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ABSTRACT

The object of the research is decision support systems. The subject of the research is the process of 
evaluating parameters in decision support systems. The study proposes: a methodology for the intellectual 
assessment of parameters in decision support systems and a method for multi-criteria evaluation of hierar-
chical systems. The originality of the research lies in the use of additional advanced procedures that allow:

— verification of the topology and parameters of decision support systems, taking into account the 
degree of uncertainty in the input data regarding the known information, achieved through the use of an 
enhanced penguin swarm algorithm. This reduces the time required for the initial configuration of the 
evaluation methodology during its setup;

— initial selection of individuals for configuring the evolving artificial neural network, carried out using 
an enhanced genetic algorithm, which reduces solution search time and increases the reliability of the 
obtained results;

— exploration of solution spaces for the problem of parameter evaluation in decision support systems, 
which are described by atypical functions, using the enhanced penguin swarm algorithm;

— configuration of the weights of the evolving artificial neural network improves the accuracy of pa-
rameter evaluation in decision support systems;

— utilization of additional mechanisms for correcting the parameters of the evolving artificial neural 
network is applied by a procedure for modifying the membership function;

— reliability of parameter evaluation in decision support systems is increased by parallel evaluation 
through multiple assessment methods;

— use of hybrid parameter evaluation for decision support systems allows for correct operation in the 
absence of conditions of stationarity, homogeneity, normality, and independence.

An example of the application of the proposed scientific and methodological framework for evaluating 
parameters in decision support systems showed a 25% increase in evaluation reliability, achieved by utiliz-
ing additional procedures while maintaining the required operational efficiency.
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The problem of improving the reliability of parameter evaluation in decision support systems is becom-
ing increasingly urgent in modern information systems with various functional purposes [1]. The experience 
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from recent conflicts, involving the use of modern information systems, shows that existing approaches to 
evaluating parameters in decision support systems do not allow for reliable assessments with the required 
operational speed [2].

This issue is linked to the following reasons:
— the significant role of the human factor in the evaluation process of decision support system para

meters [3];
— the large number of diverse components in decision support systems [3];
— parameter evaluation in decision support systems occurs under conditions of uncertainty, which 

causes delays in their processing [4];
— the presence of many destabilizing factors that affect the reliability of the parameter evaluation in 

decision support systems;
— the presence of both structured and unstructured data in decision support systems that need to be 

processed, among other factors.
Given the diversity, numerous destabilizing factors, and the various dimensions of the indicators de-

scribing them, the need for evaluating parameters in decision support systems prompts the search for new 
approaches. One such approach is the use of metaheuristic algorithms [5—8].

The use of metaheuristic algorithms in their canonical form can improve the operational speed of 
parameter evaluation in decision support systems. However, further increasing the operational speed of 
parameter evaluation leads to a deterioration in the reliability of parameter assessments.

This motivates the introduction of various strategies to improve the convergence speed and accuracy 
of basic metaheuristic algorithms when evaluating parameters in decision support systems. One approach 
to improving the reliability of parameter evaluation is its further enhancement by combining, comparing, 
and developing new procedures for their joint use.

An analysis of the works [9—71] shows that common shortcomings in the aforementioned research 
include:

— the lack of a hierarchical system of indicators for comprehensive evaluation of decision support 
systems;

— the failure to account for the computational resources of the system managing the evaluation pro-
cess of decision support system parameters;

— the absence of mechanisms for adjusting the indicator system managing the evaluation process of 
decision support system parameters;

— the lack of selective engagement of artificial neural network training methods;
— high computational complexity;
— the failure to account for computational (hardware) resources available in the system;
— the absence of prioritized search in a specific direction.
The aim of this research is to develop a methodology for the intellectual assessment of parameters 

in decision support systems. This will improve the reliability of parameter evaluation in decision support 
systems with the required operational speed and the generation of subsequent management decisions 
based on intellectual evaluation. 
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This will enable the development (or improvement) of software for the operation of decision support 
systems.

To achieve this aim, the following tasks were set:
— define the algorithm for implementing the methodology;
— provide an example of applying the methodology for the intellectual evaluation of parameters in 

decision support systems;
— offer recommendations for integrating the proposed methodology into decision support sys-

tems.
The object of research is decision support systems. The problem addressed in the research is im-

proving the reliability of parameter evaluation in decision support systems while ensuring the required 
operational speed, regardless of the volume of incoming data. The subject of research is the process of 
evaluating parameters in decision support systems.

Parameters in the evaluation system of decision support systems generally include various types of 
origin and units of measurement, as well as varying degrees of impact on the overall evaluation result. To 
address this, it is appropriate to use artificial intelligence theory, specifically:

— an enhanced genetic algorithm, which allows automating the evaluation process and conducting 
random, ordered changes to information and the rearrangement of individuals in the parameter evaluation 
plane of decision support systems. This enhanced genetic algorithm is also used in this research for the 
preliminary selection of individuals to improve the reliability of parameter evaluation in decision support 
systems. The enhanced genetic algorithm is also used for tuning the parameters of an evolving artificial 
convolutional neural network;

— an enhanced penguin swarm algorithm — for verifying the topology and parameters of decision 
support systems, as well as the topology and parameters of destabilizing influencing factors. This leads to 
an increase in the reliability of the obtained parameter evaluation in decision support systems;

— evolving artificial neural networks — enabling the generalized evaluation of decision support system 
parameters, which are of different origins and units of measurement, taking into account the number of 
input parameters to be assessed.

The hypothesis of the research is that the reliability of parameter evaluation in decision sup-
port systems can be improved with the required operational speed using the intellectual evaluation  
methodology.

The modeling of the proposed methodology was carried out in the Microsoft Visual Studio 2022 
programming environment (USA). The task solved in the simulation process was the determination 
of the composition of a military grouping (forces). The hardware used in the research process is the  
AMD Ryzen 5.

Parameters for the operation of the enhanced algorithm:
— number of iterations — 25;
— number of individuals in the swarm algorithm — 25;
— range of feature space − [—100, 100].
The structure of the evolving artificial neural network is presented in the work [20].
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3.1	 ALGORITHM FOR IMPLEMENTING THE INTELLECTUAL PARAMETER EVALUATION METHODOLOGY 
IN DECISION SUPPORT SYSTEMS

The methodology for the intellectual evaluation of parameters in decision support systems consists of 
the following sequence of actions:

Action 1. Input of initial data.
At this stage, the available initial data on decision support systems and destabilizing influencing fac-

tors are input, specifically:
— the number and type of technical means included in the decision support systems;
— the number and type of destabilizing factors that affect the objectivity of the evaluation of the state 

of the decision support systems;
— technical characteristics of the means included in the decision support systems;
— technical characteristics of destabilizing factors that affect the objectivity of the evaluation of the 

state of decision support systems;
— topology of connections within the decision support systems;
— topology of connections of destabilizing factors;
— the type of data circulating within decision support systems;
— available computational resources of the decision support systems;
— information about the operational environment of the decision support systems, etc.
This procedure involves the processing of arrays at the initial observation window, exponential normal-

ization of the data, and setting tasks for the learning, testing, and forecasting processes.
Action 2. Verification of parameters necessary for calculations.
At this stage, the initial data about the decision support system and destabilizing factors are clarified. 

This is done by taking into account the type of uncertainty about the state of decision support systems 
using the enhanced penguin swarm algorithm proposed by the authors in work [20].

Action 3. Formation of the topology of the evolving artificial neural network.
At this stage, the enhanced penguin swarm algorithm is used to form the topology of the evolving 

artificial neural network, proposed by the authors in work [20], based on the verified data.
Action 4. Preliminary selection of individuals for the genetic algorithm.
To improve the reliability of the obtained solutions, the preliminary selection of individuals is carried 

out using the enhanced genetic algorithm proposed by the authors in study [19]. The enhanced genetic 
algorithm is further used in Action 5.3.

Action 5. Parallel evaluation of the decision support system’s state using multiple approaches.
Action 5.1. Evaluation of the decision support system’s state based on the multiple regression algorithm.
The traditional technology for sequential evaluation and forecasting the state of decision support sys-

tems based on observations containing a stochastic component relies on the mathematical apparatus of 
multivariate regression [13].

In general, multivariate regression generalizes the one-dimensional linear regression algorithm to the 
situation of multiple interdependent variables X, which define the structure of the base model.
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The multiple regression algorithm includes the description of the dependence of the predicted param-
eters on the values of the input parameters, i.e., the regressors, which are the control parameters of the 
decision support system.

For linear forecasting, the application of regression analysis is based on the possibility of sequentially 
evaluating the state parameters, control, and output parameters of decision support systems.

Let’s assume that the average values of the predicted output characteristics of the decision support 
systems ( )+τ

+τ
= 1 , ,

yk M
k

Z z z , = 1, ,k N  are related to the state parameters, which include control pa-

rameters ( )= 1 , ,
Xk M k

X x x , = 1, ,k N  in a functional dependency of the form

( )+τ = + ,k k kZ f X V  = 1, , .k N 	 (3.1)

It is assumed that the additive noise (in our case, intentional destructive influence) is centered = 0,kEV  
= 1, ,k N .

The task of regression evaluation is to establish the form of the relationship between dependent and 
independent variables over time. For the task of corrective control, the functional dependency (3.1) allows 
for linearization, which makes it possible to restrict the model to linear regression

+τ = + ,k k k kZ C X V  = 1, , .k N 	 (3.2)

The rapid aging of data, caused by the transient nature of military grouping (force) operations, formed 
by a non-stationary process, results in the use of a multidimensional sample on a sliding observation win-
dow of size L as the initial data. In this case, the output data arrays at each forecasting step are specified 
by matrices
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Then, based on the minimization of the quadratic functional

( ) ( )= − − = − +2 ,
TT T T T T TV V Z XC Z XC Z Z C X Z C X XC

i.e., using the least squares method, it is possible to obtain the well-known matrix expression for the predic-
tive transfer coefficient of linear regression

( )−=
1

.T TC X X X 	 (3.3)
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In this case, the linear regression forecasting algorithm is described by the simplest matrix relationship 
of the form

+τ = ,k k kZ C X 	 (3.4)

where ( )+τ +τ
= 1 , ,

Z

T

k M k
Z z z , the regressors use only those state parameters of the decision support system

(decision support system) components that allow manipulation of values during the control process, i.e., 

control parameters ( )= 1 , ,
U

T

k M k
U u u .

The traditional linear regression scheme includes important assumptions known as the Gauss-Markov 
conditions [13, 14]. This algorithm fits the requirements for adaptation, which is associated with the change 
in the coefficient of pairwise correlation.

The second feature of the developed algorithm is the application of a sliding observation window. It 
is important to note that within this window, the output array of forecasted parameter values for decision 
support systems : YL MZ  should be shifted backwards by τ time steps relative to the array of regressors : XL MX .

The main forecasting cycle occurs over the sliding observation interval. At each step, the current mean 
values and covariance structures are corrected.

The forecast of the parameter values for decision support systems is performed by the previously 
described method of vector multiplication of the current centered monitoring data values and the matrix 
transfer coefficient of the least squares filter. The justification for the optimality of this approach directly 
follows from the well-known Gauss-Markov theorem [9].

The values of the parameters for the decision support system at the output of the predictor form 
the vector of the evolution of the output parameters. Typically, the quality indicators used are the root 
mean square deviation (RMSD) of the forecast or the average values of the obtained errors, which allows 
for a forecast that is quite close to the actual process trajectory (the average relative error does not 
exceed 9%).

Action 5.2. Evaluation of the decision support system’s state based on the enhanced canonical correlation 
method.

The enhanced canonical correlation method is a generalization of multiple correlation for the case 
where there are two or more interrelated variables X and Y [9, 18]. From the perspective of forming a linear 
forecast, the application of canonical correlations means the ability to simultaneously evaluate a group of 
interrelated output parameters, considered as generalized linear combinations of interrelated parameters. 
Let’s consider the mathematical apparatus of canonical correlations. Let’s define possible linear combina-
tions for q variables Y and p variables X in the general population

=

= α∑*

1

;
p
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i

X X
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j j
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The tasks of canonical correlations include determining the coefficients αi  and βi  [10].
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Let’s consider the algorithm for multivariate analysis based on the enhanced canonical correla-
tion method, where the output array is divided into observed and unobserved parts: { }∈ µ1 1,pX N P  and 

{ }∈ µ2 2,qY N P , respectively. In this case, the covariance matrix will take the following form

 
=  
 

11 12

21 22

.
P P

P
P P

	 (3.5)

Then, the correlation coefficient will be
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Now, let’s assume that the state of the decision support system at time k is described (with sufficient 
accuracy) by m parameters, combined into a vector ( )= 1 , , mX x x . Geometrically, this means that the 
state of the decision support system is a point in the m-dimensional phase space Rm. Let there be measure-
ment results for these parameters at time moments = 1, ,k N . 

Let’s combine the obtained measurement results of the decision support system parameters into a 
matrix X of size n×m. The row of this matrix with index i corresponds to the result of the i-th vector mea-
surement, = 1, ,i n , while the column with index j represents the set of n measurement values of the j-th 
parameter of the decision support system in each measurement, = 1, ,j m .

The task is to refine or create a mathematical model based on the available data that fits the tasks of 
both forecasting parameter values and control. In the case of non-stationary processes, the model is not 
universal and requires constant reconfiguration.

If the data is normalized, estimates of the covariance and correlation matrices are constructed. The 
second estimate (the correlation matrix) involves normalizing the standard deviation; if this operation has 
already been performed, the results of these estimates coincide. These calculations are carried out for 
known values of α and P, which are replaced by their estimates. The quality of the estimate will depend on 
the size and reliability of the initial data on the parameters of the decision support system.

Consider the following task: there are m parameters, of which p are observable, and the remaining q 
are unobservable. The task is to estimate the predicted parameters based on the available output data.

As an assumption, let’s consider that the initial data is already normalized and centered. The co-
variance matrix will take the form (3.5), where P11 — the covariance matrix of the observed parameters, 
which values are obtained during monitoring, P22 — the covariance matrix of the predicted parameters, and  
P12 — the cross-covariance matrix between the observed and unobserved parameters.

The task is to find the matrix of weighting coefficients C under the condition of minimizing the average 
sum of squared residuals

( ) ( ) − ⋅ − ⋅ →  2 1 2 1 min.
T

trE x C x x C x



70

INTELLIGENT DECISION SUPPORT SYSTEMS METHODS FOR OPTIMIZING AND SUPPORTING MANAGEMENT DECISIONS

Let’s transform this expression into the form

( ) ( )

( ) ( ) ( ) ( )
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By substituting the initial data, the formula for the optimal linear estimate of the vector X2 based on the 
known vector X1 will take the form

( ) ( )( )−= + ⋅ ⋅ −1
2 2 12 11 1 1

ˆ .TX E X P P X E X 	 (3.6)

Now, using sample estimates

( )−= + ⋅ ⋅ −1
2 2 12 11 1 1

ˆ ˆ ˆ .TX X P P X X

In terms of the task of forecasting the output characteristics of the decision support system, expres-
sion (3.7) will take the form

( )−
+τ − −= + ⋅ ⋅ −

1
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ˆ ˆ .T
t t L t UZ u t t L tZ Z P P U U 	 (3.7)

Substituting the found value of the matrix into the expression for the average sum of squared residuals, 
the covariance matrix of the estimation errors will take the form
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The diagonal elements of this matrix represent the variance of the estimates of the corresponding 
components (in dimensionless units). Typically, confidence intervals calculated using this formula turn out 
to be overly pessimistic. The variances can be determined by calculating the sum of the squared errors in 
the prediction based on the available dataset, but they will only be relevant to this specific data. The con-
nection of these variances with the corresponding theoretical characteristics depends on the size of the 
available sample of parameters for the decision support system.

At the same time, training is carried out based on data from a sliding observation window.
Action 5.3. Hybrid parameter estimation for the decision support system.
As mentioned earlier, the statistical algorithms proposed above for parameter estimation in decision 

support systems provide the best solution when a number of assumptions (stationarity, homogeneity, nor-
mality, independence, etc.) are met, which, in practice, are not always valid.
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However, a complete rejection of statistical algorithms for forecasting the parameters of decision 
support systems is also irrational. The universality of the quadratic criterion allows obtaining good initial 
approximations to the averaged dynamics of the forecasted process. Hence, the study proposes the de-
velopment of a hybrid algorithm that combines multivariate statistical analysis algorithms with a compu-
tational scheme that self-develops, based on evolutionary modeling methods. The core idea is to replace 
the optimization of a dynamic system with its evolutionary process. In fact, this refers to the stochastic 
self-organization of the applied mathematical model.

Let’s assume that, based on the traditional statistical algorithm ( ){ },A S A x , characterized by a given struc-
ture S (A) and a set of parameters x, the necessary output parameter of the decision support system ŷ is estimated.

In this case, the effectiveness of the algorithm Eff (A) is evaluated based on its application to the output 
data from the sliding window. The effectiveness indicator is typically represented by the general quality 
metrics described earlier or local accuracy measures, such as the total square of the prediction error.

At this stage, the second part of the enhanced genetic algorithm, proposed in work [19], is used. Let’s in-
troduce two operators: the variability operator ( ) :Var A  { }⇒ ≠ ≠ ∀1 , , : , ,

aN i jA A A A A A i j  and the selection 
operator ( )1 , , :

gNSel A A  { } ( ) ( ) ( ){ }< > < > < > < >⇒ ≥ ≥ ≥ ∀ >  1 1 1, , , , : ,
g a aN N N j aA A A A Eff A Eff A Eff A j N ,  

where Na — the number of “selected” algorithms that are used for further reproduction; Ng=Na(1+ Nd) — the 
number of strategies for one generation that are subject to selection, Nd — the number of strategy offspring 
generated according to the specified rules at each iteration.

Let A0=A{S0(x), x0} — be a certain variant of the forecasting algorithm with given parameters and struc-
ture, accepted as the baseline “father” algorithm. Then, the technology of evolutionary modeling reduces to 
the repeated application of the sequence of operators

( ) { } { } ( ) { } { }

( ) { } { } { }
⇑ ⇓

< > < >

⇒ = = ⇒ = =

ψ = = ⇐ = ∪

 

 

0 1 1

1 0 1

, , , ,

          , , , , .

g d

g a

o a N d d N

N N g a d

A Var A A A A Var A A A A

A A A A A A A A 	 (3.9)

The presented approach to evolutionary optimization, combined with the previously described algo-
rithm based on the canonical correlation method, forms a unified hybrid algorithm. This algorithm retains all 
the advantages of statistical analysis and supplements them, allowing for the avoidance of the drawbacks 
associated with the lack of Gaussianity and stationarity in real observation series for the parameters of 
non-stationary complex technical objects.

Action 6. Formation of a generalized parameter evaluation for the decision support system.
Based on the evolving artificial neural network, a generalized evaluation of the state of the decision 

support system is formed. This is done through the convolution of each group of parameters for the sys-
tem’s state. The architecture of the evolving artificial neural network for evaluating the parameters of the 
decision support system is presented in work [20].

Action 7. Verification of the stop criterion for the combined algorithm.
The algorithm terminates if the maximum number of iterations has been reached. Otherwise, the gen-

eration of new positions and checking of conditions are repeated.
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Action 8. Determining the number of required computational resources for evaluation.
To avoid the cyclic repetition of calculations in Actions 1—8 of this method and to increase computa-

tional efficiency, the system’s load is additionally determined. If the computational complexity exceeds the 
established threshold, the number of software-hardware resources that need to be added is determined 
using the method proposed in work [20].

Action 9. Training the knowledge bases of agents. At this stage, the training of the knowledge bases of 
agents from the list of bio-inspired algorithms used in this study is performed. The method of deep learning 
proposed in work [20] is used as the learning method.

End.

3.2	 EXAMPLE OF APPLYING THE PROPOSED METHODOLOGY FOR PARAMETER EVALUATION  
IN DECISION SUPPORT SYSTEMS

The evaluation of the effectiveness of the proposed methodology for parameter evaluation in decision 
support systems, based on their own quality indicators, such as the root mean square deviation (3.7), the 
mean value of the sum of squared residuals (3.8), and other similar characteristics, allows comparing them 
by the degree of reliability of the evaluation and forecasting. 

However, it does not provide answers to questions about the advisability of improving the values of 
these indicators. Like any mathematical or informational tool, the effectiveness of the proposed methodol-
ogy for evaluation and forecasting can only be assessed through the quality indicators of the metasystem 
for which it was created and improved.

In this context, the metasystem is represented by the proactive decision support system. The per-
formance indicators of such a system are the external or exogenous numerical characteristics that are 
hierarchically specified by the higher-level decision support system.

The suitability criterion for the forecasting algorithm (3.9) is the verification of the condition for the 
membership of the forecasted values of the parameters in the state vector of the decision support system 
within the constraint set { }* i

i i perx ± ∆ ∧Ω , ∀ = 1, ,i M.
Here ± ∆*

i ix , ∀ = 1, ,i M  − the sets of constraints that correspond to the requirement for stabilizing 
the values of the decision support system’s parameters around a reference value *

ix , ∀ = 1, ,i M , which is 
determined by the regulation of the controlled parameter in the decision support system, perΩ  − the set of 
technical constraints imposed on the parameters of the decision support system.

As an example, let’s build a proactive parameter evaluation system for the decision support system 
based on the algorithm for iterating through the possible values of control parameters.

The formation of the ε-neighborhood ( )( )∆ = ∆ 0U t  can be carried out using several methods:
1) ∆ = − +  0 0/ 2; / 2U R U R , where ( )= −max minR abs U U ; Umax, Umin — the boundaries of the acceptable 

range of the control parameter changes in the decision support system;
2)  ( ) ( ) ∆ = − + 0 0;U s U U s U , where ( )s U  — the standard deviation of the change in the decision 

support system’s parameter;
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3)  ( ) ( ) ∆ = − + 0 0 0 0* / ; * /U t s sqrt N U t s sqrt N , where 0t  — the critical value of the t-statistic for the 
Student’s distribution at the chosen confidence level α, N — the number of observations in the sliding window;

4) ∆ = − +  0 0 0 0% * ; % *U R U U R U , where %R  — the half-interval used to search for the best solution 
(for example, %R=0.05 for a 5%-th deviation).

Next, the number of steps for iterating within the parameter change range is established stepN  (e.g., 10).  
The total number of possible variants of the parameter evaluations for the decision support system, formed 
as the number of permutations with repetition, is given by ( ) manM

stepN , where manM  — the number of parame-
ters in the decision support system that are used for manipulation.

It is important to note that the number of possible controls grows rapidly with an increase in stepN  
and manM . Examples of the number of possible evaluation variants for different values of stepN  and manM  are 
presented in Table 3.1.

 Table 3.1 Number of iterations for parameter evaluation variants in the decision support system

manM stepN

5 10 15 20 25

2 25 100 225 400 625

3 125 1000 3375 8000 15625

4 625 10000 50625 160000 390625

5 3125 100000 759375 3200000 9765625

Considering that each step is associated with a considerable number of operations, including the cal-
culation of inverse matrices, the growth of these parameters should be done while taking into account 
the computational capabilities of the hardware. According to the adopted algorithm, for each variant of 
parameter evaluation, a forecast is formed based on regression, neural network, or other technologies. 
Comparing the forecasted output parameter values against each other, considering the set of technological 
constraints imposed on the parameters of the decision support system, allows for the direct identification 
of the optimal value of the state parameter of the decision support system at a given time.

Comparing the obtained result with the traditional scheme of situational assessment, which is imple-
mented during the management of the decision support system, allows for the evaluation of the terminal 
effectiveness of hybrid evaluation and forecasting through the quality indicators of the higher-level system 
for which it was created.

3.3	 RECOMMENDATIONS FOR INTEGRATING THE PROPOSED METHODOLOGY  
INTO DECISION SUPPORT SYSTEMS

As an example of implementing hybrid evaluation and forecasting of decision support system parame-
ters for non-stationary processes, let’s consider the option of building it based on the back estimation (BE) 
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procedure of the state parameters of the decision support system. The formation of improved state evalu-
ation of the decision support system is carried out by sequential (step-by-step) modification of the chosen 
initial output parameter and the back-calculation of the output parameters (with improved outcomes) into 
manipulation parameters (control parameters used in the current situation).

Let’s consider the formalized formulation of intellectual evaluation and forecasting of parameter values 
for the decision support system based on the development of an algorithm for back estimation of possible 
parameter values.

There is an initial value of the parameter U0, obtained from the data about the decision support sys-
tem under consideration. Then, using a predefined improvement step δY for the system’s state indica-
tor Y = Y0 + δY, the evaluation effectiveness according to the defined evaluation criterion is found to be  
higher, i.e., ( ) ( )> 0Eff Y Eff Y .

The step size is selected taking into account the physical and technical characteristics of the specific 
decision support system. In the considered example, as already mentioned, it was chosen as 2—3% of the 
forecast, estimated based on the current state of the decision support system. Using data from a limited 
sliding window, as described earlier, the parameters of the intellectual parameter evaluation methodology 
are refined. 

This methodology is based on generalized linear regression and the linking parameter that relates the 
state evaluation parameter to its output parameters and state parameters ( )+ =

1 ,k kY F U  = + 1, ,k L N . For 
a non-degenerate operator F it is possible to construct an inverse mapping ( )−

+ += + δ




* 1
1 1k k kU F Y Y , which 

allows obtaining the values of the control parameters 


*
kU , that have increased efficiency compared to the 

reference control being compared. At the same time, it is necessary to additionally verify the condition of 
admissibility for the found control values 



*
kU  and other state parameters of the decision support system 



*
kX , i.e., the membership of the corresponding numerical values of the parameters in the set of admissible 

values (3.11).
The consideration of the variation of state parameters in the decision support system is carried out by 

using a sliding observation window. The size of the window is selected based on the dynamics of variation 
in the average values of the controlled parameters.

The core of neural network-based forecasting technologies is the iterative refinement of the weight 
coefficients of the multiplicative inputs of nonlinear nodes, unified by a single network structure [19, 20].

The process of correcting weight coefficients is carried out according to the feedback signal, formed 
by the difference between the network’s output signals and the actual measured values, combined with the 
corresponding input signals into the training dataset. Let’s consider an example of evaluating and forecast-
ing the state of the decision support system.

Let ( )1 2, , ,
T

px x x  — be the input parameters, ( )= 

1 1 1 1
11 22 1, , , ,

T

pw w w w  ( )= 

12 2 2 2
11 22 1, , ,

T

pw w w w  — be 
the boosting coefficients of the first and second generations of the models. The artificial neural network, 
with an evolving structure, has a different number of neurons at each level: level A (input layer) — p neurons, 
level S (first layer) — l neurons, and level R (second layer) — k neurons.

Let N be the number of input and output points obtained during the experiment or through simulation, 
( )= 1 2, , , pX X X X  — be the input vector, ( )= 1 2, , , kD d d d  — be the real or computed outputs [15, 18].
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The objective function to be minimized is as follows

( ) ( ) ( ) ( )
= = = = = = =

   
ϖ = − + − = − + −    

   
∑∑ ∑∑ ∑ ∑ ∑

2 2

1 1 2 2 1 1 2 2

1 1 1 1 1 1 1

1 1
( ) .

2 2

N l N k N l k

ij ij ij ij ij ij ij ij
i j i j i j j

E y d y d y d y d

Minimization is achieved through gradient descent, meaning the adjustment of weight coefficients is 
formulated as

∂
∆ϖ = −η

∂ω
( ) ,n
ij

ij

E

 
= 1, 2,n

where ϖ ( )n
ij  — the weight characteristic of the connection between the i-th neuron of the n-1 level and the j-th 

neuron of the n-th level is n, < < η1 0  — the learning rate coefficient. It is known that 
∂ ∂∂ ∂

= ⋅ ⋅
∂ω ∂ ∂ ∂ω

j j

ij j j ij

y SE E
y S

,  

where yj — the output of the neuron, 
=

= ω∑
1

N

j ij ij
i

S x  — the weighted sum of its input signals (the argument of 

the activation function). Typical activation functions used are the sigmoid 
− ω

= ∑+

1

1 i ix
A

e
 or the hyperbolic 

tangent 
−

−

−
= =

+
th

x x

x x

e e
A x

e e
, ′ = 2

1
th

( )
x

ch x
, where ch(x) — the hyperbolic cosine, th x  is the hyperbolic 

tangent, ( ) ( )′ = −
2

th 1 thx x . The third factor represents the output of the previous layer neuron. The first 

factor can be expanded as 
∂ ∂ ∂∂ ∂ ∂

= ⋅ ⋅ = ⋅
∂ ∂ ∂ ∂ ∂ ∂∑ ∑k k k

k ki k k i k k

y S yE E E
y y S y y S

. 

The last sum is calculated over the neurons of the (n-1)-th layer. Let’s introduce a new substitution: 
∂∂

δ = ⋅
∂ ∂

( ) jn
j

j j

yE
y S

 which gives the recursive formula + + ∂ 
δ = δ ⋅ω ⋅  ∂ 

∑( ) ( 1) ( 1) jn n n
j k jk

k j

y

S
, which allows, knowing

 

+δ( 1)n
j , to compute δ( )n

j . For the output layer ( )δ = − ⋅( ) ( )n n e
e e e

e

dy
y d

dS
. Then, the weight adjustment will have the 

form −∆ϖ = −η⋅δ( ) ( ) ( 1) ,n n n
ij j iy  = 1, 2n  [5, 8].

To give the weight correction process some inertia, in order to smooth out abrupt jumps when moving 
across the surface of the objective function, the last expression is supplemented with the values of the 
weight changes from the previous iteration

( ) ( )( )−∆ϖ = −η⋅ µ ⋅∆ω ⋅ − + −µ ⋅δ( ) ( ) ( ) ( 1), 1 1 ,n n n n
ij j j it y  = 1, 2,n

where µ — the inertia coefficient, t — the current iteration number.
For the sigmoid function ( ) ( )δ = − ⋅ − ⋅( ) ( ) 1n n

e e e e ey d S S , and for the hyperbolic tangent function 

( ) ( )δ = − ⋅ − ⋅( ) ( ) 21n n
e e e e ey d S S  [5, 8].

Let’s evaluate the effectiveness of the proposed parameter evaluation methodology for the decision 
support system in comparison with the known approaches for evaluating such systems. The results of the 
evaluation based on the reliability of the decisions made are presented in Table 3.2.
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 Table 3.2 Evaluation of the effectiveness of the proposed methodology for parameter evaluation in decision support 
systems

Approach name Evaluation completeness Accuracy Sensitivity Average value

Densenet 201 0.6163 0.4243 0.4485 0.4335

Densenet 121 0.9523 0.8489 0.8590 0.8588

MobileNetV2 0.9289 0.9295 0.9289 0.9287

DenseNet-SEGR 0.9588 0.9514 0.9511 0.9512

Gradient boosting classifier 0.92021 0.91128 0.9003 0.91449

KNN 0.8736 0.8839 0.88529 0.9003

LSTM 0.7981 0.8005 0.8191 0.8217

RNN 0.8014 0.8122 0.8022 0.8101

CNN 0.9232 0.9104 0.9271 0.9301

Proposed method 0.9511 0.9611 0.9601 0.9612

As seen from Table 3.2, the reliability of the parameter evaluation in decision support systems is im-
proved by 17—21% due to the use of additional procedures, while maintaining the required operational speed.

3.4	 METHOD OF MULTI-CRITERIA EVALUATION OF HIERARCHICAL SYSTEMS

The method of multi-criteria evaluation of hierarchical systems consists of the following sequence of 
actions:

Action 1. Input of initial data.
At this stage, the available initial data for the beginning of the multi-criteria evaluation method are 

entered. The following information is introduced at this stage:
— the number of subsystems in the hierarchical system;
— characteristics of each subsystem in the hierarchical system (the number of elements in each sub-

system, the number of connections between each element in the subsystem, the type of element in the 
subsystem (purpose, main technical characteristics), etc.);

— the number of connections between each subsystem (or a specific element) in the hierarchical system;
— the type and number of individual elements of the hierarchical system that are not part of any sub-

system of the hierarchical system.
Action 2. Verification of the entered data and clarification of the relationships between the elements of 

the hierarchical system.
To reduce the subjectivity of the obtained evaluation, at this stage, the entered data is verified, and 

the relationships between the elements of the hierarchical system are clarified and described using the 
enhanced penguin swarm algorithm proposed in work [20].
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Action 3. Description of external and internal factors affecting the hierarchical system being analyzed.
At this stage, the list of external factors affecting the functioning process of the hierarchical system is 

defined, along with their degree of influence on the functioning process of the hierarchical system. Internal 
factors present within the system are also introduced. This procedure is based on the evaluation method 
proposed in study [19], which uses the mathematical framework of fuzzy cognitive models.

Action 4. Verification and clarification of the established factors.
The procedure for verifying and clarifying the established factors consists of two stages. In the first stage, 

it involves using failure tree analysis and the interval-valued fuzzy Pythagorean hierarchical process to rank 
and select the most critical factors. In the second stage, it involves using the interval-valued fuzzy Pythago-
rean method for evaluating and visualizing the cause-and-effect relationships between the selected factors.

Action 4.1. Reduction of uncertainty using the interval-valued pythagorean fuzzy set.
In this study, a combination of fuzzy set theory (in this case, the Pythagorean fuzzy set) with multi-cri-

teria evaluation methods is proposed to structure and solve complex decision-making tasks that involve 
broad and hierarchically organized criteria. This combination is widely used to overcome the inaccuracies 
that arise when relying on expert evaluation in multi-criteria evaluation methods.

The Pythagorean fuzzy set is defined as follows

( ){ }= µ ν ∈, ( ), ( ) ; ,p pP x P x x x X 	 (3.10)

where X — a finite set, µ   ( ) : 0, 1p x X  and ν   ( ) : 0, 1p x X  — the degree of membership and degree 
of non-membership of an element ∈x X  to the set P. The values of µ ( )p x  and ν ( )p x  must satisfy the fol-
lowing conditions

≤ µ +ν ≤ ∈2 20 ( ) ( ) 1. .p px x x X 	 (3.11)

The degree of uncertainty of the Pythagorean fuzzy set with respect to the set P can be calculated as follows

π = −µ −ν2 2( ) 1 ( ) ( ) .p p px x x 	 (3.12)

For a more precise representation of variation and uncertainty, the interval-valued Pythagorean fuzzy 
set is used, in which intervals are employed to represent the degree of membership instead of point values. 
The set P  is defined as follows

( )    = µ µ ν ν ∈     
   

 , ( ), ( ) , ( ), ( ) ; ,
L U L UP P P P

P x P x x x x x X 	 (3.13)

where    µ µ ν ν      

( ), ( ) , ( ), ( )
L U L UP P P P

x x x x  — the interval-valued Pythagorean fuzzy number ≤ µ ≤ µ ≤ ν ≤ ν
   

0 ( ) ( ) ( ) ( )
L U L UP P P P

x x x x 

≤ µ ≤ µ ≤ ν ≤ ν
   

0 ( ) ( ) ( ) ( )
L U L UP P P P

x x x x . µ


( )
LP

x  and ν


( )
LP

x  must satisfy the expression

≤ µ +ν ≤ ∈
 

2 20 ( ) ( ) 1. .
L LP P

x x x X 	 (3.14)
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The value of uncertainty for the interval-valued Pythagorean fuzzy set with respect to P  can be calcu-
lated as follows

  π = π π = −µ −ν −µ −ν          

2 2 2 2( ) ( ), ( ) 1 ( ) ( ) , 1 ( ) ( ) .
L U U U L LP P P P P P P

x x x x x x x 	 (3.15)

Action 4.2. Evaluation and visualization of cause-and-effect relationships between selected factors.
Given that one interval Pythagorean fuzzy set is provided to describe the cause-and-effect relation-

ships between the selected factors, there is the following expression

( )       = µ µ ν ν µ µ ⊆ ν ν ⊆              

 ( ), ( ) , ( ), ( ) , ( ), ( ) [0, 1], ( ), ( ) [0, 1],
L U L U L U L UP P P P P P P P

P x x x x x x x x  and

≤ µ +ν ≤
 

2 20 ( ) ( ) 1
L LP P

x x , with parameter λ > 0. In this case, the following operation is performed:

( ) ( )λλ
λ λ

   λ = − −µ − −µ ν ν      
   



2 21 1 ( ) , 1 1 ( ) , ( ) , ( ) ,
L U L UP P P P

P x x x x 	 (3.16)

( ) ( )λλ
λ λ

   λ = µ µ − −ν − −ν      
   



2 2( ) , ( ) , 1 1 ( ) , 1 1 ( ) ,
L U L UP P P P

P x x x x 	 (3.17)

( )       = µ µ ν ν µ µ ⊆ ν ν ⊆              

 ( ), ( ) , ( ), ( ) , ( ), ( ) [0, 1], ( ), ( ) [0, 1],
L U L U L U L UP P P P P P P P

P x x x x x x x x  and 

≤ µ +ν ≤
 

2 20 ( ) ( ) 1
L LP P

x x . 

Given that two interval-valued Pythagorean fuzzy sets ( )=       


1 1 1 1 1, , ,P a b c d  and ( )=       


2 2 2 2 2, , ,P a b c d  
are provided, the following operation is performed:

( ) ⊕ = + − + −     
 

2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , ,P P a a a a b b b b c c d d 	 (3.18)

( ) ⊕ = + − + −     
 

2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , .P P a a b b c c c c d d d d 	 (3.19)

Action 5. Vulnerability analysis of the subsystem (individual element) of the hierarchical system.
Fault tree analysis is widely used to identify potential root causes, referred to as basic events, as well 

as to determine the probability of an unexpected event, known as the top event. The top event is placed 
at the top of the tree, while the basic events are at the bottom. Basic events (BE) within the fault tree are 
considered statistically independent and are combined using logical operators (AND/OR).

The fault tree analysis includes both qualitative and quantitative assessments. In the qualitative eval-
uation, the fault tree establishes and explains the theoretical relationships between the fault tree and basic 
events based on “AND” and “OR” logic. In the quantitative assessment, the basic events and their logical rela-
tionships are identified to construct the logical expression of the fault tree. The probability of the top event 
can be calculated quantitatively based on the probabilities of each risk factor. In this study, the fault tree is 
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used to analyze cause-and-effect relationships between the identified factors, as well as to rank them by 
the probability of occurrence. The probability of the top event is evaluated using equations (3.20)—(3.22), 
which are derived from the principles of Boolean algebra:

=

= − −∏
1

1 (1 ),
n

OR i
i

P P 	 (3.20)

=

=∏
1

,
n

² i
i

P P 	 (3.21)

1 (1 ) ,
i j

n

IE i
j M BE Q

P P
∈ ∈

 
= − − 

 
∏ ∏  	 (3.22)

where iP  — the probability of occurrence of the basic event iBE ; jQ  — the set of basic events iBE .
To assess the importance of each basic event, its contribution to the probability of the top event is 

determined. This information is highly valuable for decision-makers, as it allows identifying the most vul-
nerable points in the system. By doing so, decision support systems can effectively identify the factors most 
likely to lead to failures and require increased attention.

To identify and prioritize the most critical basic events leading to the top event, the Birnbaum impor-
tance measure is used. The Birnbaum importance measure is a key metric based on fault tree analysis and 
is used to assess the criticality of individual components or events in the system. It quantitatively evaluates 
the contribution of each basic event to the occurrence of the top event. Formally, the value of the Birnbaum 
importance measure for a specific basic event is defined as follows

( ) ( )= = − =| 1 | 0 ,
i

BIM
BE i iIM P IE BR P IE BR 	 (3.23)

where 
i

BIM
BEIM  — the Birnbaum importance measure for the basic event iBR .

Once the Birnbaum Importance Measure (BIM) values for all basic events are computed, they can be 
sorted according to their level of importance. A higher BIM value indicates a higher level of significance of 
the corresponding basic event with respect to the occurrence of the top event.

Action 6. Ranking of impact factors on the hierarchical system.
The use of fault tree analysis methods and interval-valued Pythagorean fuzzy sets ensures two types of 

weights: relative importance and corresponding ranking. To provide a balanced assessment that considers 
both the impact of the vulnerabilities and the likelihood of their occurrence, a corrective weight is intro-
duced. This weight is used to reconcile both indicators, forming an updated ranking of the factors. Based 
on this new ranking, the most important factors are selected for further analysis. The updated ranking is 
calculated using the following formula

= ⋅ + − ⋅1 2(1 ) ,i i iMR w R w R 	 (3.24)

where iMR  — the combined ranking value for a factor i, 1
iR  — the ranking of factor i, obtained from the 

results of the fault tree analysis, 2
iR  — the rank of factor i, obtained from the results of the interval-valued  
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Pythagorean fuzzy sets, w — the corrective weight that defines the impact of each aspect. After this, the 
factors that cause failures can be re-sorted based on the combined ranking.

To determine the effectiveness of the proposed method, a simulation of its operation was conducted 
to solve the multi-criteria evaluation task of the state of the military grouping (forces) under the initial 
conditions specified in Section 3.4.

Separate parts of the computational experiment, using the proposed method, are presented  
in Tables 3.3 and 3.4. The overall computational experiment is detailed across more than 140 pages,  
with only a specific part of it presented in this section.

 Table 3.3 Results of the calculation of membership functions for decisions based on rules

№ Results of the calculation of membership functions for decisions based on rules

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0007 0.045 0.048 0.04 0.066 0.032 0.007 0.005 0.009 0.049 0.063 0.044

2 0.061 0.039 0.116 0 0.126 0.158 0.147 0.018 0.072 0.137 0.162 0.163

3 0.065 0.041 0.05 0.027 0.011 0.058 0.033 0.04 0.045 0.056 0.067 0.046

4 0.095 0.074 0.153 0.068 0.004 0.1 0.0018 0.169 0.0052 0.053 0.046 0.163

5 0.174 0.0147 0.083 0.083 0.076 0.002 0.102 0.083 0.162 0.116 0.09 0.105

6 0.028 0.057 0.019 0.036 0.047 0.038 0.025 0.028 0.0029 0.005 0.036 0.063

7 0.061 0.067 0.056 0.045 0.012 0.014 0.0007 0.012 0.022 0.056 0.069 0.00216

8 0.197 0.219 0.211 0.232 0.197 0.203 0.057 0.07 0.119 0.13 0.138 0.0054

9 0 0.122 0.124 0.157 0.243 0.003 0.262 0.208 0 0.165 0.084 0.151

10 0.146 0.079 0.142 0.076 0.005 0.121 0.107 0.121 0.114 0.091 0.049 0.139

11 0.165 0.139 0.065 0.044 0.07 0.1 0.083 0.163 0.061 0.165 0.133 0.086

12 0.026 0.039 0.001 0.006 0.043 0.021 0.036 0.013 0.014 0.034 0.02 0.03

13 0.035 0.006 0.037 0.04 0.021 0.038 0.004 0.0005 0.033 0.017 0.021 0.017

14 0.0054 0.003 0.033 0.021 0.007 0.028 0.029 0.0076 0.05 0.033 0.017 0.038

15 0.049 0.009 0.012 0.021 0.033 0.03 0.044 0.023 0.024 0.034 0.018 0.041

16 0.03 0.042 0.027 0.019 0.014 0.047 0.029 0.011 0.036 0.023 0.05 0.033

17 0.021 0.0005 0.031 0.028 0.032 0.047 0.031 0.02 0.024 0.012 0.02 0.032

18 0.03 0.008 0.016 0.044 0.02 0.036 0.016 0.048 0.05 0.014 0.035 0.0086

19 0.026 0.039 0.038 0.014 0.003 0.002 0.031 0.011 0.031 0.0076 0.034 0.013

20 0.007 0.046 0.049 0.033 0.015 0.007 0.049 0.023 0.05 0.016 0.03 0.034

21 0.042 0.026 0.026 0.025 0.037 0.029 0.027 0.021 0.015 0.01 0.041 0.00758
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1 2 3 4 5 6 7 8 9 10 11 12

22 0.126 0.027 0.017 0.315 0.033 0.096 0.206 0.305 0.093 0.146 0.116 0.00332

23 0.391 0.462 0.616 0.443 0.077 0.231 0.0064 0.077 0.616 0.109 0.237 0.61

24 0.132 0.005 0.04 0.002 0.035 0.139 0.063 0.0088 0.112 0.118 0.109 0.037

25 0.14 0.125 0.044 0.139 0.13 0.074 0.107 0.125 0.1 0.054 0.021 0.158

26 0.041 0.047 0.02 0.026 0.008 0.016 0.025 0.019 0.043 0.031 0.04 0.049

27 0.022 0.014 0.041 0.037 0.034 0.046 0.013 0.027 0.022 0.011 0.042 0.012

28 0.038 0.008 0.015 0.011 0.018 0 0.017 0.033 0.018 0.042 0.043 0.023

29 0.037 0 0.039 0.015 0.035 0.004 0.021 0.017 0.039 0.031 0.004 0.05

30 0.007 0.028 0.011 0.031 0.012 0.048 0.021 0.026 0.032 0.036 0.033 0.026

31 0.032 0.011 0.007 0.018 0.033 0.036 0.04 0.011 0.038 0.024 0.018 0.045

32 0.041 0.02 0.05 0.027 0.008 0.017 0.05 0.024 0.031 0.045 0.034 0.022

33 0.022 0.019 0.039 0.049 0.043 0.000 0.045 0.029 0.0025 0.016 0.013 0.037

34 0.042 0.048 0.011 0.02 0.013 0.042 0.006 0.0035 0.014 0.0056 0.049 0.049

35 0.05 0.032 0.032 0.037 0.027 0.014 0.005 0.046 0.038 0.02 0.037 0.039

36 0.081 0.044 0.049 0.102 0.016 0.146 0.053 0.114 0.133 0.054 0.054 0.086

37 0.139 0.153 0.025 0.172 0.014 0.142 0.025 0.114 0.063 0.04 0.091 0.135

38 0.019 0.044 0.012 0.004 0.03 0.047 0.008 0.024 0.05 0.033 0.008 0.0015

39 0.023 0.034 0.041 0.003 0.015 0.015 0.05 0.048 0.018 0.036 0.035 0.027

40 0.034 0.063 0.056 0.023 0.085 0.045 0.025 0.0073 0.012 0.113 0.078 0.036

41 0.045 0.016 0.023 0.027 0.032 0.006 0.027 0.011 0.036 0.045 0.038 0.041

42 0.018 0.013 0.019 0.038 0.05 0.021 0.023 0.03 0.028 0.024 0.015 0.045

43 0.0005 0.031 0.033 0.028 0.047 0.023 0.0005 0.035 0.0066 0.034 0.044 0.031

De-
fense

0.174 0.147 0.153 0.083 0.126 0.158 0.147 0.169 0.162 0.137 0.162 0.163

Coun-
terof-
fensive

0.391 0.462 0.616 0.443 0.243 0.231 0.262 0.305 0.616 0.165 0.237 0.61

Stabili-
zation 
actions

0.139 0.153 0.056 0.172 0.14 0.142 0.05 0.114 0.063 0.113 0.091 0.135

Error 0.42 0.334 0.174 0.347 0.609 0.636 0.569 0.525 0.178 0.729 0.617 0.197

Continuation of Table 3.3
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 Table 3.4 Comparative results of the state evaluation process for the troop (force) grouping

Using the method Without using the method

Operational efficiency of the evaluation process

Best case, sec. 49 — 303 56 — 507.1

Worst case, sec. 255.1 — 2501.5 382.8 — 3977

Reliability of the obtained decisions

Best case, sec. 0.89 — 1.0 0.64 — 0.85

Worst case, sec. 0.77 — 1.0 0.617 — 0.75

From the analysis of Table 3.4, it can be concluded that the proposed method provides an average 
increase in accuracy and operational efficiency by 35%, while ensuring high convergence of the obtained 
results at a level of 93.17%.

CONCLUSIONS

The algorithm for implementing the methodology has been defined, thanks to additional and improved 
procedures, which allow:

— verification of the topology and parameters of decision support systems, taking into account the 
degree of uncertainty in the initial data regarding the known information, through the use of the enhanced 
penguin swarm algorithm. This allows reducing the time for initial setup during the first configuration of 
the evaluation methodology;

— preliminary selection of individuals for configuring the evolving artificial neural network, carried out 
using the enhanced genetic algorithm, which reduces solution search time and increases the reliability of 
the obtained solutions;

— exploration of solution spaces for parameter evaluation problems in decision support systems, de-
scribed by atypical functions, using the enhanced penguin swarm algorithm;

— configuration of the weights of the evolving artificial neural network, leading to increased accuracy 
in evaluating decision support system parameters;

— use of additional mechanisms to adjust the parameters of the evolving artificial neural network 
through the procedure of modifying the membership function;

— increased reliability in evaluating decision support system parameters by parallel evaluation using 
multiple evaluation methods;

— use of hybrid parameter evaluation for decision support systems, enabling proper operation in the 
absence of conditions for stationarity, homogeneity, normality, and independence;

— simultaneous search for solutions in different directions;
— calculation of the required number of computational resources needed when existing resources are 

insufficient for calculations.
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An example of using the proposed methodology for evaluating decision support system parameters 
showed an increase in the reliability of parameter evaluation by 17—21% through the use of additional 
procedures, while maintaining the required operational speed.

The algorithm for implementing the method has been determined, thanks to additional and improved 
procedures, which allow:

— verification of the input data and clarification of relationships between elements in the hierarchical 
system using the enhanced penguin swarm algorithm. This minimizes the error of entering incorrect data 
for the operational grouping of troops (forces);

— description of the external and internal factors affecting the hierarchical system, which is subject to 
multi-criteria evaluation using fuzzy cognitive models;

— adaptation to the hierarchical system type through multi-level adaptation of the indicator system 
and evaluation criteria;

— reduction of uncertainty using interval Pythagorean fuzzy sets, which improves the reliability of 
multi-criteria evaluation of the state of hierarchical systems;

— identification of the most vulnerable elements of the hierarchical system using a fault tree;
— adaptation of the membership function type based on the available computational resources, ensur-

ing adaptation to the available computational resources.
An example of using the proposed method for multi-criteria evaluation of the operational grouping of 

troops (forces) was provided, showing that the proposed method ensures an average increase in accuracy 
and operational speed by 35%, while ensuring high convergence of the results at a level of 93.17%.
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