10.1049/iet-ifs.2015.0256
Wilson, J. M., Maimon, D., Sobesto, B., Zucker, T. (2021). The effect of surveillance banners on the behavior of intruders in compromised systems. Journal of Cybersecurity Studies, 12 (3), 123–140. https://doi.org/10.1016/j.cybersec.2021.102354
Stockman, M., Rein, A., & Heile, R. (2015). An Open-Source Honeynet System to Study System Banner Message Effects on Hackers. Journal of Computing Sciences in Colleges, 31(1), 282–293. https://www.academia.edu/79459134/An_Open_Source_Honeynet_System_to_Study_System_Banner_Message_Effects_on_Hackers
Kumar, A., & Kumar, R. (2023). A Highly Interactive Honeypot-Based Approach to Network Threat Analysis. Future Internet, 15(4), Article 127. https://www.mdpi.com/1999-5903/15/4/127
Hoque, M. S., Mukit, M. A., & Bikas, M. A. N. (2012). An Implementation of Intrusion Detection System Using Genetic Algorithm. International Journal of Network Security & Its Applications, 4(2), 109–120. https://arxiv.org/pdf/1204.1336
Saeedi, H., Khotanlou, H., & Nassiri, M. (2012). A dynamic approach for honeypot management. International Journal of Information Security and Systems Management, 1(2), 104–109. https://journals.iau.ir/article_548869_3972fd2299180120e6ed2e4763473ec6.pdf
Fraunholz, D., Zimmermann, M., & Schotten, H. D. (2017). An Adaptive Honeypot Configuration, Deployment and Maintenance Strategy. 2017 19th International Conference on Advanced Communication Technology (ICACT), 53–57. https://doi.org/10.23919/ICACT.2017.7890056
Whyte, C., & Mazanec, B. (2023). Understanding Cyber Warfare: Politics, Policy, and Strategy (2nd ed.). Routledge. https://www.routledge.com/Understanding-Cyber-Warfare-Politics-Policy-and-Strategy/Whyte-Mazanec/p/book/9781032159317
Humayun, M., Niazi, M., & Alshayeb, M. (2019). Cyber Security Threats and Vulnerabilities: A Systematic Mapping Study. Arabian Journal for Science and Engineering, 45, 3171–3189. https://link.springer.com/article/10.1007/s13369-019-04319-2
Kettani, H., & Wainwright, P. (2019). On the Top Threats to Cyber Systems. 2019 IEEE International Conference on Information and Computer Technologies (ICICT), 175–179. https://ieeexplore.ieee.org/document/8711324/
Koskinen, A. (2019). DevSecOps: Building Security into the Core of DevOps. University of Jyväskylä. https://jyx.jyu.fi/handle/123456789/67345
Kuvaja, P., & Porres, I. (2018). Self-Service Cybersecurity Monitoring as an Enabler for DevSecOps. IEEE Access, 6, 72092–72104. https://ieeexplore.ieee.org/document/8766805/
Jung, S., & Won, Y. (2018). Ransomware detection method based on context-aware entropy analysis. Soft Computing, 22(20), 6731–6740. https://doi.org/10.1007/s00500-018-3257-z (accessed: 06.05.2024)
Opirskyy, I., Vasylyshyn, S., & Piskozub, A. (2020). Analysis of the use of software baits (honeypots) as a means of ensuring information security. Cybersecurity, 2(10), 88–97. https://doi.org/10.28925/2663-4023.2020.10.8897
Zhuravchak, D., Opirskyy, I., Piskozub, A., Dudykevych, V., & Tolkachova, A. (2024). Monitoring ransomware with Berkeley Packet Filter. Cybersecurity Providing in Information and Telecommunication Systems. Retrieved from https://ceur-ws.org/Vol-3550/
Zhuravchak, D., Opirskyy, I., Piskozub, A., & Dudykevych, V. (2021). Ransomware prevention system design based on file symbolic linking honeypots. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Cracow, Poland, 22–25 September 2021. https://doi.org/10.1109/IDAACS53288.2021.9660913
Bensaoud, A., Kalita, J., & Bensaoud, M. (2023). A survey of malware detection using deep learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4363417
Kaur, U., et al. (2022). Malware detection using pseudo semi-supervised learning. In: SpringerLink. https://doi.org/10.1007/978-3-031-09282-4_31
Zhuravchak, D., Opanovych, M., Tolkachova, A., Dudykevych, V., & Piskozub, A. (2024). Design of an integrated defense-in-depth system with an artificial intelligence assistant to counter malware. Eastern-European Journal of Enterprise Technologies, 6(2(132)), 64–73. https://doi.org/10.15587/1729-4061.2024.318336
Zhuravchak, D., & Dudykevych, V. (2023). Real-time ransomware detection by using eBPF and natural language processing and machine learning. 2023 IEEE 5th International Conference on Advanced Information and Communication Technologies (AICT), Lviv, Ukraine, pp. 1–4. https://doi.org/10.1109/AICT58444.2023.10362535
Shemitha, P., & Punitha Malar Dhas, J. (2023). Trusted detection of ransomware using machine learning algorithms. International Journal of Innovative Technology and Exploring Engineering (IJITEE). https://doi.org/10.35940/ijitee.I1133.0789S219
Korobeinikova, T., Zhuravel, I., Mychuda, L., Sikora, A. (2024). The practice of block symmetric encryption for a secure Internet connection. CEUR Workshop Proceedings, 3861, 114-122. https://ceur-ws.org/Vol-3800/short5.pdf
Korobeinikova, T., Tachenko, I., Romanyuk, O., Romanyuk, S., Stakhov, O., Reyda, O. (2024). Assessing network security risks: A technological chain perspective. International Conference on Advanced Computer Information Technologies (ACIT), 565–570. https://doi.org/10.1109/ACIT62333.2024.10712586
Vorobets, P., Vakhula, O., Horpenyuk, A., & Korshun, N. (2024). Implementing post-quantum KEMs: Practical challenges and solutions. CEUR Workshop Proceedings, 3826, 212–219. https://ceur-ws.org/Vol-3826/short9.pdf
Horpenyuk, A., Opirskyy, I., & Vorobets, P. (2023). Analysis of problems and prospects of implementation of post-quantum cryptographic algorithms. CEUR Workshop Proceedings, 3504, 39–49. https://ceur-ws.org/Vol-3504/paper4.pdf
Mykhaylova, O., Korol, M., & Kyrychok, R. (2024). Research and analysis of issues and challenges in ensuring cyber security in cloud computing. CEUR Workshop Proceedings, 3826, 30–39. https://ceur-ws.org/Vol-3826/paper3.pdf
Mykhaylova, O., Shtypka, A., & Fedynyshyn, T. (2024). An Isolation Forest-based approach for brute force attack detection. CEUR Workshop Proceedings, 3842, 43–54. https://ceur-ws.org/Vol-3842/paper3.pdf
Tyshyk, I., & Hulak, H. (2024). Testing an organization's information system for unauthorized access. CEUR Workshop Proceedings, 3826, 17–29. https://ceur-ws.org/Vol-3826/paper2.pdf
Stefinko, Y., Piskozub, A., Obshta, A. (2024). Analysis of Vulnerability Characteristics for Automated Penetration Testing. IEEE International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, 449-453. https://doi.org/10.1109/TCSET64720.2024.10755620
Vasylyshyn, S., Susukailo, V., Opirskyy, I., Kurii, Y., Tyshyk, I. (2023). A model of decoy system based on dynamic attributes for cybercrime investigation. Eastern-European Journal of Enterprise Technologies, 1(9), 6-20. https://doi.org/10.15587/1729-4061.2023.273363
Chen, Q., Bridges, R. A., & Skjellum, A. (2019). Automated ransomware behavior analysis: Pattern extraction and early detection. In Science of Cyber Security (pp. 199–214). Springer, Cham. https://doi.org/10.1007/978-3-030-34637-9_15
Or-Meir, O., Nissim, N., Elovici, Y., & Rokach, L. (2019). Dynamic malware analysis in the modern era—A state of the art survey. ACM Computing Surveys, 52(5), 1–48. https://doi.org/10.1145/3329786
Almashhadani, A. O., Kaiiali, M., Sezer, S., & O'Kane, P. (2019). A multi-classifier network-based crypto ransomware detection system: A case study of Locky ransomware. IEEE Access, 7, 47053–47067. https://doi.org/10.1109/access.2019.2907485
Min, D., Choi, S., Lee, S., Park, Y., & Kim, S. (2021). A content-based ransomware detection and backup solid-state drive for ransomware defense. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. https://doi.org/10.1109/tcad.2021.3099084
Magnani, S., Risso, F., & Siracusa, D. (2022). A control plane enabling automated and fully adaptive network traffic monitoring with eBPF. IEEE Access. https://doi.org/10.1109/access.2022.3202644
Kumar, N., et al. (2023). AI in cybersecurity: Threat detection and response with machine learning. Tuijin Jishu/Journal of Propulsion Technology, 44(3), 38–46. https://doi.org/10.52783/tjjpt.v44.i3.237
Sanvito, D. (2022). Learning what to monitor for efficient anomaly detection. In EuroMLSys '22: Proceedings of the 2nd European Workshop on Machine Learning and Systems. https://doi.org/10.1145/3517207.3526979
Syrotynskyi, R., Tyshyk, I., Kochan, O., Sokolov, V., & Skladannyi, P. (2024). Methodology of network infrastructure analysis as part of migration to zero-trust architecture. CEUR Workshop Proceedings, 3800, 97–105. https://ceur-ws.org/Vol-3800/short3.pdf
Martseniuk, Y., Partyka, A., Harasymchuk, O., Nyemkova, E., & Karpinski, M. (2024). Shadow IT risk analysis in public cloud infrastructure. CEUR Workshop Proceedings, 3800, 22–31. https://ceur-ws.org/Vol-3800/paper2.pdf
Deineka, O., Harasymchuk, O., Partyka, A., Obshta, A., & Korshun, N. (2024). Designing data classification and secure store policy according to SOC 2 type II. CEUR Workshop Proceedings, 3654, 398–409. https://ceur-ws.org/Vol-3654/short7.pdf
Mykhaylova, O., Fedynyshyn, T., & Platonenko, A. (2024). Hardcoded credentials in Android apps: Service exposure and category-based vulnerability analysis. CEUR Workshop Proceedings, 3826, 206–211. https://ceur-ws.org/Vol-3826/short8.pdf
Miano, S., Risso, F., Vásquez Bernal, M., Sanvito, D., & Piñero, D. R. L. (2018). Creating complex network services with eBPF: Experience and lessons learned. 2018 IEEE 19th International Conference on High Performance Switching and Routing (HPSR), Bucharest, Romania, 18–20 June 2018. https://doi.org/10.1109/hpsr.2018.8850758
Abranches, M., Rocha, R., & Pedrosa, L. (2021). Efficient network monitoring applications in the kernel with eBPF and XDP. 2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Heraklion, Greece, 9–11 November 2021. https://doi.org/10.1109/nfv-sdn53031.2021.9665095
Sadiq, A., Syed, H., Alazab, M., & Venkatraman, S. (2023). Detection of denial of service attack in cloud-based Kubernetes using eBPF. Applied Sciences, 13(8), Article 4700. https://doi.org/10.3390/app13084700
Zhuravchak, D., Opirskyy, I., Piskozub, A., Dudykevych, V., & Tolkachova, A. (2024). Monitoring ransomware with Berkeley Packet Filter. Cybersecurity Providing in Information and Telecommunication Systems. https://ceur-ws.org/Vol-3550/
Garfinkel, T. (2004). Ostia: A delegating architecture for secure system call interposition. Network and Distributed System Security Symposium (NDSS). Retrieved May 9, 2024, from https://xenon.stanford.edu/~talg/papers/NDSS04/abstract.html
Volckaert, S., Coppens, B., & De Sutter, B. (2024). System call interposition without compromise. Proceedings of the 2024 IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 30–41. https://doi.org/10.1109/DSN58291.2024.00030
Zhuravchak, D., Opirskyy, I., Piskozub, A., & Dudykevych, V. (2021). Ransomware prevention system design based on file symbolic linking honeypots. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Cracow, Poland, 22–25 September 2021. https://doi.org/10.1109/idaacs53288.2021.9660913 (date of access: 09.05.2024).
Khan, M., Alqahtani, S. (2023). AI-driven threat detection in cloud computing: A survey on honeypot-based approaches. Future Generation Computer Systems, 137, 189–205. https://doi.org/10.1016/j.future.2023.04.015
33. Sagirlar, G., Carminati, B., & Ferrari, E. (2018). AutoBotCatcher: Blockchain-based P2P Botnet Detection for the Internet of Things. arXiv preprint arXiv:1809.10775. https://arxiv.org/abs/1809.10775
Commey, D., Hounsinou, S., & Crosby, G. V. (2024). Strategic Deployment of Honeypots in Blockchain-based IoT Systems. arXiv preprint arXiv:2405.12951. https://arxiv.org/abs/2405.12951
Golomb, T., Mirsky, Y., & Elovici, Y. (2018). CIoTA: Collaborative IoT Anomaly Detection via Blockchain. arXiv preprint arXiv:1803.03807. https://arxiv.org/abs/1803.03807
Shi, L., Li, Y., Liu, T., Liu, J., Shan, B., & Chen, H. (2019). Dynamic Distributed Honeypot Based on Blockchain. IEEE Access, 7, 54401–54410. https://doi.org/10.1109/ACCESS.2019.2920239
Zhuravchak, D. (2021). Ransomware spread prevention system using Python, auditd and Linux. Cybersecurity: Education, Science, Technique, 12(4), 108–116. https://doi.org/10.28925/2663-4023.2021.12.108116
Rudnichenko, Y., Melnyk, S., Havlovska, N., Illiashenko, O., & Nakonechna, N. (2021). Strategic interaction of state institutions and enterprises with economic security positions in digital economy. WSEAS Transactions on Business and Economics, 18, 218–230. https://doi.org/10.37394/23207.2021.18.23
Hnylytska, L., Franchuk, V., Melnyk, S., Nakonechna, N., Leskiv, H., & Hobela, V. (2022). Security-oriented model of business risk assessment. Financial and Credit Activity: Problems of Theory and Practice, 4(45), 202–210. https://doi.org/10.55643/fcaptp.4.45.2022.3856
Jun, S., Szmajda, M., Khoma, V., Khoma, Y., Sabodashko, D., Kochan, O., & Wang, J. (2020). Comparison of methods for correcting outliers in ECG-based biometric identification. Metrology and Measurement Systems, 27(3), 387–398. https://doi.org/10.24425/mms.2020.132775
Khoma, V., Sabodashko, D., Kolchenko, V., Perepelytsia, P., & Baranowski, M. (2024). Investigation of vulnerabilities in large language models using an automated testing system. CEUR Workshop Proceedings, 3826, 220–228. https://ceur-ws.org/Vol-3826/short10.pdf
Jia, J. (2023). Programmable system call security with eBPF. arXiv preprint arXiv:2302.10366. https://doi.org/10.48550/arXiv.2302.10366
Levin, J., & Benson, T. A. (2020). ViperProbe: Rethinking microservice observability with eBPF. 2020 IEEE 9th International Conference on Cloud Networking (CloudNet), 1–8. https://doi.org/10.1109/CloudNet51028.2020.9335808
Edzuan Zainodin, M., et al. (2022). Entropy based method for malicious file detection. JOIV: International Journal on Informatics Visualization, 6(4), 856–864. https://doi.org/10.30630/joiv.6.4.1265 (accessed: 09.05.2024)
Zhuravchak, D., & Dudykevych, V. (2023). Challenges and prospects of implementing machine learning for real-time ransomware detection. Cybersecurity: Education, Science, Technique. Retrieved from https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/37567/127406.pdf
Liu, L., Wang, B., Yu, B., Zhong, Q., Pan, Y., & Chen, X. (2017). Automatic malware classification and new malware detection using machine learning. Frontiers of Information Technology & Electronic Engineering, 18(9), 1336–1347. https://doi.org/10.1631/fitee.1601325
Zhuravchak, D., Kiiko, E., & Dudykevych, V. (2023). Using eBPF to identify ransomware that use DGA DNS queries. Information Technology and Security, 11(2), 166–174. https://doi.org/10.20535/2411-1031.2023.11.2.293760
Alsaif, S. A. (2023). Machine learning-based ransomware classification of bitcoin transactions. Applied Computational Intelligence and Soft Computing, 2023, 1–10. https://doi.org/10.1155/2023/6274260
Kim, T., Ji, H., & Im, E. G. (2018). Malware classification using machine learning and binary visualization. KIISE Transactions on Computing Practices, 24(4), 198–203. https://doi.org/10.5626/ktcp.2018.24.4.198
Xuan, J., Jiang, H., Ren, Z., & Zou, Q. (2018). Bayesian deep reinforcement learning via deep kernel learning. International Journal of Computational Intelligence Systems, 12(1), 164–174. https://doi.org/10.2991/ijcis.2018.25905189
Mkandawire, Y., & Zimba, A. (2023). A supervised machine learning ransomware host-based detection framework. Zambia ICT Journal, 7(1), 52–56. https://doi.org/10.33260/zictjournal.v7i1.132
Fang, Z., Wang, J., Li, B., Wu, S., Zhou, H., & Huang, Y. (2019). Evading anti-malware engines with deep reinforcement learning. IEEE Access, 7, 48867–48879. https://doi.org/10.1109/access.2019.2908033
Zhu, Y. (2023). Naive Bayesian spam filtering. Highlights in Science, Engineering and Technology, 38, 64–69. https://doi.org/10.54097/hset.v38i.5734
Liu, L., Wang, B., Yu, B., Zhong, Q., Pan, Y., & Chen, X. (2017). Automatic malware classification and new malware detection using machine learning. Frontiers of Information Technology & Electronic Engineering, 18(9), 1336–1347. https://doi.org/10.1631/fitee.1601325
Alhawi, O. M., Baldwin, J., & Dehghantanha, A. (2018). Leveraging machine learning techniques for Windows ransomware network traffic detection. Digital Investigation, 24, S23–S31. https://doi.org/10.1016/j.diin.2018.01.007
Zhu, Y. (2023). Naive Bayesian spam filtering. Highlights in Science, Engineering and Technology, 38, 64–69. https://doi.org/10.54097/hset.v38i.5734
Zhang, K., Xu, H., & Min, M. R. (2017). Collaborative support vector machine for malware detection. Procedia Computer Science, 108, 1682–1691. https://doi.org/10.1016/j.procs.2017.05.063
Zhuravchak, D. (2023). Ransomware monitoring with enhanced Berkeley Packet Filter (eBPF) and machine learning. Information Technology, Cybersecurity. https://doi.org/10.18372/2310-5461.60.18029
Thomas, T., Vijayaraghavan, A. P., & Emmanuel, S. (2019). Support vector machines and malware detection. In Machine Learning Approaches in Cyber Security Analytics (pp. 49–71). Springer, Singapore. https://doi.org/10.1007/978-981-15-1706-8_4
Zhuravchak, D., Dudykevych, V., & Tolkachova, A. (2023). Study of the structure of the system for detecting and preventing ransomware attacks based on endpoint detection and response. Cybersecurity: Education, Science, Technique, 3(19), 69–82. https://doi.org/10.28925/2663-4023.2023.19.6982
Widagdo, G. B., & Lim, C. (2017). Analysis of hybrid DDoS defense to mitigate DDoS impact. Advanced Science Letters, 23(4), 3633–3639. https://doi.org/10.1166/asl.2017.9004
Fuloria, S. (2022). Cybersecurity and ransomware. Academia Letters. https://doi.org/10.20935/al4820
Zhuravchak, D., & Dudykevych, V. (2023). Real-time ransomware detection by using eBPF and natural language processing and machine learning. IEEE Xplore. https://doi.org/10.1109/AICT61584.2023.10452697
Kret, T. (2024). Approaches to threat modeling in the creation of a comprehensive information security system for multi-level intelligent control systems. Computer Systems and Networks, 6(1), 81–88. https://doi.org/10.23939/csn2024.01.081
Yuzevych, V., Obshta, A., Opirskyy, I., & Harasymchuk, O. (2024). Algorithm for assessing the degree of information security risk of a cyber physical system for controlling underground metal constructions. CEUR Workshop Proceedings, 3702, 400–412.
Yemanov, V., Dzyana, H., Dzyanyi, N., Dolinchenko, O., & Didych, O. (2023). Modelling a public administration system for ensuring cybersecurity. International Journal of Safety and Security Engineering, 13(1), 81–88. https://doi.org/10.18280/ijsse.130109
Ahmad, Z., et al. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1), e4150. https://doi.org/10.1002/ett.4150
Tait, K.-A., et al. (2021). Intrusion Detection using Machine Learning Techniques: An Experimental Comparison. arXiv preprint arXiv:2105.13435. https://arxiv.org/abs/2105.13435
Gupta, C., Johri, I., Srinivasan, K., Hu, Y.-C., Qaisar, S. M., & Huang, K.-Y. (2022). A Systematic Review on Machine Learning and Deep Learning Models for Electronic Information Security in Mobile Networks. Sensors, 22(5), 2017. https://doi.org/10.3390/s22052017
Zhuravchak, D., Dudykevych, V., & Tolkachova, A. (2023). Zero trust concept for Active Directory protection to detect ransomware. Cybersecurity: Education, Science, Technique, 2(22), 179–190. https://doi.org/10.28925/2663-4023.2023.22.179190
Piskozub, A., Zhuravchak, D., & Tolkachova, A. (2023). Researching vulnerabilities in chatbots with LLM (Large Language Model). Ukrainian Scientific Journal of Information Security, 29(3), 166–172. https://doi.org/10.18372/2225-5036.29.18069
Zhuravchak, D., Opirskyy, I., & Piskozub, A. (2022). Detection method of credential dumping through exploiting vulnerable Windows Error Reporting service in Windows operating systems. Modern Special Technics, 2(69), 11–19. https://doi.org/10.36486/mst2411-3816.2022.2(69).2
Asmara, K., Fakhri, M., & Raja, T. H. L. (2024). Analysis of Honeypot Networks and Intrusion Prevention System (IPS) on Wireless Networks. International Journal of Trend in Scientific Research and Development, 8(1), 721–727. https://www.ijtsrd.com/papers/ijtsrd63502.pdf
Miano, S., Paolucci, F., Siracusa, D., & Caviglione, L. (2023). A Highly Interactive Honeypot-Based Approach to Network Threat Analysis. Future Internet, 15(4), 127. https://doi.org/10.3390/fi15040127
Wählisch, M., Vorbach, A., Keil, C., Schönfelder, J., Schmidt, T. C., & Schiller, J. H. (2013). Design, Implementation, and Operation of a Mobile Honeypot. arXiv preprint arXiv:1301.7257. https://arxiv.org/abs/1301.7257
Jain, Y. K., & Surabhi, S. (2011). Honeypot Based Secure Network System. International Journal on Computer Science and Engineering, 3(2), 1003–1009. https://www.researchgate.net/publication/50247428_Honeypot_based_Secure_Network_System
Dedeoglu, V., & Fischer, M. (2021). Blockchain-based Security Framework for IoT Devices in Smart Homes. Journal of Information Security and Applications, 58, 102748. https://doi.org/10.1016/j.jisa.2021.102748
Wazid, M., & Hasan, R. (2019). A Blockchain-based secure and robust honeypot framework for smart cities. IEEE Access, 7, 101118–101131. https://doi.org/10.1109/ACCESS.2019.293062631. Shi, L., Li, Y., Liu, T., Liu, J., Shan, B., & Chen, H. (2019). Dynamic Distributed Honeypot Based on Blockchain. IEEE Access, 7, 54401–54410. https://doi.org/10.1109/ACCESS.2019.2920239
32. Khan, M., Alqahtani, S. (2023). AI-driven threat detection in cloud computing: A survey on honeypot-based approaches. Future Generation Computer Systems, 137, 189–205. https://doi.org/10.1016/j.future.2023.04.015
33. Sagirlar, G., Carminati, B., & Ferrari, E. (2018). AutoBotCatcher: Blockchain-based P2P Botnet Detection for the Internet of Things. arXiv preprint arXiv:1809.10775. https://arxiv.org/abs/1809.10775
Commey, D., Hounsinou, S., & Crosby, G. V. (2024). Strategic Deployment of Honeypots in Blockchain-based IoT Systems. arXiv preprint arXiv:2405.12951. https://arxiv.org/abs/2405.12951
Golomb, T., Mirsky, Y., & Elovici, Y. (2018). CIoTA: Collaborative IoT Anomaly Detection via Blockchain. arXiv preprint arXiv:1803.03807. https://arxiv.org/abs/1803.03807
Partyka, O. (2024). Identifying attacks on the Bluetooth protocol using Wireshark and the Splunk SIEM system. In Technical Informatics and Artificial Intelligence: Engineer of XXI Century’2024. https://doi.org/10.53052/9788367652292.16
Dong, Y., Zampella, F., & Alsehly, F. (2023). Beyond KNN: Deep Neighborhood Learning for WiFi-based Indoor Positioning Systems. arXiv preprint arXiv:2302.00810. https://doi.org/10.48550/arXiv.2302.00810
Belej, O., Nestor, N., & Polotai, O. (2019). Developing a local positioning algorithm based on the identification of objects in a Wi-Fi Network of the Mall. International Conference on Perspective Technologies and Methods in MEMS Design, 32–36. https://doi.org/10.1109/MEMSTECH.2019.8817407
Kukharska, N., Lagun, A., & Polotai, O. (2020). The steganographic approach to data protection using Arnold algorithm and the pixel-value differencing method. IEEE International Conference on Data Stream Mining and Processing, 174–177. https://doi.org/10.1109/DSMP47368.2020.9204205
Zhuravel, I., & Semenyuk, S. (2024). Stochastic Models for Computer Malware Propagation. IEEE International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, 424–427. https://doi.org/10.1109/TCSET64720.2024.10755827
Semenyuk, S. A., & Chabanyuk, Y. M. (2024). Stochastic Evolutionary System With Markov-Modulated Poisson Perturbations in the Averaging Schema. Matematychni Studii, 62(1), 102–108. https://doi.org/10.30970/ms.62.1.102-108
Maksymovych, V., Nyemkova, E., Justice, C., Shabatura, M., Harasymchuk, O., Lakh, Y., & Rusynko, M. (2022). Simulation of Authentication in Information-Processing Electronic Devices Based on Poisson Pulse Sequence Generators. Electronics, 11(13), 2039. https://doi.org/10.3390/electronics11132039
Banakh, R., Nyemkova, E., Justice, C., Piskozub, A., & Lakh, Y. (2024). Data Mining Approach for Evil Twin Attack Identification in Wi-Fi Networks. Data, 9(10), Article 119. https://doi.org/10.3390/data9100119
Tykholaz, D., Banakh, R., Mychuda, L., Piskozub, A., & Kyrychok, R. (2024). Incident response with AWS detective controls. CEUR Workshop Proceedings, 3826, 190–197. https://ceur-ws.org/Vol-3826/short6.pdf
Volotovskyi, O., Banakh, R., Piskozub, A., & Brzhevska, Z. (2024). Automated security assessment of Amazon Web Services accounts using CIS Benchmark and Python 3. CEUR Workshop Proceedings, 3826, 363–371. https://ceur-ws.org/Vol-3826/paper29.pdf
Lijuan Z. A Network Security Evaluation Method based on FUZZY and RST / Z. Lijuan, W. Qingxin // 2010 2nd International Conference on Education Technology and Computer (ICETC). 22-24 June 2010: proceedings. – Shanghai, China: IEEE, 2010. P.40-44.
Runfu, Z., Lianfen, H., & Mingbo, X. (2010). Security for Wireless Network Based on Fuzzy-AHP with Variable Weight. In 2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing (Vol. 2, pp. 490–493). IEEE. https://doi.org/10.1109/NSWCTC.2010.253
Ying-Chiang, C., & Jen-Yi, P. (2014). Hybrid Network Defense Model Based on Fuzzy Evaluation. The Scientific World Journal, 2014, 1–12. https://doi.org/10.1155/2014/370865
Nyzhnyk, A., Partyka, A., & Podpora, M. (2024). Increase the cybersecurity of SCADA and IIoT devices with secure memory management. CEUR Workshop Proceedings, 3800, 32–41. https://ceur-ws.org/Vol-3800/paper4.pdf
Goel, R., Sardana, A., & Joshi, R. C. (2013). Wireless Honeypot: Framework, Architectures and Tools. International Journal of Network Security, 15(5), 373–383. https://ijns.jalaxy.com.tw/contents/ijns-v15-n5/ijns-2013-v15-n5-p373-383.pdf
Banakh, R., Piskozub, A., & Stefinko, Y. (2016). External elements of honeypot for wireless network. In Proceedings of the 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET 2016), 480–482. https://doi.org/10.1109/TCSET.2016.7452228
Ajah, I. A. (2014). Evaluation of Enhanced Security Solutions in 802.11-Based Networks. International Journal of Network Security & Its Applications (IJNSA), 6(4), 29–42. https://doi.org/10.5121/ijnsa.2014.6403
Khanin, D., Otenko, V., & Khoma, V. (2024). Research on the effectiveness of concatenated embeddings in facial verification. CEUR Workshop Proceedings, 3800, 12–21. https://ceur-ws.org/Vol-3800/paper1.pdfMychuda, Z.,
Mychuda, Z., Mychuda, L., Zhuravel, I., Szcześniak, Z., & Szcześniak, A. (2022). Modelling a new multifunctional high accuracy analogue-to-digital converter with an increased number of inputs. Electronics, 11(11), Article 1677. https://doi.org/10.3390/electronics11111677
Mychuda, L., Myczuda, Z., Korobeinikova, T., Zhuravel, I., Romanyuk, O., & Kotlyk, S. (2024). Optimization of Precision and Speed in ADCP. International Conference on Advanced Computer Information Technologies, 614–617. https://doi.org/10.1109/ACIT62333.2024.10712483
Vorobel, R. A., Zhuravel, I. M., Svirs'ka, L. M., & Student, O. Z. (2011). Automatic selection and quantitative analysis of carbides on grain boundaries of 12Kh1MF steel after operation at a steam pipeline of a thermal power plant. Materials Science, 47(3), 393–400. https://doi.org/10.1007/s11003-011-9408-3
Zhuravel, I. M., & Michuda, L. Z. (2021). Application of the Mandelbrot–Zipf Law for the Quantitative Evaluation of the Average Size of Steel Grains. Materials Science, 57(1), 80–85. https://doi.org/10.1007/s11003-021-00517-2
Khoma, V., Abibulaiev, A., Piskozub, A., & Kret, T. (2024). Comprehensive Approach for Developing an Enterprise Cloud Infrastructure. CEUR Workshop Proceedings, 3654, 201–215. https://ceur-ws.org/Vol-3654/paper16.pdf
Forbes, G., Massie, S., & Craw, S. (2020). WiFi-based human activity recognition using Raspberry Pi. In Proceedings of IEEE 32nd Tools with Artificial Intelligence International Conference (ICTAI 2020), 722–730. https://doi.org/10.1109/ICTAI50040.2020.00115
Lu, Q., Qu, H., Zhuang, Y., Lin, X. J., & Ouyang, Y. (2018). Client-Side Evil Twin Attacks Detection Using Statistical Characteristics of 802.11 Data Frames. IEICE Transactions on Information and Systems, E101.D(10), 2465–2473. https://doi.org/10.1587/transinf.2018EDP7030
Modi, V., & Parekh, A. (2017). Detection of Rogue Access Point to Prevent Evil Twin Attack in Wireless Network. International Journal of Engineering Research & Technology (IJERT), 6(4), 69–74. https://doi.org/10.17577/IJERTV6IS040102
Opirskyy, I., Sovyn, Y., & Mykhailova, O. (2022). Heuristic method of finding bitsliced-description of derivative cryptographic S-box. Proceedings of the 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET 2022), 104–109. https://doi.org/10.1109/TCSET55632.2022.9766933
Fedynyshyn, T., Opirskyy, I., & Mykhaylova, O. (2023). A method to detect suspicious individuals through mobile device data. Proceedings of the 5th IEEE International Conference on Advanced Information and Communication Technologies (AICT 2023), 82–86. https://doi.org/10.1109/AICT58444.2023.10362549
Mykhaylova, O., Stefankiv, A., Nakonechny, T., Fedynyshyn, T., & Sokolov, V. (2024). Resistance to replay attacks of remote control protocols using the 433 MHz radio channel. CEUR Workshop Proceedings, 3654, 98–110. http://ceur-ws.org/Vol-3654/paper27.pdf
Vakhula, O., Opirskyy, I., & Mykhaylova, O. (2023). Research on Security Challenges in Cloud Environments and Solutions based on the "Security-as-Code" Approach. CEUR Workshop Proceedings, 3550, 55–69. https://ceur-ws.org/Vol-3550/paper5.pdf
Dudykevych, V., Prokopyshyn, I., Chekurin, V., Opirskyy, I., Lakh, Y., Kret, T., Ivanchenko, Y., & Ivanchenko, I. (2019). A multicriterial analysis of the efficiency of conservative information security systems. Eastern-European Journal of Enterprise Technologies, 3(9), 6–13. https://doi.org/10.15587/1729-4061.2019.166349
Milov, O., Voitko, A., Husarova, I., Domaskin, O., Ivanchenko, Y., Ivanchenko, I., Korol, O., Kots, H., Opirskyy, I., & Fraze-Frazenko, O. (2019). Development of methodology for modeling the interaction of antagonistic agents in cybersecurity systems. Eastern-European Journal of Enterprise Technologies, 2(9)(98), 56–66. https://doi.org/10.15587/1729-4061.2019.164730
Yevseiev, S., Khokhlachova, Y., Ostapov, S., Laptiev, O., Korol, O., Milevskyi, S., Milov, O., Pohasii, S., Melenti, Y., Hrebeniuk, V., & Havrylova, A. (2023). Models of Socio-Cyber-Physical Systems Security: Monograph. PC TECHNOLOGY CENTER. https://doi.org/10.15587/978-617-7319-72-5
Martseniuk, Y., Partyka, A., Harasymchuk, O., & Shevchenko, S. (2024). Universal centralized secret data management for automated public cloud provisioning. CEUR Workshop Proceedings, 3826, 72–81. https://ceur-ws.org/Vol-3826/paper7.pdf
Martseniuk, Y., Partyka, A., Harasymchuk, O., & Korshun, N. (2024). Automated Conformity Verification Concept for Cloud Security. CEUR Workshop Proceedings, 3654, 25–37. https://ceur-ws.org/Vol-3654/paper3.pdf
Shevchuk, D., Harasymchuk, O., Partyka, A., & Korshun, N. (2023). Designing Secured Services for Authentication, Authorization, and Accounting of Users. CEUR Workshop Proceedings, 3550, 217–225. https://ceur-ws.org/Vol-3550/short4.pdf
Opirskyy, I., Harasymchuk, O., Mykhaylova, O., Hrushkovskyi, O., & Kozak, P. (2024). Pseudorandom sequence generator based on the computation of ln 2. CEUR Workshop Proceedings, 3829, 79–86. https://ceur-ws.org/Vol-3829/short10.pdf
Maksymovych, V., Mandrona, M., & Harasymchuk, O. (2020). Dosimetric Detector Hardware Simulation Model Based on Modified Additive Fibonacci Generator. In Advances in Computer Science for Engineering and Education II (pp. 162–171). Springer, Cham. https://doi.org/10.1007/978-3-030-16621-2_15
Harsha, S., Abdus Sattar, K., Sriramulu, B., & Rao, V. (2019). Improving Wi-Fi security against evil twin attack using lightweight machine learning application. Compusoft, 8(4), 3109–3115.
Kuo, E.-C., Chang, M.-S., & Kao, D.-Y. (2018). User-side evil twin attack detection using time-delay statistics of TCP connection termination. 2018 20th International Conference on Advanced Communication Technology (ICACT), 211–216. https://doi.org/10.23919/ICACT.2018.8323699
Agarwal, M., Biswas, S., & Nandi, S. (2018). An Efficient Scheme to Detect Evil Twin Rogue Access Point Attack in 802.11 Wi-Fi Networks. International Journal of Wireless Information Networks, 25(2), 130–145. https://doi.org/10.1007/s10776-018-0396-1
Yang, C., Song, Y., & Gu, G. (2012). Active User-Side Evil Twin Access Point Detection Using Statistical Techniques. IEEE Transactions on Information Forensics and Security, 7(5), 1638–1651. https://doi.org/10.1109/TIFS.2012.2207383
Dong, Y., Zampella, F., & Alsehly, F. (2023). Beyond KNN: Deep Neighborhood Learning for WiFi-based Indoor Positioning Systems. arXiv preprint arXiv:2302.00810. https://doi.org/10.48550/arXiv.2302.00810
Shanmugam, P., & Mandankandy, A. A. (2014). Study of honeypots: Analysis of WiFi honeypots and honeypots tools. Advances in Natural and Applied Sciences, 8(17), 48–59. https://www.researchgate.net/publication/341286903_Study_of_Honeypots_Analysis_of_WiFi_Honeypots_and_Honeypots_tools
Lu, Q., Qu, H., Zhuang, Y., Lin, X.-J., & Ouyang, Y. (2018). Client-Side Evil Twin Attacks Detection Using Statistical Characteristics of 802.11 Data Frames. IEICE Transactions on Information and Systems, E101.D(9), 2465–2473. https://doi.org/10.1587/transinf.2018EDP7030
Hsu, F.-H., Wang, C.-S., Hsu, Y.-L., Cheng, Y.-P., & Hsneh, Y.-H. (2016). A client-side detection mechanism for evil twins. Computers & Electrical Engineering, 59, 76–85. https://doi.org/10.1016/j.compeleceng.2015.10.010
Alotaibi, B., & Elleithy, K. (2015). An empirical fingerprint framework to detect rogue access points. In 2015 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (pp. 1–7). IEEE. https://doi.org/10.1109/LISAT.2015.7160194
Yu, J. (2014). Applying TCP profiling to detect wireless rogue access point. In Proceedings of the International Conference on Wireless Networks (ICWN 2014) (pp. 1–7). Retrieved from https://worldcomp-proceedings.com/proc/p2014/ICW3827.pdf
Petiz, I., Rocha, E., Salvador, P., & Nogueira, A. (2013). Using multiscale traffic analysis to detect WPS attacks. In 2013 IEEE International Conference on Communications Workshops (ICC) (pp. 964–968). IEEE. https://doi.org/10.1109/ICCW.2013.6649386
Holz, T., & Raynal, F. (2005). Detecting honeypots and other suspicious environments. Proceedings of the Sixth Annual IEEE SMC Information Assurance Workshop, 29–36. https://doi.org/10.1109/IAW.2005.1495930
Srinivasa, S., Pedersen, J. M., & Vasilomanolakis, E. (2023). Gotta catch 'em all: A multistage framework for honeypot fingerprinting. Digital Threats: Research and Practice, 4(2), Article 12. https://doi.org/10.1145/3584976
Valeros, V., Rigaki, M., & Garcia, S. (2023). Attacker profiling through analysis of attack patterns in geographically distributed honeypots. arXiv preprint arXiv:2305.01346. https://doi.org/10.48550/arXiv.2305.01346
García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E. (2009). Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers & Security, 28(1–2), 18–28. https://doi.org/10.1016/j.cose.2008.08.003
Oyeyemi, D. A., & Ojo, A. K. (2024). SMS spam detection and classification to combat abuse in telephone networks using natural language processing. arXiv preprint arXiv:2406.06578. https://doi.org/10.48550/arXiv.2406.06578
Galán, F., & Fernández, D. (2006). Use of VNUML in virtual honeynets deployment. In Proceedings of the 6th IEEE International Conference on Information Technology: Research and Education (ITRE 2006) (pp. 600–615). IEEE. https://www.researchgate.net/publication/266094954_Use_of_VNUML_in_Virtual_Honeynets_Deployment
Agrawal, N., & Tapaswi, S. (2017). The Performance Analysis of Honeypot Based Intrusion Detection System for Wireless Network. International Journal of Wireless Information Networks, 24(1), 14–26. https://doi.org/10.1007/s10776-016-0330-3
Varadharajan, V., & Tupakula, U. (2014). Security as a Service Model for Cloud Environment. IEEE Transactions on Network and Service Management, 11(1), 60–75. https://doi.org/10.1109/TNSM.2014.041614.120394
Kondra, J. R., Bharti, S. K., Mishra, S. K., & Babu, K. S. (2016, March). Honeypot-based Intrusion Detection System: A Performance Analysis. Paper presented at the 2016 3rd International Conference on Computing for Sustainable Global Development, Delhi, India. https://doi.org/10.13140/RG.2.1.4599.9768
Chatzoglou, E., Kampourakis, V., & Kambourakis, G. (2023). Bl0ck: Paralyzing 802.11 connections through Block Ack frames. arXiv preprint arXiv:2302.05899. https://doi.org/10.48550/arXiv.2302.05899
AlQahtani, A. A. S., & Alshayeb, T. (2023). Zero-Effort Two-Factor Authentication Using Wi-Fi Radio Wave Transmission and Machine Learning. arXiv preprint arXiv:2303.02503. https://doi.org/10.48550/arXiv.2303.02503
Manev, A. (2023). Tamper-Evident Pairing. arXiv preprint arXiv:2311.14790. https://doi.org/10.48550/arXiv.2311.14790
Vanhoef, M. (2021). Fragment and Forge: Breaking Wi-Fi Through Frame Aggregation and Fragmentation. In Proceedings of the 30th USENIX Security Symposium (pp. 19–36). USENIX Association. https://www.usenix.org/conference/usenixsecurity21/presentation/vanhoef
Banakh, R., Piskozub, A. (2018). Attackers’ Wi-Fi devices metadata interception for their location identification. In Proceedings of the 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS 2018) (pp. 112–116). IEEE. https://doi.org/10.1109/IDAACS-SWS.2018.852553870
Barthe, G., Cauligi, S., Grégoire, B., Koutsos, A., Liao, K., Oliveira, T., … Zanella-Béguelin, S. (2021). High-Assurance Cryptography in the Spectre Era. In Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP) (pp. 1884–1901). IEEE. https://doi.org/10.1109/SP40001.2021.00101
Benger, N., van de Pol, J., Smart, N. P., & Yarom, Y. (2014). "Ooh Aah… Just a Little Bit": A small amount of side channel can go a long way. In Cryptographic Hardware and Embedded Systems (CHES 2014), LNCS, vol. 8731 (pp. 75–92). Springer. https://doi.org/10.1007/978-3-662-44709-3_5
Bernstein, D. J., Breitner, J., Genkin, D., van Groot Bruinderink, L., Heninger, N., Lange, T., & Yarom, Y. (2017). Sliding Right into Disaster: Left-to-Right Sliding Windows Leak. In Cryptographic Hardware and Embedded Systems (CHES 2017), LNCS, vol. 10529 (pp. 555–576). Springer. https://doi.org/10.1007/978-3-319-66787-4_27
Zhang, R., Huang, L., & Xiao, M. (2010). Security evaluation for wireless network based on fuzzy-AHP with variable weight. In Proceedings of the 2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing (Vol. 2, pp. 490–493). IEEE. https://doi.org/10.1109/NSWCTC.2010.122
Ajah, I. A. (2014). Evaluation of enhanced security solutions in 802.11-based networks. International Journal of Network Security & Its Applications (IJNSA), 6(4), 29–42. https://doi.org/10.5121/ijnsa.2014.6403
Mohammad Ali Pour, F., & Rashidi, M. (2024). From WEP to WPA3, Red Teamer’s Guide to Wi-Fi Exploits. Zenodo. https://doi.org/10.5281/zenodo.14039895
Cahyadi, D., & Astuti, I. F. (2021). Comparison of throughput and CPU usage between WPA3 and WPA2 security methods on wireless networks 802.11n. AIP Conference Proceedings, 2482(1), 040006. https://doi.org/10.1063/5.0110514
Faíscas, D. (2022). (In)Security in Wi-Fi networks: A systematic review. ARIS2 – Advanced Research on Information Systems Security. https://doi.org/10.56394/aris2.v2i2.18
Schepers, D., Ranganathan, A., & Vanhoef, M. (2022). On the robustness of Wi-Fi deauthentication countermeasures. In Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec '22) (pp. 245–256). ACM. https://doi.org/10.1145/3507657.3528548
Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015). An updated performance comparison of virtual machines and Linux containers. In Proceedings of the 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) (pp. 171–172). IEEE. https://doi.org/10.1109/ISPASS.2015.7095802
Guan, C., & Fu, X. (2023). HoneyIoT: Adaptive High-Interaction Honeypot for IoT Devices. Proceedings of the 2023 ACM SIGSAC Conference on Security and Privacy in Wireless and Mobile Networks (WiSec '23). https://mcn.cse.psu.edu/paper/guan-chongqi/wisec23-chongqi.pdf
Soundararajan, R., Rajagopal, M., Muthuramalingam, A., Hossain, E., & Lloret, J. (2022). Interleaved Honeypot-Framing Model with Secure MAC Policies for Wireless Sensor Networks. Sensors, 22(20), 8046. https://doi.org/10.3390/s22208046
De Almeida Braga, D., Kulatova, N., Sabt, M., Fouque, P.-A., & Bhargavan, K. (2023). From Dragondoom to Dragonstar: Side-channel Attacks and Formally Verified Implementation of WPA3 Dragonfly Handshake. arXiv preprint arXiv:2307.09243. https://doi.org/10.48550/arXiv.2307.09243
Stefinko, Y., Piskozub, A., & Banakh, R. (2016). Manual and Automated Penetration Testing: Benefits and Drawbacks. Modern Tendency. In Proceedings of the XIIIth International Conference on Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2016) (pp. 488–491). IEEE. https://doi.org/10.1109/TCSET.2016.7452230
Chatzoglou, E., Kambourakis, G., & Kolias, C. (2022). How is your Wi-Fi connection today? DoS attacks on WPA3-SAE. Journal of Information Security and Applications, 64, 103060. https://doi.org/10.1016/j.jisa.2021.103060
Lu, H.-J., & Yu, Y. (2021). Research on WiFi penetration testing with Kali Linux. Complexity, 2021, 1–8. https://doi.org/10.1155/2021/5570001
Ahmad, N. (2017). Cloud computing: Technology, security issues and solutions. In Proceedings of the 2nd International Conference on Anti-Cyber Crimes (ICACC 2017) (pp. 30–35). IEEE. https://doi.org/10.1109/Anti-Cybercrime.2017.7905254
Tissir, N., El Kafhali, S., & Aboutabit, N. (2020). Cloud computing security classifications and taxonomies: A comprehensive study and comparison. In Proceedings of the 2020 International Conference on Cloud Computing Technologies and Applications (CloudTech) (pp. 1–6). IEEE. https://doi.org/10.1109/CloudTech49835.2020.9365884
Banakh, R., Piskozub, A., & Opirskyy, I. (2019). Detection of MAC spoofing attacks in IEEE 802.11 networks using signal strength from attackers' devices. In Advances in Intelligent Systems and Computing (Vol. 754, pp. 468–477). Springer. https://doi.org/10.1007/978-3-319-91008-6_47
Mladenova, T., & Valova, I. (2021). Analysis of the KNN classifier distance metrics for Bulgarian fake news detection. In Proceedings of the 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA 2021) (pp. 1–4). IEEE. https://doi.org/10.1109/HORA52670.2021.946133
Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019). A brief review of nearest neighbor algorithm for learning and classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS) (pp. 1255–1260). IEEE. https://doi.org/10.1109/ICCS45141.2019.9065747
Arias, J., Budde, C. E., & Jansen, N. (2020). Hackers vs. Security: Attack-Defence Trees as Asynchronous Multi-agent Systems. In Formal Methods and Software Engineering (pp. 3–19). Springer. https://doi.org/10.1007/978-3-030-63406-3_1
Vanhoef, M., & Ronen, E. (2020). Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. 2020 IEEE Symposium on Security and Privacy (SP), 517–533. https://doi.org/10.1109/SP40000.2020.00031
Nagpal, J., Patil, R., Jain, V., Pokhriyal, R., & Rajawat, R. (2018). Evil Twin Attack and Its Detection. International Journal of Emerging Technologies and Innovative Research, 5(12), 169–171. Retrieved from https://www.jetir.org/papers/JETIR1812B26.pdf
Bednarczyk, M., & Piotrowski, Z. (2019). Will WPA3 really provide Wi-Fi security at a higher level? In Proceedings of SPIE 11055, XII Conference on Reconnaissance and Electronic Warfare Systems, 1105514. https://doi.org/10.1117/12.2525020
Banakh, R., Piskozub, A., & Opirskyy, I. (2023). Devising a method for detecting “Evil Twin” attacks on IEEE 802.11 networks (Wi-Fi) with KNN classification model. Eastern-European Journal of Enterprise Technologies, 3(9 (123)), 20–32. https://doi.org/10.15587/1729-4061.2023.280693
Salkind, N. J., & Frey, B. B. (2019). Statistics for people who (think they) hate statistics (7th ed.). SAGE Publications, Inc. https://doi.org/10.4135/9781071802412

Published
Categories
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.