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Abstract

This section of the study proposes the conceptual foundations for the use of artificial intelli-
gence in intelligent decision support systems. 

In the course of the research, the authors:
– justified the feasibility of using artificial intelligence theory for processing heterogeneous 

data in automated control systems;
– developed a methodology for data distribution in automated control systems; 
– designed a model for evaluating the process of heterogeneous data processing in automated 

troop control systems using expert information;
– improved the methodology for configuring an information system to evaluate the process 

of heterogeneous data processing in automated control systems under conditions of uncertainty.
The analysis conducted in the study established that the application of fuzzy graphs and the 

mathematical apparatus of fuzzy logic in decision support tasks for data distribution and the evalua-
tion of heterogeneous data processing under various conditions, including uncertainty, enables the 
distribution of data among elements of automated control systems based on the importance of the 
elements and the number of features in real-time.

The methodology for rational data distribution based on the importance of automated control 
system elements and the number of features in such systems under conditions of uncertainty has 
been improved. This methodology differs from existing ones by combining the mathematical appara-
tus of information theory, fuzzy logic, and expert evaluation, enabling the formalization of features 
in a unified parameter space and the intellectualization of information processing processes. 

A quantitative assessment of the proposed methodology’s efficiency was conducted. The re-
sults of this assessment demonstrated that data distribution among the elements of automated 
control systems based on importance and the number of features using the proposed methodology 
improves the timeliness of data processing and decision-making regarding the state of the hetero-
geneous data processing process by 15–17 %. 

An enhanced methodology for configuring the information system for evaluating the heteroge-
neous data processing process in automated control systems under conditions of uncertainty, utilizing  
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a genetic algorithm, was developed. This methodology addresses limitations of other methods in vary-
ing specific features while holding other indicators constant, thus improving the efficiency of the devel-
oped information system for evaluating heterogeneous data processing in automated control systems. 

The scientific outcome is the improvement of the genetic algorithm for differentiated tuning of 
the fuzzy knowledge base of the information system for evaluating heterogeneous data processing 
in automated control systems based on posterior data. 

A quantitative assessment of the improved methodology’s effectiveness was performed. The 
results indicated that the proposed methodology enhances the timeliness of configuring the infor-
mation system for processing heterogeneous data in automated control systems under conditions 
of uncertainty. 

KEYWORDS

Artificial intelligence, heterogeneous data processing, automated control systems, reliability, 
and timeliness.

4.1 Justification for the feasibility of using artificial intelligence theory for 
processing heterogeneous data in automated control systems

The purpose of this section is to justify the necessity of applying the theory of fuzzy graphs to de-
scribe the process of heterogeneous data processing in automated control systems (ACS) [1–20]. 

One of the possible ways to model the process of heterogeneous data processing in ACS 
is through the application of fuzzy graph theory, whose primary advantage lies in its ability to 
adequately represent output data in relation to input information that is characterized by weakly 
structured (fuzzy) indicators. This advantage makes fuzzy graph theory applicable in tasks involving 
the analysis of operational situations under conditions of uncertainty [21–39]. 

The model of the heterogeneous data processing process in ACS can be represented in the 
form of a knowledge matrix (knowledge base) (Table 4.1), which contains quantitative and qualita-
tive features and characteristics of ACS functioning [40–59]. 

A knowledge matrix [60, 61] is a table formed according to the following rules:
1. The dimensionality of the matrix ( ) ,n N� �1  where ( )n + 1 – the number of columns, and 

N k k km� � � �1 2 ...  – the number of rows.
2. The first n the columns of the matrix correspond to the input variables i n= 1, ,  and ( )n + 1 -th 

a column corresponds to the values dj of the output variable y j m�� �1, .
3. Each row of the matrix represents a specific combination of knowledge about the input vari-

ables, which has been assigned by an expert to one of the possible values of the output variable y. At 
the same time: first kj rows correspond to the value of the output variable y d= 1, second k2 rows 
correspond to the value y d= 2, last km – value y=dm.
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4. Element ai
jp , that lies at the intersection i-th of the column and jp-th the row corresponds 

to the linguistic evaluation of the parameter x1 in the row of the fuzzy knowledge base with the 
number jp. At the same time, the linguistic evaluation ai

jp  is selected from the term set of the 
corresponding variable xi, so a Ai

jp
i∈ , i n= 1, ,  j m= 1, , p k j= 1, .

 Тable 4.1 Model of ACS functioning over a time interval

Feature vector 
number at the input Features of ACS elements (input variables) Situation assessment 

decision (Output variable)

x1 x2 … xi … xn y

11 a1
11 a2

11 … ai
11 … an

11

d1

12 a1
12 a2

12 … ai
12 … an

12

… … … … …

1k1 a k
1
1 1 a k

2
1 1 … ai

k1 1 … an
k1 1

…

j1 a j
1
1 a j

2
1 … ai

j1 … an
j1

dj

j2 a j
1
2 a j

2
2 … ai

j2 … an
j2

… … … … …

jkj a jk j

1 a jkj

2 … ai
jk j … an

jk j

…

m1 am
1

1 am
2

1 … ai
m1 … an

m1

dm

m2 am
1

2 am
2

2 … ai
m2 … an

m2

… … … … …

mkm amkm
1 amkm

2 ... ai
mkm … an

mkm

The presented model structurally consists of layers of features (sets of input informational ar-
rays) at specific time intervals and possible variants of ACS functioning (sets of decisions). Deci-
sion-making is performed at each stage, taking into account the features of ACS functioning [62–86].

Hierarchical Fuzzy Inference Systems. For modeling multidimensional "input-output" dependen-
cies, it is advisable to use hierarchical fuzzy inference systems. In such systems, the output of 
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one knowledge base serves as the input to another, higher-level hierarchy. Hierarchical knowledge 
bases lack feedback loops. Fig. 4.1 presents an example of a hierarchical fuzzy system that models 
the dependency y=ƒ(x1, x2, x3, x4, x5, x6) using three knowledge bases ƒ1, ƒ2, ƒ3.

f1

x1

x2
y1

y

y2

x3

x5

x6

x4 f2

f3

 Fig. 4.1 Example of a hierarchical fuzzy inference system

These knowledge bases describe dependencies y1=ƒ1(x1, x2), y2=ƒ2(x4, x5, x6) and y=ƒ3(y1, 
x3, y2). The application of hierarchical fuzzy knowledge bases allows overcoming the "curse of di-
mensionality". Another advantage of hierarchical knowledge bases is their compactness. A small 
number of fuzzy rules in hierarchical knowledge bases can adequately describe multidimensional 
"input-output" dependencies. 

Let’s assume that five terms are used for the linguistic evaluation of variables. In this case, 
the maximum number of rules required to define the dependency y=ƒ(x1, x2, x3, x4, x5, x6) us-
ing a single knowledge base will amount to 56=15625. In fuzzy inference using a hierarchical 
knowledge base, the defuzzification and fuzzification procedures for intermediate variables y1 
and y2 (Fig. 1) are not performed. The result of the logical inference in the form of a fuzzy set 
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is directly transmitted to the fuzzy inference engine of the next

level in the hierarchy. Therefore, for intermediate variables in hierarchical fuzzy knowledge bases, it 
is sufficient to define only the term sets without describing the membership functions.

4.2 Methodology for data distribution in automated control systems

The essence of the data distribution methodology in automated control systems (ACS) lies in 
the rational allocation of data among ACS elements. 
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By selecting the most critical data sources and an optimal number of gradations, it ensures the 
desired probability of correctly identifying the type of data circulating within the system. 

To choose the best plan for distributing data sources among ACS elements, the following partial 
quality indicators for distribution are used: 

1. Completeness of ACS Element Coverage by Observation: this is calculated as the ratio of 
the sum of importance coefficients of ACS elements Yj included in the distribution plan to the sum 
of importance coefficients of all ACS elements:

� � �

� �

�

�

�

Y

Y

j
j

m

j
j

J

u

1

1

, (4.1)

where {m}u – the number of ACS elements selected for observation in u-th distribution plan.
2. The expenditure of technical resources for ACS load, determined as the sum of the technical 

resource expenditures of the ACS SsumACS
.

3. The probability of tracking the status and nature of activities of the entire set of ACS ele-
ments subject to distribution – P :

P
m

Pj
j

m

�
�
�1

1

,  (4.2)

where Pj  – the probability of tracking the status and nature of activities of ACS elements included 
in the distribution plan.

Then, the system of partial quality indicators for selecting a data distribution plan among ACS 
elements will have the following form:

max;
min

max.

;S

P

sumACS  (4.3)

Taking into account the system of partial indicators, the functional reflecting the quality of 
data distribution among ACS elements, depending on the selection of a specific distribution plan 
option Π, can be expressed as:

F F S P
Uopt U ACS

U
Usum� � ��

�
�max ( , , ).  (4.4)

However, in existing methodologies for information distribution based on the importance of 
ACS elements, the calculation of importance coefficients is performed implicitly (4.4), and the 
procedure for their calculation is not defined. 
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Thus, a relevant scientific problem arises: multi-criteria optimization of the data distribution 
process among ACS elements, considering their importance, to improve data processing efficiency.

Then, (4.4) can be rewritten as:

F  F( ,S ,P ),
Uopt ACS

U
U

im
�

�
�

�

arg max Im
Im

sum  (4.5)

where Im – the vector of importance (priority) coefficients of ACS elements in the observation 
range; PΠU

 – the probability of tracking the status and nature of an ACS element’s activity when 
selecting u-th a distribution plan.

The importance of an ACS element can be considered as a non-metric utility criterion (NMUC). 
The main challenge in solving this problem lies in representing the NMUC in a quantitative form for 
its subsequent integration into a utility function (UF). 

To represent the NMUC in a quantitative form, non-metric partial utility criteria (NMPC) have 
been defined to characterize the importance of an ACS element.

The main NMPCs include the degree of task priority for which the distribution is carried out or 
the priority level of the ACS element (Xpr); the degree of informational value (Xinf); the degree of 
operational value of the ACS element (Xop).

Let Q X X Xpr inf op( , , ), denote the utility function of the NMPC. X X Xpr inf op, ,  independent systems 
of values. Then the utility functions of the NMPC can be represented by the following system of 
expressions:

�

�

�

pr pr pr

inf inf inf

op op op

Q X f X

Q X f X

Q X f X

�

�

�

�

�
�

�

( ) ( ),

( ) ( ),

( ) ( ),��
 (4.6)

where f X f X f Xpr inf op� � � � � �, ,  – functions of utility dependence on metric criteria.
In turn, the utility function of an ACS element will be expressed as:

� � Q X X X f X X Xpr inf op pr inf op( , , ) ( , , ).  (4.7)

To study the impact of non-metric criteria, let’s introduce a constraint, the essence of which is 
that the influence of metric criteria is equivalent, meaning there is no dependence on metric criteria:

f X f X f Xpr inf op( ) ( ) ( ) .= = = 1  (4.8)

Analysis of the constraint (4.8) reveals that the indicators are equivalent to each other 
concerning the metric criterion. In turn, the utility dependence functions on non-metric criteria 
vary linearly and are determined by the lower and upper values of the accepted evaluations. By 
performing normalization based on the maximum value and the adopted scale, any preference for 
one of the indicators in expression (4.8) concerning a non-metric criterion will lead to the domi-
nance of the utility function of the corresponding indicator.
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Considering (4.8), expression (4.7) can be represented as:

� � Q X X Xpr inf op( , , ).  (4.9)

For the purpose of selecting the rational form of the utility function Q X X Xpr inf op( , , )  it is conve-
nient to represent X X Xpr inf op, ,  in the form of fuzzy sets [63, 64], with NMPC evaluations as their 
elements, respectively. Then Q X X Xpr inf op( , , )  it can be identified with the membership function of the 
set of input values of the primary NMPC indicators x x xpr inf op, ,  to fuzzy sets X X Xpr inf op, , , accordingly. 
Thus, the task of determining the importance of an ACS element can be formulated as a decision-mak-
ing problem regarding the importance of the ACS element, and the result of the decision-making 
process can be represented as:

Im ( , , ),= Q x x xpr inf op  (4.10)

where x x xpr inf op, ,  – a set of input values of the primary NMPC indicators; Im  – a decision regard-
ing the determination of the importance of the ACS element.

The task of decision-making regarding the determination of the importance of the ACS element 
is to, based on information about the vector of input indicators (x x xpr inf op, , ) determine the out-
come Im. A necessary condition for the formal solution of the stated problem is the presence of the 
dependency (4.10). To establish such a dependency, it is necessary to consider the input indicators 
(NMPC) and the output decision as linguistic variables defined on universal sets. 

To evaluate such linguistic variables, it is proposed to use qualitative terms that form a term set:
X L bA M aA Hinf �� �, , , ,  – the term set of a variable xinf ,
X L bA M aA Hop �� �, , , ,  – the term set of a variable xop,
X L M Hpr �� �, ,  – the term set of a variable xpr ,
Im , , , ,�� �L bA M aA H  – the term set of a variable Im,

where L bA M aA H, , , ,  – respectively "low", "below average", "average", "above average", "high";  
Im – the set of variables characterizing the importance of an ACS element:

X

X

X

inf

op

pr

� �� ��
� �� ��
� �� ��
� �� ��

15

15

13

15

, ,

, ,

, ,

Im , .

 (4.11)

To evaluate the values of linguistic variables x x xpr inf op, , , in accordance with (4.11), let’s use 
the corresponding scale of qualitative terms.

In accordance with cognitive engineering methods for knowledge base synthesis, knowledge 
bases have been developed that characterize the importance of elements. Using the mathematical 
apparatus of fuzzy set theory, the knowledge base is transformed into logical equations.

� � � �Im
( ) ( ) (( , , ) max min ( ), ( ), (j X X X x x xpr inf op J i

J
i pr

J
i inf

J
i op� ))) ,�� ��� �  (4.12)
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where µ  – the membership functions of the corresponding linguistic variables x x xpr inf op, , ,Im, the 
sets X X Xpr inf op, , ,Im, J L bA M aA H�� �, , , , ; xi pr( ) , ,��� ��12 3 ; xi inf( ) , , , ,��� ��12 3 4 5 ;xi op( ) , , , ,��� ��12 3 4 5 ; 
Im , , , ,i ��� ��12 3 4 5 .

From the analysis of the numerical results of the experiment, it was concluded that the deci-
sion regarding the importance of the elements of the automated control system (ACS) is deter-
mined by the expression:

x x
xinf op

pr

�
� �

2
Im.  (4.13)

The minimum value that expression (4.13) can take is Im=1, then the maximum value Im=15. Let’s 
define the FN (membership function) for the term sets of the importance of the elements of the ACS.

For this, it is possible to normalize the measurement intervals of each variable to a single 
universal interval [0, 4] using the following relationship:

� �j
i

j iu u j L bA M aA H(Im ) ( ),
Im Im
Im Im

, , , , , .� �
�
�

� 4  (4.14)

The analytical model of the membership function is represented by the expression:

� j u
u b

c

( ) ,�

�
��

�
�

�

�
�

1

1
2  (4.15)

where the parameters b  and c are set based on the results of the previous assessment of the 
functioning of the ACS.

The graphical representation of the membership function according to expression (4.15) is 
shown in Fig. 4.2.

1 2 3 
4 
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1
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1 µN(y)
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5 µV(y)

 Fig. 4.2 Graphical representation of the membership function of the fuzzy set of the importance 
degrees of an element in the automated control system (ACS)
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Calculation of coefficients РІ. Priority coefficient is determined xpr , coefficient of the degree of 
informational value xinf, coefficient of the degree of operational value xop.

Coefficient of the degree of operational value ОР. Using (4.13), the values of the importance 
of the corresponding element of the ACS are calculated.

Determination of the linguistic value of the importance of the ACS element. 
Optimization of the feature vector of the functioning of the ACS element.
It is known that as the number of features that characterize the functioning of the ACS element 

increases, the time required for identifying its operational mode and other costs, primarily hardware 
costs, also increase, which in turn reduces the operational efficiency of the evaluation process. 

Identifying informative features in a real situation is a complex task, especially when evaluating 
the functioning process of system elements in an ACS, where the feature set can be very large and 
the features themselves may be correlated with each other. Therefore, the task is to select and 
extract the most informative features to reduce the dimensionality of the input data vector, while 
simultaneously finding a coordinate system in which the probability of correctly recognizing ACS 
elements will be maximized or sufficient for decision-making. 

Reducing the dimensionality of the feature space in the presence of a large number of ACS sys-
tem elements plays a significant role, as it increases the throughput of the ACS system’s channels 
as a whole. This is because an increase in the number of features that characterize an ACS element 
significantly leads to an increase in identification errors. 

The dependence of the identification probability of the functional process of an ACS element on 
the dimensionality of the feature space is shown in Fig. 4.3.
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 Fig. 4.3 The dependence of the identification probability of the operational mode of an ACS 
element on the dimensionality of the intelligence feature
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The graphs show that arbitrary increases in the dimensionality of the feature space may lead 
to a deterioration in the probability of correct recognition. 

The formation of the feature vector for the ACS element can be mathematically represented as:
Y AX= ,  (4.16)

where X – the feature vector that characterizes the operation process of the ACS element;  
Y – the vector of possible decisions; A – the transformation matrix.

Checking the optimal dimensionality of the feature vector. The condition for the termination 
of the grading elimination cycle is the value of the informativeness loss threshold for all features 

�Ik�� �
max

 or for a specific feature. It is also possible to set a maximum number of gradations that 
need to be retained during the minimization process.

Fig. 4.2 shows the curves of changes in the informativeness of features depending on the 
number of their gradations. Analysis of these curves for all features allows minimizing the number 
of gradations in terms of the memory usage of the identification device and the total loss of infor-
mativeness for identification parameters. The presented dependencies suggest that the number of 
gradations for features should be chosen to be no more than 4–6 (at the inflection point of most 
curves), which coincides with the results presented in Fig. 4.3.

The adjustment of system parameters is carried out based on an improved methodology, which is 
based on the use of a genetic approach. This method facilitates the correction of the system parameters.

4.3 Model of the process of evaluating the processing of heterogeneous data in 
an automated control system (ACS) using expert information

Let the following be known: the set of solutions D d j mj�� � �� �, ,1
 

D d j mj�� � �� �, ,1 , that corresponds to 
the result of evaluating the processing of various types of data in an automated control sys- 
tem (ACS) y; the set of input indicators X x i ni� � � �� �, ,1 X x i ni� � � �� �, ,1 ; the ranges of quantitative variation for 
each input information; membership functions that allow representing the indicators x x x i ni i i��� �� �, , ,1 

x x x i ni i i��� �� �, , ,1 , x i ni , ,= 1
 

x i ni , ,= 1  in the form of fuzzy sets; a knowledge matrix defined by rules (Table 4.1).  
It can be graphically represented as shown in Fig. 4.4.

Let’s consider the application of the model for utilizing expert information to synthesize an algo-
rithm for evaluating the processing of various types of data in an automated control system (ACS).

From the analysis of the functioning of ACS elements under various situational conditions, the 
evaluation directions have been identified: the similarity of situational indicators and their changes 
during the operation of the ACS.

Let’s describe the model for evaluating the processing of various types of data in an automated 
control system (ACS):

D k f
Y k Y k Y k Q k R k

Z k
� � � �� � �� � �� � � �

�
1 2 14

1

1 1 1 1 1

1

, ,..., , ( ), ( ),

( ),...., ( )
,

Z k4 1�

�

�
�
�

�

�
�
�

 (4.17)
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  …Logical output
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x1 xi

dj

dm

d1

xn

 Fig. 4.4 Model of the operational situation assessment process

where Y k1 1�� �  – a vector that characterizes the operating mode of ACS element No. 1 at  
k–1 modeling step; Y k2 1�� �  – a vector that characterizes the operating mode of an ACS ele-
ment at k–1 modeling step; Y k14 1�� �  – a vector that characterizes the operating mode of 
ACS element No. 14 at k–1 modeling step; Q k( )−1  – a vector that characterizes the operating 
mode of the control and communication system of ACS element No. 1; R k( )−1  – a vector that 
characterizes the operating mode of the control and communication system of an ACS element; 
Z k Z k1 41 1( ),..., ( )− −  – vectors that characterize the operating modes of control and communica-
tion systems of group ACS elements.

In turn, the vectors of the data processing evaluation process in an ACS are determined by the 
following indicators: Y Y Q R Z Z k x k x1 14 1 4 11 145,..., , , , ,..., ( ),..., ( ) .� � �

For indicators with quantitative measurements, the range of variation is divided into four 
 quanta. This ensures the possibility of transforming a continuous universal set U u u= [ , ]  into a 
discrete five-element set:

U u u u� � �1 2 5, ,..., ,

where u u1 = , u u2 1� � � , u u3 2 2� � � , u u4 3 3� � � , u u5 = , and � � � �1 2 3 4� � � � �u u , 
u u� � – the upper (lower) boundary of the indicator’s range of variation. Thus, all pairwise com-
parison matrices have a dimension. The choice of four quanta is determined by the possibility of 
approximating nonlinear curves through five points.

For evaluating the values of linguistic variables, it is possible to use the following scale of 
qualitative terms.
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In the general case, the input variables x x xn1 2, ,...,  can be defined as a number, a linguistic 
term, or based on the thermometer principle [51, 56].

The evaluation of the data processing process in an ACS using expert information is carried out 
using fuzzy logical equations, which represent a knowledge matrix and a system of logical state-
ments. These equations allow for the calculation of membership function values for various identi-
fication results at fixed input indicator values. As the outcome of the evaluation process for data 
processing in an ACS, the decision with the highest membership function value will be accepted.

Linguistic evaluations α i
jp  variables x x xn1 2, ,..., , that are part of the logical statements 

regarding decisions d j mj , ,= 1 , will be considered as fuzzy sets defined on universal sets 

X x x i ni i i� �
��

�
��

�
�
, , , .1

So �a
i

i
jp

x� �  – (MF) of the indicator x x xi ���
�
�,  to a fuzzy term � i

jp
ii n j m p l, , , , , ,� � �1 1 1 ; 

�d
n

j x x x1 2, ,...,� �  – (MF) of the input variables vector X x x xn� � �1 2, ,...,  to the value of the 
output evaluation y d j mj= =, ,1 .

The relationship between these functions is determined by a fuzzy knowledge base and can be 
represented in the form of the following logical equations:

� � � �

�

d
n

a a a

a

j
j j

n
j

j

x x x x x

x

1 2 1 2

1

1
1

2
1 1

1
2

, ,..., ...� � � � � � � � � � �

� � � �� �

� � �

a a
n

a a a

j
n
j

jl j jl j

x x

x x

2
2 2

1 2

2

1 2

� � � � � �
� � � � � � �

... ...

... ... nn
jl j

x j mn� � �, , .1

 (4.18)

The equations are derived from the fuzzy knowledge base by replacing variables (linguistic 
terms) with their membership functions (MFs), and the AND and OR operations with the respec-
tive operations ∧  and ∨ .

Briefly, the system (4.18) can be written as follows:

� �d
i

p

l

i

n
a

i
j

j

i
jp

x x j m� � � � ��

�
�

�

�
� �

� �
� �

1 1

1, , .  (4.19)

Fuzzy logical equations are an analog of the fuzzy inference procedure introduced by Zadeh, 
which is performed using the "fuzzy (min-max) composition" operation, where the ∧  and ∨  oper-
ations correspond to the min and max operations. From (4.19), let’s obtain:
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1 1  (4.20)

From expression (4.20), it is evident that for the calculations it is only necessary to have the 
membership functions (MFs) of the variables to the fuzzy terms.
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4.4 Enhanced methodology for configuring the information system for 
evaluating the process of processing various types of data in an ACS under 
conditions of uncertainty

The essence of the methodology for configuring the information system for evaluating the 
process of processing various types of data in an ACS under conditions of uncertainty lies in se-
lecting the weight coefficients of production rules, minimizing the error between the reference and 
experimental decisions.

Identification based on fuzzy logical inference is carried out in accordance with the defined 
knowledge base:

IF ( ),x a j1 1 1=  AND ( ),x a j2 2 1=  AND ...AND ( ),x an n j= 1  with weight w j1,

OR ( ),x a j1 1 2=  AND ( ),x a j2 2 2=  AND ...AND ( ),x an n j= 2  with weight w j2,

OR ( ),x a jk j1 1=  AND ( ),x a jk j2 2=  AND ...AND ( ),x an n jk j
=  with weight w jkj

,  (4.21)

THEN y d j mj= =, ,1 ,

where ai jp,  – the fuzzy term that evaluates the variable xi  in the row with number jp p k j( , )= 1 ,  
i.e., a x xi jp jp i i, ( )� �� ; k j  – the number of rows-conjunctions in which the output y is evaluated by 
the value d j ; w jp ��� ��0 1,  – the weight coefficient of the rule with the number jp.

Functions of correspondence in the process of handling different types of data X x x xn
* * * *, ,...,� � �1 2  

are calculated for the classes d j  as follows:

� �d
p k

jp
i n

jp ij
j

X w x j m*

, ,

* , , ,� � � � � � � �� � �
� �1 1

1  (4.22)

where � jp ix *� �  – the input correspondence function xi
* an unclear term ai jp, ; � �� � – s-norm 

(t-norm), which in classification tasks usually corresponds to the maximum (minimum).
As a solution, the class with the maximum matching function of the calculated solution is 

selected d dm1... :
y X X X

d d d
d d d

m
m

*

, ,...,

* * *arg max , ,..., .� � � � � � �� �
� �1 2

1 2
� � �  (4.23)

Thus, the adaptation or adjustment of the information system for evaluating the processing of 
various types of data under uncertainty conditions will be performed. 

The work applies an adaptation method based on solving the optimization problem using the 
genetic algorithm method.

Let’s introduce the constraint that there is a reference sample from M  a pair of experimental 
data that link the inputs X x x xn� � �1 2, ,...,  with the output y  of the dependency being studied: 

X y r Mr r, , , ,� � �� �1  (4.24)

where X x x xr r r r n� � �, , ,, ,...,1 2  – the input vector in r -th pair; y – the corresponding output.
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Tuning the model involves finding such parameters of the matching functions for the input variable 
terms and the weighting coefficients of the rules that minimize the deviation between the expected 
and obtained results on the reference sample. The proximity criterion can be defined in various ways.

The first method involves selecting the classification error percentage on the reference sample 
used for training the system as the tuning criterion. Let’s introduce the following notation:

P – the vector of parameters of the matching functions for the input and output variables;
W  – the vector of the weighting coefficients of the knowledge base rules;
F X P Wr , ,� � – the output result according to the knowledge base with the parameters P W,� � 

with the input values Xr. 
Then the tuning of the fuzzy model is reduced to the following optimization problem: find such 

a vector P W,� � , to: 

1

1M r
r M

�
�
� �

,

min,  (4.25)

where ∆r  – classification error of the state of processing various types of data Xr:

�r

r r

r r

if y F X P W

if y F X P W
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� � �
� � �

�

�
�

�
�

1

0

, , , ;

, , , .
 (4.26)

The advantage of the tuning criterion lies in its simplicity and clear substantive interpretation. 
The error percentage is widely used as a training criterion for various pattern recognition systems. 

The objective function of the optimization problem takes on discrete values, which complicates 
the use of gradient optimization methods. It is particularly difficult to select the necessary pa-
rameters of gradient algorithms (for example, the increment of arguments for calculating partial 
derivatives) when tuning a fuzzy classifier on a small data sample.

The second method involves using the distance between the output in the form of a fuzzy set 

as the tuning criterion
 � � �d d d

m

x

d

x

d

x

d
m1 2

1 2

� � � � � ��

�
�
�

�

�
�
�

, ,...,
 
and the value of the output variable in the

reference sample, which is intended for system training. For this purpose, the output variable of 
the reference sample (4.23) is fuzzified as follows:





y d d d if y d

y d d d if y d

m

m

� � � �

� � � �

1 0 0

0 1 0

1 2 1

1 2 2
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............................................................
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�
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�
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�0 0 11 2d d d if y dm m, ,..., ,

.  (4.27)
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In this case, tuning the fuzzy classifier is reduced to the following optimization problem: find 
such a vector P W,� �, so that:

1 2

11M
y X P Wd r d r

j

m

r

M

j j
� � � � � �� � �

��
�� � � , , min,  (4.28)

where �d rj
y� �  – membership function of the output variable value y  in r-th the pair of the refe rence 

sample to the decision d j ; �d rj
X P W, ,� � – membership function of the fuzzy model output with param-

eters P W,� �  to the decision d j , with the input values from r-the pair of the reference sample Xr� �.
The objective function in problem (4.27) does not have extensive plateaus, so it is suitable 

for gradient-based optimization methods. However, the optimization results are not always satis-
factory: the fuzzy knowledge base that ensures the minimum of criterion (4.27) does not always 
also ensure the minimum classification errors. This is explained by the fact that points close to the 
maxima of the class partitions usually make the same contribution to the tuning criterion, both in 
the case of correct classification and in the case of misclassification.

The third method inherits the advantages of the previous methods. The idea is to increase 
the contribution of misclassified objects to the tuning criterion by multiplying the distance 

� �d r d r
j

m

j j
y X P W� � � � �� �

�
� , ,

2

1

 by a penalty coefficient. As a result, the optimization problem 

takes the form:

1
1

1M
penaltyr

r

M

� � �� � �
�
� � � �d r d r

j

m

j j
y X P W� � � � �� � �

�
� , , min

2

1

, (4.29)

where penalty > 0  – penalty coefficient.
Problems (4.26), (4.28), and (4.29) can be solved by various optimization technologies, 

among which the method of steepest descent, quasi-Newton methods, and genetic algorithms are 
often used.

Usually, constraints are imposed on the controlled variables to ensure the linear ordering of 
the elements of the term sets. In addition, the cores of the fuzzy sets must not go beyond the 
ranges of variation of the corresponding variables. This ensures transparency, that is, meaningful 
interpretability of the fuzzy knowledge base after tuning. As for the vector W , its coordinates must 
lie in the range [0,1]. If the requirements for the interpretability of the knowledge base are high, 
the rule weights are not tuned, leaving them equal to 1. There is also an intermediate option where 
the weighting coefficients can take values of 0 and 1. In this case, a zero value of the weighting 
coefficient is equivalent to excluding the rule from the fuzzy knowledge base.

Parameters of the matching functions and rule weights can be tuned simultaneously or sep-
arately. When only the rule weights are tuned, the computational volume can be significantly re-
duced, since the membership functions � jp ix *� �, do not depend on W . For this, at the beginning 
of the optimization, it is necessary to calculate the degrees of rule execution with unit weighting 
coefficients w jp� � � 1 for each object in the reference sample:



110

Decision support systems: mathematical support
CH

AP
TE

R 
 4

g X x j m p k r Mjp r
i n

jp r i j� � � � � � � � �
�1

1 1 1
,

, , , , , , ,� .

For the new weighting coefficients of the membership functions for the process of processing 
various types of data in the ACS Xr  classes d j are calculated as follows: 

�d r
p k

jp jp rj
j

X w g X j m� � � � � � � �
�1

1
,

, , .

Considering the specifics of the process of processing various types of data in an ACS, 
one of the ways to solve it based on fuzzy logic is to apply combined optimization methods that 
combine the advantages of the gradient method and the random search method. One such 
method is the genetic algorithm, which makes it possible to perform optimization for multimodal, 
non-smooth, and non-convex functions with a convergence speed greater than that of random 
search methods.

Thus, taking into account the identified features of the process of processing various types of 
data in an ACS, the hierarchical nature of the logical inference tree, and the structural-semantic 
model of processing various types of data in an ACS, it is advisable to carry out the process of 
tuning the information system for processing various types of data in a differentiated manner, i.e., 
by tuning the fuzzy knowledge base of each individual element of the ACS system.

Let’s explore the possibilities of applying and functioning of the "genetic algorithm" for tuning 
the information system for assessing the operational situation.

Let’s assume the following initial data are known:
S – the system structure vector that defines the system parameters that do not change 

during optimization (regarding the information system for assessing the operational situation – 
a set of IF-THEN rules represented using the mathematical apparatus of fuzzy logic, and the rule 
weight coefficients);

B – the reference vector that contains a set of sample stimulus-response pairs (input indica-
tors – decisions) by which the information system for assessing the operational situation is tuned;

Wjp – the vector of the rule weights of the fuzzy knowledge base, whose value is being optimized;
F – the mismatch function that determines the quality of the solution proposed by the informa-

tion system for assessing the operational situation compared to the solution in the reference vector;
FАСS – the mismatch function that determines the quality of the solution proposed by the 

information system for processing various types of data regarding a separate element of the ACS, 
compared to the solution in the reference vector.

By decision-making in the information system for processing various types of data in an ACS, let’s 
understand the output result provided by the system according to the entered features x xnm11... .

Let’s introduce the following constraints:
– the vector B covers the entire practically significant range of solutions within the application 

domain of the information system for processing various types of data in the ACS;
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– the vector S (IF-THEN rules) is formed in advance based on the results of working with 
experts and does not contain logical errors;

– based on the results of working with experts, the values of the membership function param-
eters have been determined;

– the mismatch function F calculates the decision-making error of the information system 
for processing various types of data in an ACS by the least squares method with an ordinal scale 
according to the formula: 

e d dACS i
B

i
O

i

k

j

n
j j� �

��
�� ( ) ,2

11
 (4.30)

where eACS  – the tuning error of a separate ACS element; n – the dimension of the vector В;  
k – the maximum number of solutions issued by the information system for processing various 
types of data in the ACS; di

Bj – the reference i-th decision for the j-th input element of vector B; 
di

Oj  – і-th the solution of the information system for processing various types of data in the ACS 
for j-th the input element of vector B, taking into account the rule weights Wjp; i – the decision 
number issued by the information system for assessing the operational situation, i k∈1, ; j – the 
number of the input indicator set in the reference vector B.

For tuning the knowledge base set (KBS) of a separate element of the ACS system, the pro-
posed criterion is:

e Min F S WACS ACS_min ( ( , )),=  (4.31)

where eACS min  – the minimally acceptable final total error, as the difference between the member-
ship function values of the decision regarding the state of operation of a separate element of the 
ACS system and the reference decision.

As a result of using criterion (4.30) for each separate element of the ACS, it is logical to use 
criterion (4.31), which indicates the tuning of the information system for processing various types 
of data in the ACS as a whole:

e Min F S W� �min ( ( , )),  (4.32)

where e∑min – the minimally acceptable final total error as the difference between the membership 
function values of the decision regarding the state of operation of the control and communication 
system element of the ACS and the reference decision.

Tuning the rule weights (Wjp) and the parameters of the membership functions – vector Р, will 
be performed using the "genetic algorithm" method.

The set of indicators being optimized is combined into a parameter vector called a chromo-
some. Indicators in the chromosome can be stored in a regular or encoded (transformed) form. 
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A specific section of the chromosome responsible for encoding a single indicator is called a gene; 
the length of a gene depends on the chosen type of encoding.

Each chromosome represents a solution to the problem, which is optimized with an efficiency 
expressed by a certain number calculated using the objective function. A set of chromosomes 
(a collection of solutions) is called a population. The population maintains a constant number of 
chromosomes. The main stages of the genetic algorithm method are shown in Fig. 4.5.

Beginning

Population formation

Determination of efficacy

Condition for
completion

Selection

Crossing

Mutation

Stop

1

2

3 Yes

No4

5

6

 Fig. 4.5 Workflow diagram of the genetic algorithm tuning method

The formation of the initial population depends on the approach to forming chromosomes: tun-
ing the weighting coefficients of the importance of the situation; tuning the weighting coefficients 
of the priority of logical rules in the knowledge base (KB) based on which decisions are made.
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To reduce the volume of data arrays, it is proposed to form chromosomes where the genes are 
the weighting coefficients of the logical rules in the knowledge base (KB).

Formation of the initial population. The reference vector B is formed based on the results 
of assessing the operational situation under various conditions of operation of the ACS system 
elements.

Let’s define the membership functions (MF) of the operational features of the ACS system 
element and decisions to fuzzy terms using the formula:
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j
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j i
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p l
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,
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,
.

1 1
 (4.33)

Let’s randomly generate the rule weights Wjp of the knowledge base (KB) in the interval 
from 0 to 1. 

Determining the chromosome efficiencies. The efficiency of each chromosome in the population for 
each set of weights Wjp, is determined using the objective function. Then, the chromosomes are sorted 
in ascending (or descending) order of their efficiency (forming a sequence based on error magnitude).

Selection. At this stage, chromosomes with the least efficiency are discarded if the total 
number of chromosomes in the population exceeds the permissible limit. Thus, the computational 
volume performed in the algorithm remains constant regardless of the iteration number. 

Crossover. Two chromosomes are randomly selected from the population, considering their 
efficiency, and starting from a random position, they exchange genes. There can be multiple cross-
over points. If the two points defined by these chromosomes in the search space are in the vicinity 
of the same extremum, the average value between these points, resulting from the crossover, will 
be closer to the extremum. This is somewhat analogous to the gradient method. However, if the 
two points defined by these chromosomes are in the vicinity of different extrema, the average value 
between them will be random, akin to the random search method.

Mutation. This is fully analogous to the random search method. The values of individual genes in 
the population are randomly changed, i.e., the search point’s position in the search space is altered. 

End of the search. The search terminates if, over L L iterations, the efficiency of the best 
chromosome has increased by less than λ. Otherwise, a new iteration begins. A single iteration is 
called a generation. For instance, if the most efficient chromosome was found in the 30th genera-
tion, the condition for terminating the search algorithm was met at the 30th iteration, and the best 
chromosome in the final selection is considered the optimal solution.

Thus, the methodology for applying genetic algorithms to tune the information system for pro-
cessing various types of data in the ACS is reduced to the following algorithm (Fig. 4.6):

1. Formation of reference states for the process of processing various types of data in the ACS. 
2. Formation of the initial population. 
3. Determination of the proximity criterion for tuning the fuzzy identifier. 
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4. Tuning the weights of the production rules in the knowledge base (KB) for each element of 
the ACS.

Beginning

Generation of ACS
reference models

Baseline
population formation

KB of the last
ACS element

Definition of
proximity criterion

Selection W and P
using the genetic

Algorithm

End

1

2

5 YesNo

3

4

 Fig. 4.6 Algorithm for applying the genetic algorithm (GA) to tune the information 
system for processing various types of data in the ACS

Formation of the initial population.
When calculating the rule weights in the knowledge base (KB), let’s assume them to be equal to one.
Let’s randomly generate the rule weights in the knowledge base (KB) within the interval from 0 

to 1, i.e. Wjp ��� ��0 1, . Since there are 43 rules in the knowledge base (KB) and the number of 
chromosomes is 14, it is necessary to form a two-dimensional array of rule weight sets for tuning 
the information system for assessing the operational situation. The efficiency of each chromosome 
in the population for each set of weights is determined using the objective function Wjp, after that, 
the chromosomes are sorted in ascending (or descending) order of their efficiency.

Selection. At this stage, chromosomes with the lowest efficiency are discarded if the total 
number of chromosomes in the population exceeds the permissible limit. This means that the com-
putational volume performed in the algorithm remains constant regardless of the iteration number.
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Let’s perform sorting of the chromosomes based on their efficiency:

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆3 9 12 13 2 4 1 14 8 7 5 11 6 10, , , , , , , , , , , , , .

The highest efficiency, i.e., the smallest decision-making error, is held by the third and ninth 
chromosomes, while the lowest efficiency, i.e., the largest decision-making error, is held by the 
sixth and tenth chromosomes. 

Crossover. In this case, for the crossover operation, chromosomes No. 3 and No. 9 are chosen 
as parent chromosomes. The resulting offspring chromosomes from the crossover are recorded in 
place of chromosomes No. 6 and No. 10, respectively. 

Mutation. The mutation operation is performed on chromosome No. 10, and if the sum of the 
weights exceeds one, normalization is carried out: 0.15; 0.09; 0.08; 0.02; 0.2; 0.13; 0.07; 0.06; 
0.16; 0.04. 

Let’s proceed to calculate its efficiency. The result obtained is ∆=1.1, which is significantly 
better than the efficiency of the two previous chromosomes, the optimization of which we perform. 

End of search.

Conclusions 

1. Based on the analysis conducted in the study, it has been established that the application of 
fuzzy graphs and the mathematical apparatus of fuzzy logic in decision support tasks for data dis-
tribution and evaluating the process of processing various types of data under different conditions, 
including uncertainty, allows for the distribution of data between the elements of the ACS based on 
the importance of the ACS elements and the number of features in real-time. 

2. The methodology for the rational distribution of data based on the importance of ACS ele-
ments and the number of features in the ACS under uncertainty conditions has been improved. This 
methodology differs from existing ones by combining the mathematical apparatus of information 
theory, fuzzy logic, and expert evaluation, which allowed for the formalization of features in a unified 
parameter space and, through the intellectualization of information processing processes, achieved 
more efficient data handling.

A quantitative assessment of the effectiveness of the proposed methodology has been con-
ducted. The results of this assessment showed that the distribution of data between the elements 
of the ACS based on importance and the number of features using the proposed methodology 
increases the operational speed of data processing and decision-making regarding the state of the 
process of processing various types of data by 15–17 %. 

3. The methodology for tuning the information system for evaluating the process of processing 
various types of data in the ACS under uncertainty conditions has been improved by using a genetic 
algorithm. In conditions where the application of other methods is limited due to the inability to vary 
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individual features with fixed values of other indicators, this approach has improved the operational 
speed of the developed information system for evaluating data processing in the ACS. 

The scientific result is the improvement of the genetic algorithm for the differentiated tuning of 
the fuzzy knowledge base of the information system for evaluating the processing of various types 
of data in the ACS based on a posteriori data. 

A quantitative evaluation of the effectiveness of the improved methodology has been carried 
out. The results of this evaluation showed that the use of the proposed methodology increases the 
operational efficiency of tuning the information system for processing various types of data in the 
ACS under uncertainty conditions.
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