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This monograph explores the mathematical modeling of heat and moisture transfer process-
es in the drying of capillary-porous materials. It presents advanced models that account for the 
dynamics of moisture evaporation, convective and conductive drying, and the influence of external 
factors such as airflow, temperature gradients, and electric fields. Special attention is given to 
thermodynamic principles, diffusion mechanisms, and mechanical stresses that arise during drying, 
providing a comprehensive framework for understanding and optimizing drying technologies.

A significant portion of the monograph is devoted to the development of nonstationary and 
quasi-stationary mathematical models that describe the behavior of moisture and temperature 
fields over time. These models incorporate the effects of phase transitions, electroosmotic forces, 
and capillary interactions, allowing for a detailed analysis of drying kinetics under various conditions. 
Numerical simulations and experimental validation are employed to assess the accuracy and appli-
cability of the proposed approaches, offering valuable insights for both theoretical research and 
industrial implementation.

The monograph also addresses the structural characteristics and mechanical properties of 
drying materials, highlighting the role of material deformation, shrinkage, and potential stress 
accumulation that may lead to cracking. Empirical criteria such as the Kirpichov, Nusselt, and 
Postnov numbers are examined as key parameters for evaluating drying efficiency and ensuring ma-
terial integrity. Additionally, optimization strategies for industrial drying processes are discussed, 
incorporating mathematical and experimental methodologies to enhance energy efficiency and  
product quality.

By bridging the gap between fundamental research and industrial applications, this work pro-
vides engineers, researchers, and professionals in material science and heat transfer with a solid 
foundation for improving and innovating drying processes. The insights presented in this book con-
tribute to the development of more efficient, sustainable, and cost-effective drying technologies, 
fostering advancements in industries such as wood processing, food production, pharmaceuticals, 
and materials engineering.

KEYWORDS

Mathematical modeling, drying, electroosmotic drying, unilateral drying, bilateral drying, iso-
thermal drying, drying kinetics, convection, diffusion, heat and mass transfer, capillary-porous 
material, capillary effects, continuum thermodynamics, moisture, moisture transport, multi-com-
ponent system, phase, phase transition, structural model, ponderomotive force, sustainable tech-
nology, dispersed materials, gas-suspended state, fluidization,  stress, optimization, deformation, 
anisotropy, numerical methods.

abstract



v

Circle of readers and scope of application

This monograph is dedicated to the mathematical modeling of heat and moisture transfer in 
the drying of capillary-porous materials. It presents advanced theoretical and numerical approach-
es to describing the drying process, considering key factors such as phase transitions, diffusion 
mechanisms, electroosmotic effects, and mechanical stresses. The book provides a comprehensive 
analysis of drying kinetics under various conditions, integrating experimental validation and optimi-
zation strategies to enhance industrial drying efficiency.

A significant focus is placed on the development of nonstationary and quasi-stationary models 
that account for convective, conductive, and electroosmotic drying, incorporating the effects of 
external factors such as airflow, temperature gradients, and electric fields. The work explores 
how these parameters influence moisture migration, heat transfer, and the structural integrity of 
materials, making it a valuable resource for improving industrial drying processes.

This monograph will be particularly useful for researchers, engineers, and professionals work-
ing in the fields of heat and mass transfer, material science, and industrial drying technologies. 
It provides theoretical foundations and practical insights for optimizing drying processes in indus-
tries such as wood processing, food production, pharmaceuticals, and construction materials.  
By bridging the gap between fundamental research and real-world applications, the book serves as 
a critical reference for those seeking to enhance drying efficiency, reduce energy consumption, and 
ensure material durability in various industrial settings.
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Introduction

Drying is a fundamental process widely applied in various industrial sectors, from wood pro-
cessing to food production and material science. The efficiency and quality of drying largely depend 
on understanding the complex interplay between heat and mass transfer, as well as the ther-
modynamic and mechanical properties of the material being dried. Over the years, mathematical 
modeling has become an essential tool for analyzing and optimizing drying processes, providing 
valuable insights into moisture migration, temperature distribution, and stress formation within 
porous media.

This monograph presents a comprehensive study of mathematical models describing the drying 
process of capillary-porous materials. The focus is on the development and application of nonsta-
tionary and quasi-stationary heat and moisture transfer models, incorporating external influences 
such as convective airflow and electric fields. The models account for moving moisture evapora-
tion boundaries and various drying regimes, offering a detailed analysis of drying kinetics under  
different conditions.

The chapters of this book explore the fundamental thermodynamic principles governing mois-
ture transfer in deformable porous media, formulating a complete system of equations to describe 
heat and mass transport phenomena. By leveraging continuum mechanics and mixture theory, the 
book systematically examines the role of diffusion, capillarity, electroosmotic forces, and thermal 
gradients in optimizing the drying process. Additionally, numerical simulations are carried out to 
validate theoretical models, with a particular emphasis on industrial applications where precise 
control of drying conditions is critical.

Special attention is given to the influence of external factors such as airflow velocity, tem-
perature gradients, and electric fields on drying efficiency. The research presented provides a solid 
foundation for optimizing drying strategies, reducing energy consumption, and enhancing material 
durability. Moreover, empirical criteria such as the Kirpichov, Nusselt, and Postnov numbers are 
discussed as essential parameters for assessing and controlling drying performance.

This monograph serves as a valuable resource for engineers, researchers, and professionals 
involved in material drying and heat transfer processes. By integrating advanced mathematical 
modeling techniques with practical considerations, it contributes to the ongoing development of 
more efficient and sustainable drying technologies. Through rigorous theoretical analysis and exper-
imental validation, this work aims to bridge the gap between fundamental research and industrial 
application, ensuring the advancement of drying science and technology.
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CONVECTIVE DRYING OF WOOD OF CYLINDRICAL SHAPE

Abstract

In this Chapter, the mathematical nonstationary and quasi-stationary models of the heat and 
moisture transfer in convective drying of a long wooden beam with a circular cross-section of the 
radius R (0 ≤ r ≤ R) are constructed, taking into account the moving boundary of the moisture 
evaporation zone under the action of the convective-thermal unsteady flow of the drying agent, 
as well as the calculation schemes for the implementation of these models into practice. Numer-
ical experiments are carried out. The regularities of distribution of temperature and moisture in 
a capillary-porous body of a cylindrical shape at an arbitrary moment of drying depending on the 
coordinate of the phase transition, thermophysical characteristics of the material, and parameters 
of the drying agent have been established.

KEYWORDS

Mathematical model, initial boundary value problem, heat and mass transfer, convection,  
diffusion, Stefan’s problem, Kontorovich-Lebedev transform, Pochhammer’s polynomials, Green’s 
function, Steklov’s theorem, Poiseuille’s equation, capillary-porous material, phase transition,  
cylindrical shape.

Drying is the process of removing moisture from the body, which changes the structural-me-
chanical, technological and biological properties of the material, caused by the change in bonding 
forms of moisture with the material [1, 2]. When moisture is removed, capillary-porous bodies 
become brittle, slightly compressible and can be turned into powder; colloidal bodies significantly  
change their size with changing moisture content, but retain plasticity or elastic properties; capil-
lary-porous colloidal bodies have a capillary-porous structure, with capillary walls having the prop-
erties of limitedly swollen colloidal bodies (skin, tissue, wood) [3–5].

Convective-heat drying is classified into subtypes: steam-air, gas, steam, moisture and others [6]. 
The uniformity of drying materials in drying plants is achieved by the drying agent circulation. The 
drying agent circulation with velocity υ can be natural and forced, unilateral and reversible. It is 
carried out by fans in a chamber or through ejector nozzles [6]. The drying agent is characterized
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additionally by humidity �
�
�

� v

n

 and temperature t. Here, γv is the density of vapor,  and γn is the

density of saturated vapor. Parameters t, ϕ, υ define the drying mode [6].
The change of local moisture content U and local temperature t in a capillary-porous body with 

time depends on the relationship between the mechanism of moisture and heat transfer inside the 
wet material as well as the mass and heat exchange of the body surface with the drying agent [7–9].

In drying plants, the regime changes with time. A rigorous analysis of drying kinetics is complex. 
Increasing temperature intensifies the drying process [10, 11]. Increasing the moisture content 
of the drying agent reduces the intensity and critical moisture content [12, 13]. Increasing the 
velocity of the drying agent leads to higher drying intensity at the beginning of the process and has 
much less effect at the end [14].

The whole process of drying porous materials can be divided into three stages [6]:
1. Disordered irregular regime at the beginning of the process. The initial distribution of tem-

perature and moisture in the body is important here.
2. From some time on, the body enters a regular heating regime, when the initial distribution 

no longer has an effect. Body heating is described by a simple exponent.
3. The final stage of heating corresponds to the stationary state, at which the temperature is 

equal to the ambient temperature at all points of the body.
During the drying process, three characteristic zones can be formed in the body: the outer 

gas zone, where all the pores are dried; the middle two-phase zone, where the dried pores and 
the pores filled with moisture; and the inner moisture zone, where all the pores are filled with 
moisture. The two-phase zone emerges due to the release of moisture through evaporation, and on 
the other hand, through the flow of moisture by the action of capillary forces from wide moisture 
pores into narrow dried pores and recondensation of moisture. In the elementary physical volume 
of the two-phase zone, the moisture phase may exist in the form of a connected network of wet 
pores and in the form of unconnected inclusions, blocked by gas from all sides. Their fates depend 
on the specific moisture content. In the process of evaporation with a decrease in specific moisture 
content, redistribution and fragmentation of the cohesive system occur. Upon reaching a critical 
moisture content, the bonds are completely broken. The capillary inflow is possible only through the 
connected moisture network. For moisture contents less than critical, the transfer through the 
moisture phase is impossible. The cohesive system of moisture pores is also heterogeneous due 
to one-side open pores [4]. The dimension of these zones depends on the pore radius distribution 
function, which characterizes the structure of the porous body. During evaporation, the boundaries 
of the zones move into the middle of the body.

Forms of moisture bonding with the material. The velocity of moisture movement inside 
the material depends on the form of its connection with the material. The main forms of moisture 
connection with the body are adsorption and capillary bonds [15]. The amount of adsorption-bound 
and microcapillary moisture depends on the temperature and pressure in the environment. This 
moisture is called hygroscopic moisture. Changes in material dimensions (shrinkage-soaking) are 
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linked to the change in the amount of hygroscopic moisture. Bound moisture is uniform and depends 
on the structure of the surface interacting with it. There arises a density gradient in the layer 
thickness of the water bound to the body surface. Capillary forces and gravity do not occur in this 
bound water. The evaporation heat of bound water is higher than the one of free water by the 
energy amount of adsorption water bounding with the surface of E ≈ 280 cal/g [15].

In the macrocapillaries of a capillary-porous body, the laminar flow satisfies Poiseuille’s equa-

tion j
P P

l
�

��
�

2
1 2

8
, with P1, P2 as the pressure at the ends of the capillary of length I. Poiseuille’e qua-

tion and Fick’s law of diffusion are not satisfied in microcapillaries, with j
RT l

P

T

P

T
� �

�

�
�
�

�

�
�
�

8
3 2

2

2

1

1

�
�

�

being the flow [16], where µ is the dynamic viscosity, ε is a constant for a capillary-porous body, 
it is called the coefficient of the molecular gas flow. The heat conduction coefficient for gas in 

microcapillaries is defined as � �
�
��� 2

3
c

RT
, where cυ is the specific heat capacity of gas for 

the constant volume and ρ is the capillary radius [16].
The forms of moisture bonding with the material play a major role in the mechanism of heat and 

moisture transfer inside the body.
The main mechanisms of moisture transfer in the porous medium are [17]:
– diffusion of vapor-air mixture in the gas zone by the action of density difference in the direc-

tion opposite to the gradient and recondensation by the action of partial pressure gradient of vapor 
over menisci of different curvature;

– thermal diffusion of vapor in the direction of heat flow from areas with higher temperature 
to areas with lower temperature; 

– convective transfer of vapor and moisture by the action of external pressure drop;
– capillary movement of moisture in the pores that depends on the structure of the porous medi-

um, i.e. the capillary inleakage from wide to narrow pores due to the difference in capillary pressure; 
– moisture film transfer by the action of gradients of the wedge and capillary pressures.
Experimental studies of these transfer mechanisms carried out on real and model systems 

indicate the decisive effect of capillary and surface forces on the mass transfer process and drying 
intensity. These forces regulate the mutual distribution of phases in the pore space and determine 
the conditions of transfer, causing the mechanisms of transfer.

The amount of adsorption-bound and microcapillary moisture depends on the temperature and 
vapor pressure in the environment. The relationship between moisture and the body is character-
ized by the differential and integral curves of pore radius distribution.

The area under the differential curve on its arbitrary part provides the moisture volume (sat-
uration) within the range of capillary radii change. The curves of pore distribution by radii show a 
wide variation in the size of voids in the body pores.
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To determine the rational drying regime, the choice of which depends on technological changes 
in the drying process, it is important to study the regularities of moisture transfer for the purpose 
of its control. One of the possible ways to control the moisture transfer mechanism is by affecting 
the processes of diffusion and thermal diffusion.

The moisture movement by the action of temperature (heat and moisture conduction) includes 
the following phenomena [1, 3–5, 10, 17]:

1. Molecular diffusion of moisture in the form of molecular vapor flow, which occurs due to 
different velocities of molecules of heated and cold material layers.

2. Capillary conduction caused by the change in capillary potential, which depends on the sur-
face tension, decreasing with rising temperature. Since the capillary pressure over the concave 
meniscus is negative, the decrease in pressure increases the suction force, resulting in moisture 
leaving the heated body to colder layers in the form of liquid.

3. The movement of fluid in a porous body in the direction of heat flow is caused by trapped air. 
When the material is heated, the pressure of the trapped air increases, and the air bubbles expand. 
As a result, the liquid in the capillary pore is pushed in the direction of heat flow. 

Heat moisture conduction is the reason for the movement of moisture in the direction of 
heat flow. During convective drying, a temperature gradient opposite to the moisture gradient is 
created, which prevents the movement of moisture from the bulk to the surface of the material. 
The flow of moisture directed to the surface of the material is reduced by the value of the flow of 
moisture due to thermal diffusion. The temperature gradient is an obstacle to the movement of 
moisture from the central layers to the surface. With a constant intensity of drying, conditions 
are created that help the evaporation of moisture inside the material. Thermal diffusion reduces 
the moisture gradient and reduces the speed of movement of liquid moisture and the amount of 
water-soluble substances on the surface of the material. With a change in the value and direction of 
the temperature gradient, the conditions for the movement of moisture and substances dissolved 
in it change. This leads to a change in the physical and chemical properties of the material [3–5].

1.1 Convective drying of wood of cylindrical shape: nonstationary case

One of the important areas of modern mathematical modeling is the construction of adequate 
mathematical models for the description of the technological processes of drying capillary-porous 
materials. Such models, as a rule, are based on the thermodynamics of irreversible processes and 
must take into account the peculiarities of the kinetics of internal transformations, in particular, 
phase transitions. The problems of mathematical physics based on them also require the develop-
ment of appropriate analytical and numerical methods for their solution.

Drying of wood includes taking into account the heat-mass exchange between the wood sur-
face and wet air and the internal heat and moisture exchange in the material [18]. The relationship 
between the distribution of moisture content and temperature fields depends on the geometric  
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dimensions of the material to be dried. In this chapter, the mathematical nonlinear and linear 
models of the moisture transfer in drying of a long wooden beam with a circular cross-section of 
the radius R (0 ≤ r ≤ R) is constructed, taking into account the moving boundary of the moisture 
evaporation zone under the action of the convective-thermal unsteady flow of the drying agent as 
well as the calculation schemes for the implementation of these models into practice. Numerical 
experiments are carried out. The regularities of distribution of temperature and moisture in a 
capillary-porous body of a cylindrical shape at an arbitrary moment of drying depending on the 
coordinate of the phase transition, thermophysical characteristics of the material, and parameters 
of the drying agent have been established.

When developing the models, it was taken into account that wood shrinkage along the fibers is 
negligibly small (0.1–0.3 %). The cross-section shrinkage is from 2 to 10 % [6].

Since the length of the considered cylindrical beam is much greater than the dimensions of its 
cross-section, and the coefficient of moisture conductivity along the fibers is much larger than that 
coefficient across the fibers, and due to the great complexity of the structure of the wood mate-
rial, a plane averaged thermal conductivity problem is considered. As a tool for describing thermal 
conductivity, differential equations were used to model non-stationary processes [19]. The method 
of integral transformations was used to find solutions [20].

To simplify the models, it is assumed that the gas phase is water vapor, which is an ideal gas.
The aim of this work is the determination of optimal wood drying parameters, at which energy 

consumption will be minimal.
Problem formulation. Let’s consider a cylinder with a radius R (0 ≤ r ≤ R) shown in Fig. 1.1. 

Given the symmetry of the boundary conditions of this problem, it is possible to introduce a polar 
coordinate system (r, ϕ), the polar axis of which is directed along the axis of the cylinder. The cyl-
inder is under the action of convective-thermal non-stationary flow of the drying steam-air agent of 
the velocity υ. It is possible to assume that the drying agent regime is three-stage, non-stationary, 
and includes heating, keeping, and cooling.

 Fig. 1.1 Schematic representation of the wooden cylindrical beam

R

ϕ

The control parameter in this process is the temperature of the drying agent Ta. In convective 
drying, the heat supplied by the gas is used to evaporate the liquid, heat the material, and overcome 
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the energy of moisture bonds with the material. It is possible to assume that the moisture in the 
dried area is removed and in the rest of the volume it is preserved, known and its density is ρL.  
The moisture content W retained in the body is calculated by the formula:

W
V V

VL
m�

��

�
�

�

�
�� ,

where V is the body volume; Vm is the volume of the dried area. Note that when hot air contacts 
with moisture particles, the latter break down into steam and smaller liquid particles.

The process of heat conduction in the body is described by the equation:

� �C C C
T

T

r
d T
dr

r
dT
d r

v v a a s s� � �
�

�

� �

�� � � �� ��� ��
�
�

� �

� � �� �

1

2 1

1
2

2
2

2 �� �� ��

�
�

�

�
� � 
� �� � �2 2 2 2 1 0r T , .  (1.1)

where τ is time; r is the radius of running point (0 ≤ r ≤ R); γ1
2  is the particle decomposi- 

tion coefficient.
Equation (1.1), using the Bessel differential operator, takes the form:

B T r
d T
dr

r
dT
d r

r T� � � ��� �� � � �� � � �� ��

�
�

�

�
�

2
2

2
2 2 22 1 ,

for the given volumetric heat capacity cρ and averaged thermal conductivity λ in the quasi-homo-
geneous approximation, which can be used in wood drying problems with acceptable temperature 
gradients, has the form [20]:

�
�

� � �� �� � �
T

T a B T r
c�

� �
�

��
�

2 2 2 1
2

0, , , ,   (1.2)

where a
C C Cv v a a s s

2

1
�

� � �� ��� ��

�

� � �� �( )
 is the averaged thermal diffusivity coefficient.

Let’s construct the solution of Equation (1.2) under the following boundary conditions:

T r g r r R� �, , , ,� � � � � �� ��0 0  (1.3)

lim , ,r r R ar
r T

r
T T� �

�
�

� � � �
�

�
�

�
�

�

�
� � � �0 11

1
11
10� � � �  (1.4)
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where Ta is the temperature of the drying agent; γ2 is responsible for the multiplication of particles 
of the steam-air mixture (averaged coefficient of decomposition) in the porous material under the 
action of the drying agent; indices v, a, s indicate the components of steam, air, and skeleton, 
respectively; Π, Cv, Ca, Cs, ρv, ρa, ρs are porosity, heat capacity, and density of steam, air, and skel-
eton, respectively; λ is the averaged coefficient of thermal conductivity; � �11

1
11
1,  are coefficients 

of thermal conductivity and heat transfer on the outer surface of the cylinder.
The temperature of the drying agent Ta(τ) is as follows:

T

T
T T

T

T T
a �

�
� � �

� � �

� �
� �

� � �

�
�

� �

� �

�
�

0
0

1
1

1 2

3 1 2

3 2

0max

max

max

, ;

, ;

 

 

��
�
�

� �

�

�

�
��

�

�
�
�

T Tmax , .1

3 2
2 3� �

� � � � 

 (1.5)

The scheme of Ta(τ) behavior is shown in Fig. 1.2.

 Fig. 1.2 Control function Ta(τ)

T, K

Tmax

T0

T1

τ1

ϕ1

τ2

ϕ2

0 τ3

Here T0 is the initial temperature of the drying agent; cooling is carried out to some equilibrium 
temperature.

It is possible to expand this function into a trigonometric Fourier series with respect to cosines:

T
n n

a n
n

n� � �
�
�
� �

�
�

� � � � �
�

�

�0
1 3

2

3

cos , . 

�
�

� � � � � �
0

3

1 2 3
0

1
1

2 32
2 2 2 2 2 2

� � � �
�

�
�

�

�
� � � � �

�

�
�

�

�
�

�

�
�
�

�

�
�T T Tmax
��
,
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�
� � �

� �
�

� � � �n
n

n
n

n n

T T T
�

�� �
�� � � �

2
1

3

0

1
4

2
1 2

2
2

2
1

max maxcos (sin sin ))

sinmax max

�

�
�
�

�

�
�
�
�

� �
�
�

�
�
�

2 1

3

3 1 2

3 2

2 2
2

1

3 2�
� �
� �

�
�

� �
� �

T T
n

T T
n ��

� �
��
�

� �
n

n

n n

n�

�
��




�
�� �� � � �
�

�
�
�

�

�
�
�



	
�

��

�
�
�

�

4

2
2

2

3

2
21 cos sin
��
.

Let T*(p,r) be the image of the Laplace transform of the temperature T(τ,r):

L T r T r e d T p rp� � ��, , * , .� ��� �� � � � � � ��
�

�
0

Then, in accordance with the problem (1.1)–(1.4), it is possible to obtain the following bound-
ary value problem with respect to the function T*(p,r):

B T
d T
dr r

dT
dr r

T g r� � �
�

�
� �

, �� � � � �
�

� �
� �

��

�
��

�

�
�� � � � � �2

2

2
2

2 2

2

2 1
 ,,  (1.6)

lim * , , ,
*

r r R ar
r T p r

d
dr

T T p�
�

�

�
�

� �� � � �
�

�
�

�

�
� � � � �0 1 1

0 1
1

1
1� � � �  (1.7)

g r a r g r a p p i i� � � � � � �� � � � � �� � �2 2 2 2 2 2 1, , , .   � � � �

Let’s fix Re Re .
/

� �� �� ��
��

�
��
��a p1 2 1 2

0  Construct a Cauchy function for equation (1.6) to 

satisfy homogeneous boundary conditions. A fundamental function εα
*(p,r,ρ) satisfying the homo-

geneous equation corresponding to equation (1.6) and the homogeneous conditions corresponding 
to the conditions (1.7) is the Cauchy function. The solution of equation (1.6) satisfying the homo-
geneous conditions corresponding to the conditions (1.7), has the form:

T p r p r g d
R

* , , , ,� � � � � � �� ��� � � � ��
�



2 1

0

where εα
*(p,r,ρ) is a fundamental function of the boundary value problem (1.6), (1.7) with the 

following properties:
– the function εα

*(p,r,ρ) satisfies the homogeneous equation corresponding to equation (1.6) 
and the following boundary conditions [20]:
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lim * , .r r Rr
r

d
dr�

�
�

�
�
� � � �

�

�
�

�

�
� � �0 1 1

0 1
1

1
1 0� �� � � � 

With this, � � � �� � � �
�

� �
�

� �� � � � � �p r p rr r, , , , .0 0 0
The following holds d dr p r d dr p rr r/ , , / , , .� � � � �� � � �

��
� �

�
� �

� �� �� � � � � �0 0
2 1

Let’s put:

� �
�� �

� � �
�

� �

� � � �

� � � � � � � � �

� � � � � � �
p r

A I r R

A I r B K r
, ,

, ;

,
,

, ,

1

2 2

0

0

 

 rr R�

�
�
�

�� ,

where Iv,α(λr), Kv,α(λr) are modified Bessel functions of the first and second kind � � � �� � � ��ia 1 1
2

, Re 

� � � �� � � ��ia 1 1
2

, Re , write down in the form:

p e i� � �� � � �� �� � � � �2 2 2 2 ,

dp d b a� � � � � �2 1� � � �, .

Returning to the original, it is possible to obtain:

T r
a

i
p r e dp g dp

i

iR

�
�

� � � � ��
� �

�

�

, ( , , ) ,� � � � � � �
�

� �

� �

� �

��
2

2 1

02
0

0

where a–2 is a weight function [20]. The special points of the Cauchy function ε*(p,r,ρ) are the 
branching points p = –γ2 ≤ 0 and the point p=∞.

Let’s denote:

X R b
d
dr

C r b C r b
dI

r R
i

� � �
� �� � � � � � �

�
;

,, , ,11
11

11
1

11
1

11
1� � � � � � � � ��

RR

dr
i

sh b
dK R

dr

I R i sh bK

i

i

� �
�

� ��

�
�
�

�

�
�
�
�

� � � � �

�
�

�

� � � �

� �

� �

,

,11
1 1

ii R X R i
sh b

X R� � � ��� �
�
�

�, ; ;, ;� ��� �� � � � � � � 

11
11

12
1111

X R b
d
dr

D r b

sh b
dK

r R� �� � � �

� �
�

�

; , ,11
12

11
1

11
1

11
1 1

� � � �
�

�
�

�

�
� � � �

�

�

ii
i

R

dr
sh bK R

sh b
d
dr

K

� �
� �

�
� � � �

� � � �

,
,

� ��

�
�
�

�



�
�
� � � �

�

�

�

11
1 1

1
11
1

ii iR K R X R
sh b

� � � � �� � � �
�
�, , ;� � � � ��

�
�

�



� � � �11

1
11

12
 ; (1.8)
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



X R
dI R

dr
I R

X R

i
i�

� �
� �

�

� � �
�

� �

�

;
,

,

;

;11
11

11
1

11
1

11
12

� � � � �
� � �

� � � �� �
�

� �� �
� �11

1
11
1dK R

dr
K Ri

i
,

, .
� �

� � �

If to pass to the Bessel functions of a real argument Jv,α(λR,b), Nv,α(λR,b), then:

X R b
R

J R b R J� � � � �� �
� �

� � � �; , ,, ,11
11

11
1

11
1

11
1 2

1� � � �
�

�

�
�

�

�
� � � � � �11

1� �R b b a, , ;� � � � 

X R b
R

N R b R N� � � � �� �
� �

� � � �; , ,, ,11
12

11
1

11
1

11
1 2

1� � � �
�

�

�
�

�

�
� � � � � �11 �R b, .� �

Let’s determine functions:

U R b X R b i X R b X R� � � � �� � � �, ; ; ; ,, , ,11
11

11
11

11
12

11
11� � � � � � � � � � � � �� �

�
� �

�
� �

� �

� �
� �

� �

11
1

11
1

11
1

11
1

dI R

dr
I R

R
I

i
i

,
,

,

� �
� � � �

�
�

�
�

�
�

�

�
� RR b R I R b a, , , ;,� � � � � �� �

�� � � � �� �11
1 2

1 1
1 

U R sh b X R b
d
dr

K� � � �� � � � � �, ; , ,,11
12 1

11
12

11
1

11
1� � � � � � � � �

�

�
�

�

�
�

�

�� �

� �

� �

�
� �

� � �

r X R b

R
K R

r R� � � � � �

�
�

�
�

�
�

�

�
� � � �

�


,

,

,11
12

11
1

11
1

11
1 RR K R� �� �

2
1 1� � � �, .  (1.9)

Satisfying the condition (1.7), it is possible to obtain the algebraic system of equations for 
determining the coefficients A1, A2, B2:

A A I B K2 1 2 0�� � � � � � � �� � � ��� ��, , ,

A A I B K2 1 2 2 1

1
�� � � � � � � � � � � �� � � � ��� ��

��, , .

Given the relation:

I K I K� � � � � � � �

�
�� �� �� �� ��, , , , ,� � � � � � � � � � � � �� �� �� �2 1

let’s obtain:

A A K B I2 1
2

2
2�� � � � � � � � �� �� � ���

� �
�
� �, ,, .  (1.10)
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Satisfying the boundary condition for r = R, it is possible to obtain:

A U R B U R2 11
11

2 11
12 0� � � �� �, ; , ; ,� � � � � �  (1.11)

A
R

U R
K2

2 11
1

11
11

2 2 11�
� �
� � � � � ��
� ��

�
� �� �

�� � �

� �

�
� �

� � �� , ,
*

, ,
,

, ,, 11
11

11

11
11

*
, , ,

, ,

,� �� � ��

�
� � � �

� �

R U R K

U R
� � � � � � �

� �
�
�
�

��

�
�
�

��
�

� ���
�

�
��

�� � �

� �
� �

� �

�

2 11
12

11
11 2

11
12U R

U R
I B

U R

U
, ,

, ,
,

, ,

,

� �
� � � � � � � �

��

� �

� �

�

��

��

,

,

,

,

,

11
11

1
2

2

R

A
B K

I
A

� �

�
� �

� � �

 

where 

A U R R1
2

11
11 1

11
1� � �� � � �� �� � � ���

� � � �, ; , ; , ;�

U R
A U R

I r� �

� �

�
� �

�
�

� �, ;

, ;

,

;11
12 2 11

11

2� � �
� �� �
� �

�� � � � � � � � � �� � � � � �, ; , ; , , ; ,,11
1

11
11

11
12� � � � � � � � � � �R r U R K r U R I r�� �.

Then the function εα
*(p,r,ρ) due to the symmetry relative to the diagonal r = ρ has the form:

� �
�
�

� � ��
�

�

� �

� � � ��

�

� � � � �
� � � �� �

p r
U R b

I r R
, ,

,

, ,

, ;

, , ;
2

11
11

11
1 0�  rr R

I R r r R

� �

� � � � � � �

�
�
�

��
�

�

�� � � �� � � �

;

, , ., , ;� 11
1 0 

 (1.12)

The roots pn n� � �� �� �2 2  of the transcendental equation U R b� � �, ; ,11
11 0� � �  are simple 

poles of εα
*(p,r,ρ).

Let’ consider the transcendental equation:

�
� �

� � � � �� � � �11
1

11
1

11
1 2

1 1 0
�

�
�

�
�

�

�
� � � � � � �� �R
I R b RI R b, ,, , ,

where p e b ai� � �� � � �� � � � � �� � � � � ��2 2 2 2 1,  form a discrete spectrum bn n� �
�

�

1
.

Let’s denote � �� � � �� � � � � �, ; , ;
*, , , , .11

1 1
11

1R r b sh b R r b� � � � �� � ��
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Here �� � � �, ; , ,11
1 R r b� �  is the eigenfunction of the problem that satisfies equation (1.2) and 

homogeneous boundary conditions. It is possible to use it to construct a solution of the problem 
that satisfies the inhomogeneous condition at the outer surface of the cylinder, i.e., reflects the 
effect of the drying agent.

The original of the fundamental function:

� � � � � ���

� �

� � � �t r e R r b R b
t

, , , , , ,, ; , ;� � � � � � �� �� ��

�
2 2

11
1

0
11

1 2
� �

��� �
� � �

�

� �

� �

� � �

2

11
11 2

11
12 2

0

2 2d

X X
e V r V

t

; ;

, ,
� � � � �

� � � � �� �� ��

� � �� �� �d ;

� � � � � ���

� �

� � � �t r e R r b R b
t

, , , , , ,, ; , ;� � � � � � �� �� ��

�
2 2

11
1

0
11

1 2
� �

��� �
� � �

�

� �

� �

� � �

2

11
11 2

11
12 2

0

2 2d

X X
e V r V

t

; ;

, ,
� � � � �

� � � � �� �� ��

� � �� �� �d ;  (1.13)

��

�

� �

�
��

� � � �
� � �

� �� � � � �� �
2 2

11
11 2

11
12 2

X R X R; ;, ,
.

By the generalized development theorem:

� �
�

�

� � � �

�

t r e
V b r V b

V b r

n t n n

n
n

, , ,� � � � � � �
� �

� �� �
�

�

�
2 2

1

2
1

where V b rn� � �
1

2
 is the square of the norm of its own function; bn are roots of the function 

U R b� � �, ; , .11
11 � �

� �� �
� �

� �� ��
�

� ��, ; , ;, , ,11
1

11
1

2
� �� � � � � �i R i e Ri

V r R r X R D r X R� � � � �� � � � � � � � � �, , , , , ,; ; ;� � � � � � � � � � � ��1
11

11
11

12
11 �� � �C r� � �, ,  (1.14)

� �*
, ; , ;, , .1

11
1

112� �
� �

� �� �
�

� �i R i r e R ri� � � � � ��

Here V r R r� �� � � �, , ,;� � � � �� 11
1  is eigenfunction (spectral function) of the problem (1.6); 

Ωα(β) is a spectral density.
Returning in equation (1.13) to the original, it is possible to obtain a solution Todn(t,r) of the 

homogeneous parabolic Cauchy problem (1.2), (1.3):

T t r t r g a d e V r godn

R
t

, , , ,� � � � � � � � � �� �� � � �� ��

� � � � � ��
� � �

�
0

2 1 2

0

2 2

�� � � �� � � � ��
�

�� � � � � � �� � �

0

2 1 2
R

V d d a, , .�  
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T t r t r g a d e V r godn

R
t

, , , ,� � � � � � � � � �� �� � � �� ��

� � � � � ��
� � �

�
0

2 1 2

0

2 2

�� � � �� � � � ��
�

�� � � � � � �� � �

0

2 1 2
R

V d d a, , .�   (1.15)

From equation (1.15) for t = 0, it is possible to obtain the integral image:

g r V r g V d d
R

� � � � � � � � � � �
�

�� �� �
�

�� � � � �� � � �
0 0

2 1, , .�  (1.16)

From equation (1.16), it follows that the function εα(t,r,ρ) defined by equation (1.13) is a 
delta-shaped sequence with respect to t for t → 0+.

The integral image (1.16) defines a direct:

H g r g r V r r dr g
R

� �
�� � �� ��� �� � � � � � � � �� �

0

2 1, ;  (1.17)

and inverse:

H g r g V r d g r�
�

� ��� �� � � � � � � � � � ��1

0
� � �� � � �  , .�  (1.18)

Kontorovich-Lebedev transform over the interval [0, R].
Given the theorem on the basic identity of the integral transform [20] of a differential ope- 

rator Bα, i.e., if the function g(r) is such that the function f(r) = Bα[g(R)] is continuous on the  
set (0, R) and the boundary conditions hold:

lim , ,r r
dg
dr

V r g r
dV
dr

d
dr�

� � � � � ��

�
�

�

�
� � �

�

�
�

�
0

2 1
11
1

11
10�

�
�� � � 

��
� � � � � ��g r gr R R � ,  (1.19)

then for any �� �� �0, , the following equality holds:

H a B g r g
sh

gR� � �� �
��

��
�2 2

2� ��� ��
�
�

�
� � � � � � � � .  (1.20)

Therefore, based on relation (1.17), it follows:

H a B g r g r V r r dr
sh

T R
R

a� � �
�

�� � �
��

��
�2 2

0

2 1
2� ��� ��

�
�

�
� � � � � � � �� �, ,�� �.  (1.21)

From the properties of the eigenfunction Vα(r,β), it follows that:
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� �� � � � �
�

 00.

From equation (1.21), taking into account equation (1.19), it is possible to obtain:
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R
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where Hα[g(r)] is defined by the expression (1.17); gR=TaR(R,t) is the temperature of the  
drying agent.

Then from equation (1.21), it is possible to obtain:

g
V R

g
X R b D R b X R b CR R

�
�

�
� � �� � � �

11
1

11
1 11

11
11

12, , , ,; ;� � � �� � � � � � � � ��

� � � �

�

� � � �

R b

g C R b D R b D R b C R b
sh

R r r

,

, , , ,

� ��� �

� � � � � � � � � � � ��� �� �
��

�� � �

b
R

TaR2 2 1� .  (1.22)

The equations of thermal conductivity and boundary conditions have the following form:

�
�

� �� � � � � � � � �
�

�
�

�

�
� � � �� �

T
T T g

d
dr

T r Tr R�
� � � � � � ��

2 2
0 11

1
11
10; , , aaR �� �.

As a result of identity (1.21):

�
�

� �� � � � � � � � � ��



 



T
T

sh b
T T gaR�

� �
�

��
� � � �� �

2 2
2 0; , .  (1.23)

The solution of the Cauchy problem (1.23) is the function:



T e g e
sh bt

n
n

� � �
�

��
� �

� � � � � �
�

�,� � � � � � �
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�

�

�
2 2 2 2

0
2 0

1
���

�
�

�



�

�



	
	

�

�
�
�

cos .�nt dt2  (1.24)
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Let’s apply the integral operator H�
�1  (1.18) to T � �,� � , and obtain the solution of the  

problem (1.24):

T t r e V r V d g
t

Rt

, ) , ,� � � � � � � � � � �� �� � �� ��

����
� � �
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2 2
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�
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� � �� ��
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�2 1

0
2

2 2

d d e
sh b

T V r
t

t

a , � �� � �� �
�

� d d
0

.

T t r e V r V d g
t

Rt

, ) , ,� � � � � � � � � � �� �� � �� ��

����
� � �

� � �� � � � � � �
2 2

000

� �� �� � �
�

��
� �� � � �

� � �� ��
 �� � � � � �� � �� � �� �
�2 1

0
2

2 2

d d e
sh b

T V r
t

t

a , � �� � �� �
�

� d d
0

.  (1.25)

From equations (1.17), (1.18) and Steklov’s theorem, any vector-function f(r) = Bα[g(r)] 
continuous on (0,R) satisfying zero boundary conditions can be decomposed in terms of a system 
of eigenfunctions V r j j� �,� �

�

�

1
 into an absolutely and uniformly convergent Fourier series.

It is known that one eigenvector-function V r j� �,� �  corresponds to each eigenvalue βj and 
the system of spectral functions V r j j� �,� �

�

�

1
 is complete and closed. The square of the norm of 

eigenfunction V r V r r drj j

R

� �
�� � �, , .� � � � ��

�
�
�

��
2 2

2 1

0

Thus, given equation (1.17), the inverse integral operator (1.18) can be written down  
as follows:

H g r g V r V r g rj j
j

j� � �� � ��

�

� �

� ��� �� � � � � � � ��
�
�

�
�
� � � �
1

0

2 1

  , , ,

and the function:

G t r e V r V d
t

�

� �

� � �� � � � � �, , , , ,� � � � � � � � �� �� ��

�
2 2

0

�  (1.26)

by taking into account the initial temperature state of the body, according to the theory of surplus-
es can be represented as calculated integral in the form:

G t r e
V r V

V r
a

j

t j j

j

j

�

� � � �

�

�
� � �

�
�, ,

, ,

,
,� � � � � � �

� ��

� � �� ��
1

2
2

2 2

where

V r R r
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X R D r Xj j
j

j j� � � � �� � � �
��

�
� � � �, , , , ,; ;� � � � � � � � � � ��1

11
11

11 ;; , , ;12
11 � � � ��R C rj j� � � ��

�
�
�
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as well as the Green’s function generated by the thermal regime at the boundary:

r R

W t r e V r
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d b a
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t
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 (1.27)

Then the solution will take the form:

T t r G t r g d d W t
Rt t

, ) , , ,� � � �� � � � � ��� �� � ��� ��
�
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�

�� � � � � �� � � �
00

2 1

0

rr T da� � � �� �.  (1.28)

Here �� � �t  is a delta-function concentrated at the point 0+. 
According to equation (1.28), taking into account the properties of delta-function and equa- 

tion (1.17), it is possible to obtain:

T t r e g V r d e
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2
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, . It is possible to transit to impro-

per integrals:
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Taking into account equation (1.26), (1.27), let’s obtain:

T t r e g
V r

V r
a Tj t

j
j

j

j

wa j,
,

,
,� � � � � � �

� �
� �� �� �

�

�

� � � �

�

�
�

�
� � �

2 2

1
2

2
 �� � �

� ��

�

�
V r

V r
aj

j
j

�

�

�

�
�

,

,
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1

Let’s determine the effect of initial conditions and temperature of the drying agent on the

drying process. Given equation (1.16), the initial condition g r g r
j

j
j� � ��

�
��

�

�
��

�
�

0

2

0  is chosen. Then:
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Given expressions for the Bessel functions:

I I K K� �

�

� � �

�

��� �� �� �� �� ��, ,, .� � � � � � � � � � � � � �� �

Let’s determine:

g
a

X R sh g r K r dr
j

R

j
j

i

�

� � � �� ��
�

�

� � �

� � � � � � ��

�

� ���
1
2

11
11 1

0

2

0
0

1
; ,

�� � � � � � � �

� �

�

� ���X R g r I r dr

iX R

j

R

j
j

i�
�

�

�

� � �

� �

11
12

0

2

0
0

1

11
12

;

;

,

, �� � � � �

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
��

�

� ���� �� ��
�

1

0

2

0
0

1sh g r K r dr
j

R

j
j

i ��

�

�
� � � � �
� �


� � �� �

�1
2

11
11

11
12 1 2

0

2

a

X R iX R sh j

j
� �

�� � � � � �� �; ;, , ���

��

� �

� �� �

�

� � � � �

� � �
0

0
1

11
12 2

0

2

0

�
�

�

�
�

�

�

� � �

R

j
j

i

j

j

R

g r K r dr

X R; , gg r I r drj
j

i0
1� �� � � �

�

�

�
�

�

�
�

�

�

�
�

�

�
�

�
�

.

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �


�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �


�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �


�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �


�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �


�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �


�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �


�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �


�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �


�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �


�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �


�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �


�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .;



19

1 CONVECTIVE DRYING OF WOOD OF CYLINDRICAL SHAPE

CH
AP

TE
R 

 1

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �


�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �


�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �


�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .

Here 1 2 1 1 2
1

1 20

F a b b z
a

b b
z
kk k k

k

k kk

k

� � � � � �� � � � �
� � � ��

�

�; , ;
!

 are generalized hypergeometric function, 

where a
j i

k1 2
� � �

� �� �
;  b

j i
k1

2
2

� � �
� � �� �

;  b i z
R

k2

2

1
4

� � � � �
� �

�
�

;  are Pochhammer’s

polynomials [21]. Let’s write these functions.
Let’s write the first of these functions:

a
j i

b i b
j i

z
R

k k k1 1 2

2

2
1

2
2 4

� � �
� � � � � � � � �

� � �
�
� �� �

�
� � �

; ; ; ;   

�1 1 2

2

2
1

2
2 4

1
2

�
� �

�
� � � � ��

�

�
�

�

�

�
�
� �

� ��

�
�

�

�F
j i

i
j i R

j i
� �

�
� � �

� �

; ; ,
��
� �

�� � � � ��

�
�

�

�
�

�

�

� ��

�
�

�

�
�

� �
�

�

�
�

�

�
� �

� � � �

R

i
j i

j i j i

2

4

1
2

2
1

2 2
1

!

��

�
�
� ��

�

�
�

�

�

�
�

�� � � �� � � � ��

�
�

�

�
�

� � �
�

�

� �
� � � �

R

i i
j i j i

2 2

4

1 1 1
2

2
2

2
11 2

2 2
1

2
2

�

�
�

�

�
�

�

�

� ��

�
�

�

�
�

� �
�

�

�
�

�

�
�

� �
�

�

�
�

�

�
�
�

!

j i j i j i R� � � � � � � ���

�

�
�

�

�

�
�

�� � � �� � � �� � � � ��

�
�

�

�
�

� � �

2 3

4

1 1 1 1 2
2

2
2

i i i
j i j i

� � �
� � � �

22
1

2
2

2 3�
�

�
�

�

�
�

� � �
�

�

�
�

�

�
�

�
j i� �

!
... . 

The second function:

a
j i

b i b
j i

z
R

k k k1 1 2

2

2
1

2
2 4

� � �
� � � � � � � � �

� � �
�
� �� �

�
� � �

; ; ; ;   

�2 1 2

2

2
1

2
2 4 1

2
�

� �
�

� � � � ��

�

�
�
�

�

�

�
�
�
� �

� ��

�
�

F
j i

i
j i R

j i
� �

�
� � �

� �

; , ;

��

�
�
� �

�� � � � ��

�
�

�

�
�

�

�

� ��

�
�

�

�
�

� �
�

�

�

�
� �

� � � �

R

i
j i

j i j i

2

4

1
2

2
1

2 2
1

!

��
�

�

�
�
� ��

�

�
�

�

�

�
�

�� � � �� � � � ��

�
�

�

�
�

� � �

�

� �
� � � �

R

i i
j i j i

2 2

4

1 1 1
2

2
2

22
1 2

2 2
1

2
2

�
�

�
�

�

�
�

�

�

� ��

�
�

�

�
�

� �
�

�

�
�

�

�
�

� �
�

�

�
�

�

�
�

!

j i j i j i� � � � � � �RR

i i i
j i j i

� ��

�

�
�

�

�

�
�

�� � � �� � � �� � � � ��

�
�

�

�
�

� �

2 3

4

1 1 1 1 2
2

2
� � �

� � � � ��
�

�

�
�

�

�
�

� � �
�

�

�
�

�

�
�

�
2

2
1

2
2

2 3
j i� �

!
... . 



20

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 1

�2 1 2

2

2
1

2
2 4 1

2
�

� �
�

� � � � ��

�

�
�
�

�

�

�
�
�
� �

� ��

�
�

F
j i

i
j i R

j i
� �

�
� � �

� �

; , ;

��

�
�
� �

�� � � � ��

�
�

�

�
�

�

�

� ��

�
�

�

�
�

� �
�

�

�

�
� �

� � � �

R

i
j i

j i j i

2

4

1
2

2
1

2 2
1

!

��
�

�

�
�
� ��

�

�
�

�

�

�
�

�� � � �� � � � ��

�
�

�

�
�

� � �

�

� �
� � � �

R

i i
j i j i

2 2

4

1 1 1
2

2
2

22
1 2

2 2
1

2
2

�
�

�
�

�

�
�

�

�

� ��

�
�

�

�
�

� �
�

�

�
�

�

�
�

� �
�

�

�
�

�

�
�

!

j i j i j i� � � � � � �RR

i i i
j i j i

� ��

�

�
�

�

�

�
�

�� � � �� � � �� � � � ��

�
�

�

�
�

� �

2 3

4

1 1 1 1 2
2

2
� � �

� � � � ��
�

�

�
�

�

�
�

� � �
�

�

�
�

�

�
�

�
2

2
1

2
2

2 3
j i� �

!
... . 

The third function [21]:
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Comparing the expressions for Φ2 and Φ3, it is possible to see that Φ2 = Φ3. Let’s consider 
the expressions of the first three coefficients of each of these generalized hypergeometric func-
tions. Let’s determine the real and imaginary parts in them. Let’s consider the function:
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Thus, recurrent relations are obtained for real and imaginary parts of generalized hypergeo-
metric functions of complex arguments, which allows to determine the temperature distribution 
depending on the parameters of the structure of wood and other porous materials.
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The solution of a Cauchy problem is the function:
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Let’s apply to the function T � �,� �  the integral operator H� � �� � �1 , . 
For non-stationary case:
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Numerical analysis. Based on the obtained formulas for determining the temperature at any 
point of the radius of wooden cylindrical beam at any time of drying depending on the effect of 
thermal diffusion, initial values of temperature and moisture, thermophysical characteristics of the 
material and parameters of the drying agent on the temperature of phase transitions, a software 
program is designed, the work of which is demonstrated for solving a specific application problem 
of wood drying. 

To implement the numerical experiment, the characteristics of the thermophysical properties 
of wood were used. The dependence of the hydro conductivity of wood on temperature and mois-
ture was derived on the basis of experimental data [6].

Numerical simulation of drying of a sample of a cylindrical pine timber beam of a circular 
cross-section of the temperature T0 with a 50 % moisture content was carried out. The following  
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basic parameters of the problem were accepted: ambient temperature Ta, which is determined 
by the temperature of the steam-air mixture measured by a dry bulb thermometer. The drying 
process lasted until the temperature of the beam reached the ambient temperature T1 = 289 K. 
Drying agent velocity υ = 2 m/s; saturated vapor density ρv = 0.013188 kg/m3; air density 
ρa0 =1.29 kg/m3. Physical parameters of wood: the radius of cross-section of a beam R = 0.25 m; 
density 500 kg/m3; moisture 0.7 kg/kg; porosity Π = 0.672. Thermal parameters of wood: initial 
temperature T0 = 290 K, thermal conductivity coefficient λ = 0.14 W/(m∙K).

Computer simulation of the drying of a cylindrical beam was carried out for soft (≈ 300 K) 
and hard regimes (≈ 370 K), which were determined by the control functions of temperature and 
moisture of the steam-air mixture, which is fed into the drying chamber.

In Fig. 1.3 and 1.4, the temperature distributions in the structural elements of the cylindrical 
beam are presented. Fig. 1.3 characterizes the change in temperature in the wooden beam during 
drying at 300 K; and so, does Fig. 1.4 at 370 K, respectively. 

 Fig. 1.3 Temperature distributions on the surface and inside the cylindrical 
beam at a drying agent temperature of 302 K (soft regime)
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Here, the curve 1 corresponds to a unit value of dimensionless radius r = 1, i.e., it shows 
the temperature on the surface of the cylinder; curve 2: r = 0 8. ;  curve 3: r = 0 6. ; curve 4: 
r = 0 4. ;  curve 5: r = 0 2. ;  curve 6 corresponds to zero value of dimensionless radius: r = 0.

Analyzing the graphical dependences, it is possible to see that in the process of drying cylindri-
cal wood with the specified initial parameters, three characteristic stages are observed: heating, 
stabilization, and cooling. 

The graphical analysis of the drying process for wood with a circular cross-section (ρ = 500 kg/m3)  
and an initial moisture content 0.7 kg/kg reveals several key insights for both hard and soft 
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drying regimes. Throughout the entire drying process, the temperature of the wood’s surface 
layer is consistently higher than that of the inner layers for both drying regimes. By the end 
of the first drying period, the surface layer reaches a maximum temperature. The inner layers 
experience different heating patterns: in the hard drying regime, they experience more rapid tem-
perature increases, indicating quicker heat penetration and more aggressive moisture removal 
leading to faster vaporization within the wood. In contrast, for the soft drying regime, the bulk 
of the wood remains within the 294–295 K range for a significant portion of the first period, 
only beginning to increase in temperature two-thirds of the way through this period. During the 
second drying period, the temperature growth stabilizes across the layers, attributed to the ab-
sorption of heat for internal vaporization. The onset of the constant drying rate period varies with 
depth, showing significant delays in the wood’s inner layers. For hard drying regimes, maximum 
temperatures are achieved mid-way through this period, followed by a gradual decline. During 
the period of decreasing drying rate, a noticeable temperature rise occurs throughout the entire 
material volume until the central layer’s temperature matches the surface layer’s temperature. 
This period is dominated by the release of bound moisture, which dictates the duration of the  
drying process. 

It should be noted that the temperature distributions in the cross-sectional layers of wood 
for the two considered drying regimes differ qualitatively and quantitatively. The temperature of 
the outer layer of the cylindrical beam during the entire drying period is much higher than the 
temperature of the middle layers, and, here, the maximum residual pressure is maintained until the  
end of τ1. A temperature gradient appears, which causes the flow of moisture to move towards low 
temperatures, and its place is filled by steam.

 Fig. 1.4 Temperature distributions on the surface and inside the cylindrical 
beam at a drying agent temperature of 370 K (hard regime)
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At hot drying modes during the second period of stabilization we observe a significant differ-
ence in the values of the temperature of wood layers in depth, sometimes up to 10 K (Fig. 1.4, 
measurement time 0.5 τ2, layers r = 0 2 0 4 0 6. , . , .  ). Just at this time it is possible to observe 
the maximum values of internal residual pressures in these layers. In mild regime, an increase in the 
temperature of the central part of the beam is observed at the time 2/3 τ2 and a corresponding de-
crease in moisture content in its core layers (Fig. 1.3, time curve 0.7 τ2). From the third period τ3,  
the rate of moisture removal decreases until the state of equilibrium moisture content.

In conclusion, the hard drying regime leads to a quicker internal temperature rise, suggesting 
faster drying but potentially greater risk of stress and cracking. The soft drying regime offers a 
gentler approach, with slower internal temperature increases, potentially reducing stress and main-
taining structural integrity. This analysis underscores the importance of selecting an appropriate 
drying regime based on the desired balance between drying speed and material quality preservation.

1.2 Solving Stefan's linear problem for drying cylindrical beam under  
quasi-averaged formulation

When solving the problem of drying objects with a capillary-porous structure, in particular 
wood, they usually are described in terms of a quasi-homogeneous medium [22–25] with effective 
coefficients, which are chosen so that the solution to the problem in a homogeneous medium 
would coincide with the solution of the problem in a porous medium. The effect of the porous 
structure is taken into account by introducing the effective coefficients of binary interaction into 
the Stefan-Maxwell equation. The problem of mutual distribution of phases is solved according to 
the principle of local equilibrium of phases [26–31]. The given properties of the material, namely: 
heat capacity, density, thermal conductivity coefficients are functions of material porosity, density 
and heat capacity of body components.

The plain problem of drying of a cylindrical timber beam in average statement is considered. The 
thermal diffusivity coefficients are expressed in terms of the porosity of the timber, the density of the 
components of vapor, air, and timber skeleton. The problem of mutual phase distribution during drying 
of timber has been solved using the energy balance equation. The indicators of the drying process of the 
material depend on the correct choice and observance of the parameters of the drying medium [32].

In stationary mode, the relationship between temperature and moisture gradients is deter-
mined by the formula:

�
�

� �
�
�

�
U
r a

U
T
r a

Up
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,

where δ  is the thermogradient coefficient; b is the mass transfer coefficient; a is the thermal 
diffusivity coefficient. In this dependence, the rate of moisture transfer is affected by the rate of 
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heat transfer and by the equilibrium moisture content Up [19]. The relationship between the dis-
tribution of moisture content and temperature fields depends on the geometric dimensions of the 
timber material in length and radius. Since the length of the beam of material is much larger than 
the cross-sectional size and the coefficient of moisture conductivity is much larger along the fibers 
than this coefficient across the fibers and due to the great complexity of the structure of timber 
material, consider the plane average problem of heat conduction.

When the hot air of the drying agent contacts with the moisture of the dried material, the 
moisture particles disintegrate and multiply, turning into steam and rarefied moisture particles, 
the number of which increases [7]. Thus, there is a multiplying of particles of a two-phase zone. 
At the same time there occurs a gradual deepening of the front of moisture evaporation. Heat is 
supplied to the evaporation front by heat conduction from the drying agent across the dried layer 
of material. Excess pressure is formed in the front zone, under the action of which the vapor is 
filtered to the outer surface. The total rate of moisture removal depends on the thermal and filtra-
tion resistance. The vapor pressure and the temperature at the front are related as parameters 
of saturated vapor. The slow movement of the front into depth allows to consider the fields of 
temperature and excess pressure in the dried material to be quasi-stationary. The drying process 
with a variable phase transition boundary is described by the equation [19]:
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 is averaged thermal diffusivity coefficient.

Let’s solve (1.33) under the initial condition:

T r g r r R� �, , ,� � � � � �� ��0 0 , (1.34)

and under the boundary conditions on r = 0 and r = R, which express heat exchange in the cylinder 
and between the surface of the cylinder and the drying agent:
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The process of penetration of hot air, the rate of which is proportional to the concentration, leads 
to the problem of phase transition if γ2 < 0 (diffusion with decomposition), the indices of a series:
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obtained by expansion in terms of eigenvalues functions υn(M), are less than the indices of a series 
if not to take into account changes in temperature over time without a phase transition. In the 
case γ2 > 0 (penetration with multiplication), if at least one of the indices (γ2 –a2λ) > 0, then 
there is an increase by the exponential law. The value γ2 is a characteristics of the material (multi-

plication factor), λ significantly depends on the shape and size of the area (pores). If �
�

�
2

2a
,

then the area where the phase transition occurs has critical dimensions. For a plane problem, 
the smallest value of λ corresponds to the eigenfunction, which has radial symmetry and is equal

to �
�

�1
1
0

1
0 2 4048� �

� �
� �

R
, .  [19].

For the critical diameter, the formula d
a a

kp � �
� �2 4 801
0�
� �

.
 is obtained [29].

When solving the problem of drying objects with a capillary-porous structure, in particular 
wood, in order not to consider the porous body in all its complexity, it is described in terms of a 
quasi-homogeneous medium with effective coefficients, which are chosen so that the solution of 
the problem in a homogeneous medium coincides with the solution in a porous medium. The influ-
ence of the porous structure is taken into account by introducing the effective binary interaction 
coefficients into the Stefan-Maxwell equation. The problem of mutual phase distribution is solved 
using the principle of local phase equilibrium. It is possible to consider that the averaged properties 
of the material, namely: heat capacity C, density ρ, and thermal conductivity coefficients λ are 
functions of porosity of material, densities and heat capacities of body components.

Problem statement. Let’s consider the problem of drying a wet long wooden beam of cylin-
drical cross section in a drying plant. In solving this problem, it is possible to neglect the discrete 
structure of the material at the molecular level and come to the equation of heat conduction:
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�
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Here, a is the thermal diffusivity coefficient, γ is a variable equivalent to the presence of sources 
of diffusing substance in the pores, T is the body temperature. The higher the temperature is the 
higher the rate of drying. The temperature in the drying chamber is the temperature in the vapor-gas 
mixture, which is determined by a dry bulb thermometer. The temperature determined by a wet bulb 
thermometer is the temperature at the boundary of the phase transition, which moves inside the 
material. The difference between the readings of dry and wet bulb thermometers is used to determine 
the relative humidity. For successful air drying, a continuous flow of air throughout the beam must be 
ensured. In the drying chambers, unsaturated air is used as a drying agent. Successful operation of 
drying chambers is achieved by regulating the temperature and humidity at the right time [33–37].



30

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 1

The volume of the dried area is a function of time. In the this case, the body to be dried is a 
cylindrical beam, the outer surface of which F(r,τ) = 0 is described by the equation:

F r r, , .� �� � � � � �1 0 0  (1.36)

At the time moment τ = 0, the temperature T0(τ) is applied to the outer surface of the cylin-
der and from this time the drying process begins, and at the interface of the phase transition the 
curve of separation of dry and wet zones is the temperature Tc(τ) curve.

In the process of drying, this curve moves, forming a closed curve Fk(r,τ) = 0, which is an iso-
therm T = Tc. In the zone where the drying has already taken place, the temperature is described 
by the equation of heat conduction and by boundary conditions, these boundary conditions can be 
written as: 

– on the outer contour of the cylinder Fk(r,τ) = 0:

T = Tc, (1.37)

– and the following initial conditions:

T = T0, F0 = Fk, τ = 0. (1.38)

Let V(Fk, F0) be the volume of the dried area at the time t per unit length of the beam in the 
direction of the axis Oz. Then, over a period of time Δt, the volume will increase by ΔV(Fk, F0), and 
the amount of heat spent is:

� �Q c T T V F Fk k c k� �� � � �� , .0  (1.39)

Determine this amount of heat through the flow on the surface Fk(r,τ) = 0:

� �Q
T
n
ds tk

F lk

� �
�
��

��
0

.  (1.40)

Passing in (1.40) to the limit at �t � 0, given (1.39), let’s obtain:

� �k
F l

k k c
kT

n
ds c T T

dV F F

dt
k

�
�

� � �� � � �
�
�

0

0,
,  (1.41)

V F F dsk
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�

�

��  (1.42)
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If to pass to the variables:

� �
�
�

� ��
�
�

� � � �
T T
T T

c a V
R

l
s
R

s
R

c

c

k k

k0
2 2, , , , ,     (1.43)

then dimensionless coefficients will satisfy the equation of heat conduction and the boundary con-
ditions (1.37), (1.38):

at F0 = 0,

η = 1;

at Fk = 0,

η = 0; (1.44)

η = 1, τ = 0. (1.45)

Let’s consider the equation of the Stefan’s boundary change:

��
�
�

d
d

T
n

dl� �
�
�

,  (1.46)

� �F F dk
F

F

k

0
0

00

, .� � �
�

�

��  (1.47)

It is possible to note that at the beginning of the drying process:

F x y F x y tk , , , , .� �� � � � � � � ��
0 0  (1.48)

Over a short period of time, the contour of the boundary of the dried and wet zones will be 
as follows:

F x y t F x y tk , , , ,� � � � � � � ��
0 1 1 �  (1.49)

where ε*(t) is the thickness of the layer of the dried area (1.49). From the symmetry of the 
problem it follows that the contours F0, Fk are concentric circles, the equations of which in a 
dimensionless polar system are:
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F r F t r t
Rk0 1 0 1 0� � � � � � � � � � � �, ,
*

.  � �
�

 (1.50)

With this ε(τ) = 0 for τ = 0.
From (1.50) it follows that at the time of complete drying of the beam ε*(t) = R, and, respec-

tively, ε(τ) = 1.
Write the equation of heat balance for the area bounded by the contours F0, Fk(t). In integral 

form, this equation can be written as:

�
�

�
�
�

�
�
��

�

�� � �
�
�
�

� �
d

n
dl

n
dl

F

F

F l Fk kl0

00

0

,  (1.51)

where F0l, Fkl are contours of cross-sections of surfaces F0 = 0, Fk = 0, respectively.
If to take into account the boundary condition (1.46), it is possible to obtain:
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�� �
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�
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d
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F

Fk k0

00
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.  (1.52)

Equation (1.52) is the main one, which takes into account the factor of the moving boundary.
Introduce the function η*(r,τ) so that it satisfies the initial and boundary conditions (1.45). 

This function will establish the relationship between the relative saturation and temperature in the 
cross section in time.

� �
� �

� �
* , .r

r� � � � � � �
� �

1
  (1.53)

Let’s take η*(r,τ) as an approximate solution, which at a certain value ε(τ) must satisfy (1.51). 
There is a relationship between it and ε:
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� �� � � �
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From (1.52) it is possible to obtain:
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or 

d
B

A d� � � � �� �� � � � �1
0 02 , ,  (1.56)
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The solution of (1.56) is:

�
� �

� �
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�
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1
3 2

3 2

B
A .  (1.58)

From (1.46) and (1.58), taking into account (1.47) and (1.50), it is possible to obtain the 
equation describing the change in the unit of length of the volume of the dried zone over time: 
V Rd � � � ��� ��� � �2 21  and, thus, now it is possible to calculate the relative moisture of the timber 

beam during drying W
V V

V
d�

�
. Simple formulae for approximation of the experimental data allow

to calculate the total duration of the drying process from the initial to the final moisture content 
of the material.

Numerical experiment. Based on the obtained solutions, the numerical simulation of dry-
ing of samples of timber circular beams of pine, spruce, and birch of the same size has been 
carried out. The material after preliminary natural drying had been brought to 15 % of moisture 
content. The following basic parameters of the problem have been accepted: the ambient tem-
perature Tc = 313 K; the velocity of the drying agent υ = 2m/s; the saturated vapor density 
ρn = 0.013188 kg/m3; the air density ρa0 = 1.29 kg/m3. Physical parameters of timber: the radius 
of a circular beam R = 0,07 m; wood density: spruce 450 kg/m3, pine 500 kg/m3, birch 750 kg/m3;  
the porosity: pine Π = 0.672, spruce Π = 0.654, birch Π = 0.591. Thermal parameters of 
wood: the initial temperature T0 = 293 K, the thermal conductivity coefficient at moisture of 
15 % across fibers: spruce λ = 0.11 W/(m∙K), pine λ = 0.14 W/(m∙K), birch λ = 0.14 W/(m∙K).

Fig. 1.5 shows the changes in the thickness of the layer of the dried area ε in time of drying τ.
In Fig. 1.6, the distributions of relative moisture of wood in time are presented. 
The analysis of the relative moisture content for different species of wood: spruce, pine, and 

birch, during the drying process reveals distinct drying dynamics for each wood type. 
It is possible to observe that the samples with greater porosity and lower density lose mois-

ture faster (Fig. 1.6, curves 1, 2); the moisture from wood with less porosity is removed more 
slowly (Fig. 1.6, curve 3). The obtained results correspond to the experimental data given in the 
literature [38–40].
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 Fig. 1.5 The dependence of thickness of layer of the dried area on time of drying 
(curves 1–3 correspond to sort of materials: spruce, pine, birch, respectively)
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 Fig. 1.6 Change in relative moisture of beam skeleton in time (curves 1–3 
correspond to materials: spruce, pine, birch, respectively)
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CONCLUSIONS

The two problems of convective drying of wood of the circular cross-section in nonstationary 
and quasi-stationary formulations have been solved taking into account given properties of the 
material: heat capacity, density, thermal diffusivity coefficients, which are expressed as functions 
of the porosity of the material, densities, and heat capacities of the components. 

In the first problem, a nonlinear mathematical model for forecasting the drying behavior of 
cylindrical beams of capillary-porous material under convective conditions is constructed, enabling 
more accurate control and optimization of the drying process in industrial applications. The gov-
erning equations for heat transfer are formulated, which are discretized using finite difference 
approximations for derivatives. The Kontorovich-Lebedev transform is used to simplify the complex 
differential equations that arise due to the cylindrical symmetry of the wood. Green’s functions 
are employed to address the inhomogeneous differential equations representing the system’s re-
sponse to initial and boundary conditions. Analytical dependences are obtained for determining the 
temperature based on the thermophysical characteristics of the material and the parameters of 
the drying agent in non-isothermal conditions. The solution to Bessel equations involved Bessel 
functions of the first and the second kinds, which were computed using their series expansions 
as well as numerical libraries of special functions in Python. When approximating series solutions, 
Pochhammer’s polynomials are utilized, making it easier to capture the behaviors of heat distri-
bution in the wood profile. Steklov’s theorem ensures that the series solutions used in the model 
are convergent and orthogonal. The resulting system of algebraic equations is solved iteratively to 
obtain the temperature distributions within the wood. Boundary conditions are applied to simulate 
real drying conditions, ensuring that the model accurately reflects the physical processes involved.

For the second problem about mutual phase distribution, the relationship is established be-
tween the drying time and the average parameters of porous cylindrical timber, in particular the 
relative saturation of moisture, the thermal conductivity of timber, which take into account the 
factor of movement of the transient boundary of the dried zone. It has been established that in the 
process of drying timber materials, the movable surface of the phase transition, which separates 
the dried and wet zones, depends on the properties of the material and temperature, which is a 
function of coordinates and time. The results are in good agreement with experimental data and 
results of other research.

The study bridges the gap between theoretical models and practical applications by providing a 
robust framework that accommodates the complex interactions involved in wood drying.
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DRYING PROCESS MODELS FOR A MULTI-COMPONENT 
SYSTEM OF CAPILLARY-POROUS STRUCTURE BASED ON 
THERMODYNAMIC RELATIONSHIPS OF MIXTURE THEORY

Abstract

In this Chapter, the main statements are formulated and fundamental thermodynamic relations 
for moisturized capillary-porous deformable systems are obtained when describing them using con-
tinuum representations. Possible methods of choosing the parameters of the local thermodynamic 
state of a solid deformable multi-component system are presented, being consistent with their 
choice of the liquid (gaseous) phase. A complete system of equations is constructed to describe 
the drying process of dense packing of capillary-porous materials, based on the approaches of 
the theory of the mixtures of porous and dense packing of disperse materials of multicomponent 
three-phase media.

There have been analysed the influence of the external heat flow, the initial volumetric moisture 
saturation on changes in temperature, volumetric moisture saturation, and air density in body 
pores in time by the example of conductive drying.

KEYWORDS

Mathematical modeling, continuum thermodynamics, drying, moisture, diffusion, capillary-po-
rous, multi-component system, phase.

Recently, increased interest among scientists and researchers burst out for developing new 
and improving existing mathematical models and analytical-numerical methods for studying heat and 
mass transfer and the stress-strain state of porous materials, taking into account the influence of 
filtration, diffusion, and other physical processes due to the environmental situation on the planet. 
Problems of drying belong to such energy-consuming processes requiring new sustainable solutions.

To most accurately reproduce the physical content of the heat and moisture transfer process-
es in drying and adequately treat input data, such models are predominantly constructed based 
on general approaches and methods of thermodynamics of nonequilibrium processes. Integrating 
principles from thermodynamics, heat and mass transfer, and porous media mechanics, the model 
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offers valuable insights and practical solutions for improving drying efficiency and effectiveness in 
various applications.

The application of heat and mass transfer models covers numerous engineering tasks, from 
agriculture and food processing to pharmaceuticals, construction, chemical engineering, environ-
mental engineering, the energy sector, and the textile industry. These models are valuable for 
improving process efficiency, reducing energy consumption, and achieving sustainable development 
goals, making them reliable tools in modern engineering.

As a particular case of the heat and mass transfer model in an n-component, three-phase, 
deformable porous wet medium with phase transitions and chemical reactions, the mathematical 
model of drying capillary-porous bodies, examines the evolution of temperature, moisture content, 
pressure, kinematic characteristics of the process, and sensitivity to the influence of parameters 
and boundary conditions. 

Mathematical models of drying of capillary-porous bodies are based on the laws of conserva-
tion of mass, momentum and energy, as well as known experimental dependencies, on the basis 
of which the equations of heat-mass-moisture transfer in the body are constructed. The ability 
to quantify the heat passing inside the body due to thermal conductivity is based on the Fourier 
hypothesis. At the same time, diffusion flows are taken into account on the basis of Fick’s laws, 
filtration flows on the basis of Darcy’s law. 

Essential for advancing knowledge in science and engineering was a noticed similarity between 
heat and mass transfer processes and the universality of diffusion equations. By using common 
principles and mathematical descriptions, scientists and engineers develop more efficient and ef-
fective solutions for a wide range of applications.

Consider the results of state-of-the-art investigations in complex systems, which use models 
of heat and mass transfer.

B. Alaa et al. [1, 2] proposed a novel approach for image restoration and contrast enhance-
ment using a nonlinear reaction-diffusion model. This model is based on the similarity of its behavior 
to a heat equation in low-gradient areas, while in high-gradient regions, diffusion is halted to pre-
serve edges. The algorithm utilizes a divide-and-conquer technique coupled with a reaction-diffusion 
system. In [3], a new numerical approach is introduced using a Lattice Boltzmann method for a 
Gray-Scott based reaction-diffusion model aimed at image restoration and contrast enhancement. 
This method, traditionally used in fluid dynamics, effectively handles noisy images by comparing pixel 
motion to fluid motion.

V. Baala et al. [4] propose a new model of spatio-temporal dynamics concerning the tritrophic 
reaction-diffusion system, offering methodologies for managing optimal control of the system.  
G. Bounkaicha et al. [5] investigated spatio-temporal dynamics using a fractional order SEIR mod-
el, relevant for understanding drying processes. D. Gouasnouane et al. [6] developed a nonlin-
ear fractional partial differential equation for image inpainting, applying nonlinear diffusive filters.  
M. Najm et al. [7] surveyed the construction of Lyapunov functions for reaction-diffusion systems 
with delay, providing stability analysis techniques necessary for drying process models. T. Suganya 
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and S. Senthamarai [8] formulated a diffusive phytoplankton – zooplankton – nanoparticle model 
with a density-dependent death rate of predators, constructed it, and analyzed its local stability. 
D. Ben-Loghfyry and N. Hakim [9], based on a time-fractional diffusion equation, performed image 
and signal smoothing, offering an idea of using anomalous diffusion behaviors for modeling different 
phenomena of image processing. 

A statistical description of catalytic hydrogen oxidation applied by Kostrobij [10] pro-
vides a comprehensive understanding of the complex interactions involved in catalytic reactions 
on metal surfaces, incorporating both the diffusion of reactants and the magnetic properties 
of the ions and atoms involved. A generalized Cattaneo-type diffusion equation in time frac-
tional derivatives is obtained in [11] for electrons with a characteristic relaxation time, and a 
generalized model is proposed based on a statistical approach that accounts for the complex-
ity of relaxation electromagnetic diffusion processes for electrons in layered nanostructures.  
T. Aberqi et al. [12] provided a discrete solution for nonlinear parabolic equations with diffusion 
terms. They proved the existence and uniqueness of a weak solution using an approximation ap-
proach combining internal approximation with the backward Euler scheme, and provided a pri-
ori error estimates for temporal semi-discretization. F. Bazirha and S. Azrar [13] developed a 
DDFV scheme for nonlinear parabolic reaction-diffusion problems on general meshes, applicable 
to complex geometries in capillary-porous structures. B. Gayvas et al. [14] addressed solving 
Stefan’s linear problem for drying cylindrical timber, offering solutions for phase change problems  
in drying. 

Important practical problems in medicine are proposed in [15, 16]. D. Baranovsky and  
T. Bomba identified diffusion scattering parameters for a modified model of viral infection [15].  
M. El Hassani et al. examined the dynamics of a diffusive SARS-CoV-2 model using fractional La-
placian operators [16].

Consideration of a broader range of conditions and parameters that affect heat and mass 
transfer processes is realized in [17], where S. Tokarchuk has unified kinetic and hydrodynamic 
approaches in the theory of dense gases and liquids far from equilibrium, under arbitrary Knudsen 
number conditions. The collision integral of this equation includes the diffusion coefficient in velocity 
space. Insights into liquid and gas interactions are provided by L. Belhachmi et al. [18], who dis-
cussed coupled compressible two-phase flow.

E. Pukach and T. Chernukha [19] focused on impurity diffusion processes, essential for accu-
rately describing mass transfer equations. O. Ogunmiloro et al. [20] focused on fractional order 
spatial models, highlighting computational analysis to ensure the existence and uniqueness of solu-
tions, which is critical for the reliability of drying process models.

A. Dmytryshyn et al. [21] modeled the diffusion of money income, providing methodologies 
for solving this problem. D. Laham and H. Ibrahim [22] proposed a penalty approach for pricing 
the American-style Asian option under the Merton model, which is particularly relevant for to-
day’s global financial markets. By including jump-diffusion in the models, Laham’s approach cap-
tures the skewness and kurtosis features of return distributions often observed in several assets.  
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S. Pradhan et al. [23] modeled mixed-traffic in urban areas, where advection equation captures 
the bulk movement of cars, while the advection-diffusion equation includes the effects of diffusion, 
providing a more detailed description of the motorbike flow. In [24], B. Gayvas et al. presented 
an approach to optimizing the convective drying process by leveraging empirical relationships and 
drying technology principles through improved accounting for thermal diffusion.

Models of capillary-porous materials require researchers to carefully study the effects 
on the transfer processes of capillary forces and diffusion processes, so let’s proceed to  
the theory.

The drying process is characterized by changes in temperature, volume, and composition of the 
system. Let’s assume that the change in composition is possible only due to the phase transforma-
tion of liquid into vapor and vapor into liquid, and is determined by the change in the density of the

components �i V

im
V

�
�
�� �

lim ,
0

 i L v a�� �0, , , .  No chemical reactions are involved. Let Si be the partial 

entropy; εij, σ ij
0  are the strain and stress tensors of the solid skeleton; Pi is the pressure tensor 

of the i-th component; Ti is the temperature; ρi is the density; mi is the chemical potential. All the 
functions depend on the parameters εij, Ti, ρi, Pi, with εij = 0, T = T0, ρ = ρi0 in the initial state.

Let’s elaborate on describing the densities of the porous (granular) medium �i
iM

V
� ,  where 

Mi is the mass of the system components, M Mi
i

�� ,  V = V0 + VH, and VH is the volume of 

the carrier (continuous phase) VH = Va + VL+ Vv. � � � �H
a L V

� � �
1 1 1

 is the specific volume of 

the carrier phase. Let � �
�

V
V V

H

H 0

 be the porosity of the medium and V0 the volume of the solid 

phase. Also, let’s introduce the true densities of the components �i
i

i

M
V

0 � .  To derive the main 

equations describing the transfer processes in a thick layer, the method of local volume averaging 
will be employed. According to this method, each point of the porous medium is mapped to the small 
volume V, bounded by the closed surface S. There are two types of parameter averaging in the main 
equations: averaging values of local volume and averaging phase values (true). The averaging volume 

values F for a phase i are defined as follows: � �� �
1
V

dV
Vi

,  and the averaging phase ones are 

defined as � �
i

i VV
dV

i

� �
1

,  where Vi is the volume occupied by the i-th phase. Assuming that the 

carrier phase is a mixture of liquid and gas, with the latter being a homogeneous mixture of an ideal 
gas – air and vapor, the following is obtained:
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Let’s introduce the volume saturation with liquid � �
V
V

L

H

,  1� ��
V

V
g

H

,  and considering that 

Vv = Va = Vg, the expressions for the scaled densities in terms of the true ρi
0  can be obtained in 

the following form [25]:

� � � �0 0
0

1 0
01� �� � �� ,

 � �� � �L L L L� �� 0 0,  
� � � � �v v v v� �� � �� 1 0 0,

 

� � � � �a a a a� �� � �� 1 0 0,
 
� � � � � � � � �g a v a v g a v� � � �� � � � �� 1 0 0 0 0( ) ( ).

During evaporation, the volume saturation α changes. Assuming that drying loss is possible 
during the drying process, the volume of the skeleton decreases, with the positions of the skeleton 
particles in space undergoing change. The drying-up can be characterized by a changing volume con-
centration Π. At constant temperature and volume, the chemical potential mb according to the for-
mulas for internal energy du T dS d P dV a v L� � � � � � �� � �� � � �� �, , ,  du TdS d dij ij0 0 0� � �� � � �

and heat of phase transition, can be given in the form �
�

�

��
�

�
��

�

�
��

�
�T V

u
r, ,�

�

�
�

�

��
�1

2 1
 where ����

is the change in density of a component b due to phase or chemical transformation of the compo-
nent γ, rbγ being the specific heat of phase transition or chemical transformation of the component γ  

in the component b. The derivative 
�

�

u�

��
 determines the change in the specific internal energy

caused by the change in the mass of the component b due to phase and chemical transformations. 
To express the free energy of an elementary volume, let the free energy components be averaged 
by phase. Moving from phase averaging to volume averaging, the ratio f f

V i i
� �  is taken 

into account. Then the brackets denoting volume averaging are omitted. Provided that there is 
no deformation εij and no change in volume V, the free energy function of the i-th phase can be 
expressed as follows:

F
F
T
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The free energy function of an elementary volume is of the form:
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Let’s assume a single-phase model for heat transfer (T = Ti, dT = dTi) and introduce the scaled 
heat capacity of wet material. To this end, the entropy dependence on the temperature at constant 

volume and concentration is expressed in the form S C T dT
ij

T

T

ef� ��
�, ( / ) .� � 0

0

 In expressions (2.1), 

the derivatives 
�
�

�

�
�

�

�
�

�

F
T

i

� �, 0

 are defined through the heat capacities of the Ci system components

in the isochoric process � � �

� � � �
i i i

i

i
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i

i
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dS
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T
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( , , , ),�
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2 0  which follows that
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� �
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,

.
0

 The expression for the effective heat capacity in terms of the heat capa-

cities of the components is of the form:

C C
C C C

C
C C C

ef
L L L v v v a a a L L v v a a� �

� �
� �

� �
0

0 0 0

0
0

0

� � � � � �
�

� � �
�

.

The explicit form of the functions S, σij, mi can be found by expanding the function F F Fi
i

� ��0  

in a Taylor series in powers εij through the first two invariants l1 = ε1 = εkk, l2 = ε2 = εij of this 
tensor (k = i =j = 1, 2, 3) and by retaining terms F0 in the expansion no higher than the second 
order of smallness [26]. As in the previous paragraph, the effective stresses on the elementary 
site � � � � �ij ij

c
ij
H

ijc ijH� �� � � � �1 � � .
The application of surface forces σijH leads to the movement of the load-bearing phase and 

system deformation. The determination of the stress tensor σijH is related to solving the problem 
of the flow of a continuous phase in the system.

The volume-averaged free energy of elastic deformation can be determined by analogy with a 
continuous medium. Then the total free energy is expressed as follows [29]:

F T w K G K T T Gij kk t� � � � � � �� � �, , / / / /� � � �� � � �� � � �� � �1 2 2 3 1 3 2 32
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F T w K G K T T Gij kk t� � � � � � �� � �, , / / / /� � � �� � � �� � � �� � �1 2 2 3 1 3 2 32
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with Poisson’s ratio ν; Laham’s ratio λ, Young’s modulus E K G�
�� � �� �

�� �1 1 2
2 3

� �

�
/ ;  

the bulk elasticity modulus K; the shear modulus G; the resultant change in the unit volume of 
the body in the absence of stresses ε; the initial temperature T0; the current temperature T; the 
pore pressure P; the atmospheric pressure P0; PH = P – P0; the linear thermal expansion coeffi- 
cient αTw; the linear shrinkage coefficient bTw. 

The relationship between the average stress tensor, which determines the contribution to 
the macrodeformation of a granular heterogeneous system under drying conditions, is given as 
follows: � � �ij ij

f
H

ijP� �� �,  where σ ij
f  is the effective stress tensor and is expressed by Hooke’s 

law through the solid phase strain tensor as follows:

� � � � � � � � � � � �� � � � � �
ij
f

f mm
ij

f ij f
ij

f tP� � � � � � ��� �� �( ) /1 2 2 30
0 0� 00 0 0 0

0

T T
L v a

ij�� 
 � �� 
�

�
�

�

�
� 


�
	 � � � �� � �

� , , ,

.

� � � � � � � � � � � �� � � � � �
ij
f

f mm
ij

f ij f
ij

f tP� � � � � � ��� �� �( ) /1 2 2 30
0 0� 00 0 0 0

0

T T
L v a

ij�� 
 � �� 
�

�
�

�

�
� 


�
	 � � � �� � �

� , , ,

.

Here, � � �� � �
f f f, ,   are the effective coefficients, the volume fraction of the skeleton in the system 

being 1-Π. As regards a capillary-porous elastic-plastic body, 1 1 1�� � �� � � �� � �� � � � ��
f G 

is the effective strain shear modulus, with � � � �� � �, ,T i  as a function of relative 
shear in the plastic strain region determined from measurements of generalized strains

�
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0 5

ij ii ij i j
,

, ν as Poisson’s ratio and generalized stresses for 

simple loading cases; 1�� � �� � ��
f  is the generalized Laham’s constant. As far as a granular medium 

is concerned, 1 1 1
0
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1 1�� � �� �� �� �� �
f f,  are the elastic moduli of the granular skeleton depend on the struc-

ture and bonds between the grains (the greater the porosity, the lower the elastic modu-
li, other parameters being equal). Here, � �� �

0 0, are Laham’s constants of an elastic grain;
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,  E is the effective Young’s modulus. For a

granular medium, the effective coefficients of thermal expansion and shrinkage, expressed through 
the effective elastic moduli, are as follows:
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are the elastic deformation coefficients averaged over the elementary volume. For a wet porous 
material, all these values are determined on the basis of experimental studies, and as practice 
shows, they are functions of moisture content and temperature. Based on the above, the expres-
sions of entropy and chemical potential have the following form:
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2.1 Entropy balance equation

According to the basic principles of the thermodynamics of irreversible processes, the product 
of absolute temperature and entropy growth rate is equal to the sum of the products of fluxes and 
the corresponding thermodynamic forces. Then, the energy transfer equations can be expressed 
in the form [30]:

�
�
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�
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�
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�
�

S
T Pq t tp t

     

� .  (2.5)

Here, λq, λtb, λtp are the coefficients of heat transfer; Πt  is the part of entropy production

related to the redistribution of heat and mass in the body volume; the quantity of � �
�

�� �
��

�
, 

resulting from the part of entropy production due to evaporation.
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For small changes in temperature, and mass content, at which the characteristics of the 
medium can be considered constant, equations (2.3), (2.4) have the form:
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�1 1P P� ,  �tp � 0,  � �t � 0.  The entropy balance equation in this case is expressed as follows:
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where αi0 are the initial volume concentrations. Here, all the quantities included in equation (2.7) 
are averaged over a variable volume. Considering the formula for differentiating integrals over a 

variable volume 
d
dt
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 and the expression of the effective heat capacity in 

terms of components, as well as the fact that the first two terms are related to the deformability 
of the skeleton, the following is obtained (nonlinear terms above the second order of smallness 
are discarded):
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with the fluxes J i l v ai i i� �� �� �  , , ;  J De L vL gL� �� �� � ;  DgL is the velocity of the liquid and gas 
phases, provided that at the interface (gL): �a gLD� ;  J De v v gL� �� �� � .

In this case, the nonlinear entropy balance equation takes the form:
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.  (2.9)

Here Qij is the intensity of heat exchange at the interface; r r C C TL pv0 � � �� � .  The densities 
included in the heat transfer equation are scaled, not true.

2.2 Convection-diffusion equation for mass transfer

Equation (2.9) includes the time derivatives of ρ ρ ρv a L, , ,  which follow from the mass balance 
equation of the k-th component [31]:
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J
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,  k L v a�� �, , ,  (2.10)

where Jk k k� � �


,  


υk  is the velocity of the k-th component of the carrier phase, with ρkl  as the 
production capacity of the k-th component corresponding to the phase transition of the l-th com-
ponent to the k-th. These equations can be written as follows:
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The heating of the material induces the filtration flow of liquid and gas. The liquid flow is caused 
by a gradient of liquid concentration in the pores α, temperature T, and pressure of the vapor-air 
mixture P. The flows of steam and air are caused by the gradients of pressure and mass concen-
tration of steam in the mixture. Assuming that the vapor-air mixture forms a homogeneous phase 
and the liquid is water, the velocity of the components satisfies Darcy’s equation, the fluxes of the 
components of the carrier phase are presented as follows [31, 32]:
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J D T K K P P gL L L
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Here D D K K K P gL e g l e cap, , , , , , ,� �
 �  are the effective diffusion coefficients of liquid, gas, per-

meability, the relative permeability of gas and liquid, effective viscosity of the gas mixture, capillary 
pressure, acceleration of the earth’s gravity; Ji  are the flows of liquid, steam, and air; δ  is the

thermogradient coefficient; K
r

�
�

2

1 �
,  with r as the characteristic radius of the pores in the 

skeleton. The filtration coefficient K  depends on the pore size in the sample and the character-
istics of the pore space. As a rule, it is assumed that the relative permeability of a substance is 
proportional to the volume fraction of the substance in the pores [33, 34]: K Kg l� � �1 � �, .

When a liquid phase is present in the pores, zones of entrapped air can occur. In those zones 
of the material where the air is entrapped, the velocities of liquid and gas are equal and the flows 

of liquid and vapor are determined by the following relations J Ja
a

L
L2

1
�

� �
�

�
�

,  J Jv
a

L
a2 2�

�
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,  with

the first relation JL  being satisfied [35]. 
Let the transition from the entrapped state to independent phase motion occur when the value 

α decreases in a certain range of the two-phase zone � � �g L� � ,  where α αg L,   depend on the 
structure of the medium and are considered to be given. To describe the movement of phases in 
the entire region of moisture content change, the air and vapor flows are presented in the form 
J f J f Ji i i� � �� �1 21 , i v a�� �; ,  with the continuous function f, along with its derivative, chang-
ing from 1 to 0 for � � �g L� �  and being equal to one for � �� g  and zero for � �� L.  Let it 
be expressed in the form:
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In this case, it is possible to study the behavior of the quantities in question at different ratios 
of flux rates. Summing the first and third equations of system (2.10), the equations of moisture 
and air transfer are obtained:

�
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�� � ��
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�
� � � �� l v v mJ0 0 0 0,  J J Jm l v� � ,

�
�

�� ��� �� � � �
�

� �� 1 00
a aJ .  (2.13)
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If the porosity is considered constant, then the unknowns in these equations are α and ρa.  
Defining the fluxes of the component velocities as functions of the liquid volume fraction α, pres-
sure P, and mass fraction of vapor in the vapor-air mixture, the following equations will be satisfied:
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With this representation of the fluxes, the problem of heat and mass transfer can be solved 
in a one-dimensional formulation. This is possible when the layer thickness is small compared with 
the length and width. With � � 0,  the first equation of system (2.13) becomes the equation for 
determining the density of unsaturated steam ρv

0.  The value of DL  is determined as in [35]:
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where D DL LL0,  are the diffusion coefficients of the liquid in the solid skeleton and in the liquid, 
respectively.

The effective viscosity coefficient of the vapor-air mixture is a function α. Moreover, � �L g� ,  
where µg  is the viscosity of the gas mixture for 0 � �� �g,  after which µef increases from µg  
to µL  for � � �g L� �  and remains constant if � �L � � 1.  The thermogradient coefficient is 
also a function α:

� � � �� � � � �� ��
��

�
��0

2
1 4 0 5, .

In the state of entrapped gas, for � �� L,  µef  and the effective vapor diffusion coef-
ficient Def  are also a function α, with D Def = max  for 0 � �� �g  and decreasing to zero for 
� � �g L� � . In the entrapped state, no vapor diffusion occurs in the material � � �v a2 2 12� � .  

The vapor-air mixture is considered an ideal gas. Pressure P
M M

RTg
v

v

a

a

� �
�

�
��

�

�
��

� �0 0

.  The density of
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saturated vapor is a function of temperature and for water is approximat-
ed by the Filonenko formula (no hygroscopic state of the material is considered here)

�v
vM

RT T
0 133 18 681

4105
35
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�
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�

�
�exp .  when � � 0.  If the deformation of a solid skeleton is 

subject to Hooke’s law, then linear relationships can be assumed for the fluid, which links 
overpressure, density, and temperature. The state equation for a fluid can be expressed as
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�  is the over-

pressure in the fluid. Here, βpL, αTL  are the coefficients of volume and temperature expansion, 
respectively. The overpressure in the carrier phase is P P Pg L� �� � �1 � � .  The expression for PL 
may include the capillary pressure, which depends on the surface tension.

2.3 Compatibility equation

If the porosity Π changes during the drying process, it is necessary to have an equation to 
determine it. Thus, the elasticity relations for a solid skeleton are considered. By Hooke’s law for 
a micro-volume of a solid skeleton:
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Let the expression be averaged by convolving it by the indices:
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The first invariant of the averaged strain tensor ��0 0

kk  determines the change in the true

density ρ0
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kk kk .  For the averaged quantities over the volume of the

solution ��0
kk  is obtained:
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By Hooke’s law for fictitious stresses:
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Differentiating expression (2.15) by τ and considering relation (2.14):
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and by substituting (2.18) into (2.17), the compatibility equation that relates the true densities 
to the porosity is obtained:
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2.4 Momentum balance equation
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To determine the deformations and average displacements in a solid skeleton, the momentum 
balance equation for a saturated porous medium is obtained in the form [27]:

�
�
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R10  is an interfacial variable. By determining 
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R10  from equa-

tions (2.20) and substituting into (2.21):
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where 
  

u u u1 2 3, ,  is the displacement vector in the direction of the axes Ox Ox Ox1 2 3, , .  
To solve the system of equations (2.9), (2.13), (2.19), (2.22), it is necessary to set the 

single-valued conditions for heat and mass transfer, as well as the mechanical and initial conditions. 
The mechanical conditions at the boundary are given by the surface force vector f



,  or the displace-
ment vector 



h,  or the ratio between the vectors f


 and 


h.  The condition � ij j in f�  reflects the 
equilibrium of the stresses and forces applied to the boundary distributed over the body volume. 
For the bearing medium at the boundary, the heat and mass flows of moisture and air are specified. 
Initial conditions are set at the initial temperature t = 0,  liquid concentration α, air concentration 

�
�

a
vs

v

P
T

M
RT� �

� �
0

0 ,  and zero initial stresses. Besides, when setting the heat flux in the case of 

contact drying, q T r j C h
T

e v p p� � � � �
�
�

� �
�

* ,  where ρp pC,  are the specific density and heat
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capacity of the sieve (the thin plate) on which the grain layer lies. In particular, for a multicompo-
nent inhomogeneous linear viscoelastic body, the momentum balance equations are as follows [27]:
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Here, ui is the displacement, a comma marking the differentiation along the i-th coordinate.

2.5 The key system of equations

The obtained relations allow writing a complete system of equations for determining functions 
�, , , , ,N P v a
 � � �  and u ii ij ij, , , , ,� � �� �12 3  namely the heat conduction equation:
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– the equation for the pressure:
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where αTL,  βpL  are the coefficients of temperature and volume expansion of the liquid; 
– the equation for the density of saturated vapor:
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– the equation of mass balance:
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Summing the mass balance equations for vapor and liquid, two equations for determining ρa
0  

and α are obtained:
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Invariants for the averaged values over the volume of the solution � �
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Momentum balance equation:
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The pressure difference between the carrier and solid phases due to strength:
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 � � 
 	 � � �� � �

� �
�

,   (2.47)

where ��f , � �f f,   are the effective moduli of elasticity and expansion. Average velocities  
and strains: 
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,  (2.49)

where S j0  is the inner surface of the porous body.

2.6 Numerical experiment

Let’s consider a thin plane plate, a surface of which from one side is subjected to the external 
heat flow q te � �  (Fig. 2.1). 

 Fig. 2.1 Schematic representation of the model

z

L

h

l

Conductive contact drying takes place in a steam-air (gas) environment by transferring heat 
to the material when it is in contact with heated surfaces. The plate has an area s, thickness hw, 
its material is characterized by density ρw, specific heat capacity Cw. A layer of capillary-porous 
moisture-saturated material of the thickness I is placed on this plate. The capillary-porous material 
has the porosity Π, density ρ0

0,  specific heat capacity C0, and thermal conductivity coefficient in 
the dry state λ0.

From the open side of the capillary-porous material, the moisture evaporates into the cavity of 
the volume V and the depth L = V/S. There is an outlet in the cavity through which the steam-air  
mixture flows into the environment under pressure Pe. The cavity is thermally insulated. It is possi-
ble to neglect the heat capacity of its walls. Such an installation can serve as an example of a drying 
chamber for conductive drying.
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The system of heat and mass transfer equations is described as follows:

T T
d
d

C T r T r J C TJef v ef v pi
i l v a

i/
, ,

0 0 0
0

01
�
� � � �� �� ��� �� � � � � � ��

� �
� ��

�
��
,  (2.50)
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L v v

mJ
0 0 0

0,  (2.51)

J J JL v m� � ,
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� �� ��� ��
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� � �

1
0
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�
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aJ


,  (2.52)

�v
vM

RT T
0 133 18 681

4105
35

� �
�

�

�
�

�

�
�exp , .  (2.53)

Here Π, α, r0, λef, Ji are the porosity, relative moisture saturation, specific heat of vaporiza-
tion, effective thermal conductivity, and moisture, steam, and air flows, respectively. If the evapo-
ration is not strong, then it can be roughly assumed that the steam pressure in the cavity is equal 
to the saturation pressure. In this system of equations, the temperature T, moisture saturation 
α, and air density ρa

0  are unknown. At the initial moment, there can be moisture, air, steam in the 
pores. It is possible to assume that the steam-air mixture is a mixture of ideal gases and in the wet 
state, when the capillary-porous material is saturated with moisture α > 0, the density of steam-
air mixture is a function of temperature only. The equation does not include the phase transition 
criterion, the dependence of which on the parameters is complex. The equations remain valid in the 
dry zone, where there is no moisture, and α = 0, Iv = 0 in this domain, equation (2.52) serves to 
determine the moisture density.

The boundary conditions are formulated as follows: at the initial moment of time, the pressure 
of the steam-air mixture in the capillary-porous material and in the cavity is equal to the external 
atmospheric pressure Pe: Pg = Pe(0) = P0.

The initial temperature:

T(x,0) = T0. (2.54)

The moisture saturation α(x, 0) = α0 ≤ 1. 

The air density �a
vs

ax
P P

RT
M0 0

0

0, .� � � �
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The boundary conditions on the side of the heated plate are as follows:

q T C h
T

r J r T r C C Te w w w v L pv� � � �
�
�

� � � � � �� �� �
�

* *, . 0  (2.55)

The moisture and air flows at the interface from the side of the plate are zero:

J Jm a= =0 0, . 

The boundary conditions on the surface of the capillary-porous material from the side of the 
cavity with the opening for x = l are as follows:

� � � � �� � �
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T r J V S C C

T
t

V
S

R
t

R
tL a va v vv a

a
v

v* / 0 0
0 0

��
�
T,  (2.56)

where the first term ��T  characterizes the heat flow that penetrates inside the body; the 
second term is equal to the product of the specific heat of vaporization multiplied by the density of 
the moisture flow that evaporates; the third term is the power spent on heating the surface; the 
fourth term is the flow of heat transmitted by the movement of the steam-air mixture.

The total flow of vaporized moisture should be equal to the flow rate of the moisture flow-
ing out through the hole, to estimate which let’s use the formula for adiabatic output from the  
cavity [36]. To determine the flow of moisture, the equation of conservation of moisture mass in 
the cavity is used:

SJ Q V
tm e

v

g

v� �
�
�

�
�

�0

0

0

,  (2.57)

the air flow:
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0
0, .  (2.58)

The vapor density is equal to the saturated vapor density. The movement of gas in the cavity 
into which evaporation occurs is neglected. The gas temperature in the cavity is assumed to be the 
same throughout the volume.

The flow of the steam-air mixture through the drainage hole is determined by the formulae of 
output from the cavity:
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Here Tc, Pc are temperature and pressure in the cavity, Qe is the gas flow through the drainage 
hole [37], γ is the adiabatic index, Rg is a gas constant. The boundary conditions are obtained under 
the assumption that the gradients of temperature, pressure, and concentration across the cavity 
are negligible, and the vapor pressure in the cavity is close to the saturation pressure for the  
cavity temperature.

Let’s write the system of nonlinear differential equations (2.1)–(2.3) in a matrix form:

�
�

� ��� �� �
�
�

�
T

E u
x

J


0,  (2.60)

where u T a� � �, , ;� �0  


E  is a vector, the components of which are the total content of enthalpy, 
moisture, and air in a unit volume of the material; 



J  is a vector composed of heat, moisture, 

and air flows, it is linearly related to the gradients T, α, P; ca a g� � �0 0/ ;  J u A u
F u

x
� � � � � � � � �

�
;

F F T P ca� � �, , , ;�  A(u) is the 3 4×  matrix, and the 3 5×  matrix (if capillary pressure is taken 
into account) [38–40]:

A a i jij� �� �� � �, , , , , 14 13

where a11 � �, a12 0= ; a
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;
 
a Def v a24
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a Def v a24
0 01� �� � �� �� � � � ;

 
a31 0= ;

a32 0= ;
 
a

K

ef
a33
01

�
�� � �

�
� ;

 
a Def v a34
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Here D C Cef pa pv, ,   are the coefficients of effective diffusion, specific heat capacities of air and 
steam at a constant pressure, respectively; λ is the coefficient of effective thermal conductivity:
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where Kg � �1 �  is a relative gas permeability; r0  is the heat of vaporization for T K= 0 ; K;
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The system of equations has to satisfy the boundary conditions:

J u Q J u Qx x� �� � � � � �0 0 1 1, , 

and the initial conditions: ( , ), , ,0 0 10 0� � � � � � � �x l t T T  � �

�a vs aP P T M RT0
0 0� � � ��� �� / ,  (2.61)

Q

q C h T te p p

0 0
0

�

� � �� /

 is the gas flow from the side of the plate,
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The nonlinear problem is solved by two methods for comparing the results.
Construction of a difference scheme.
Let’s integrate the matrix Eq. (2.60) with respect to x over the interval x

x
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�
2

,  x
x
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2
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Equation (2.62) after the difference approximation is reduced to the difference scheme.  
A three-point approximation of the spatial variables is used. The system of nonlinear algebraic 
equations is solved by Newton’s method. 

The linearization method.
In order to solve the boundary value problem, in addition, an iterative process is built, at each 

step of which a linear boundary value problem is solved for the next approximation, which uses the 
information of the previous one. A small-time step is used to ensure convergence of iterations.
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 of the problem solution is known, then the exact solution u* can

be presented as follows u u ui i
* *.� � �  

Put u ui* .� �1

Based on the Lagrange formula:
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Using quadrature formulae of the interpolation type according to the 3/8 rule [38], let’s obtain 
the difference scheme:
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by �� ��
�
T a, ,� �  the differentiations with respect to T a, ,  � �  are denoted.
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Taking into account Eqs. (2.63), (2.64) and the boundary conditions:
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arrive at the iterative scheme of linear equations. If the i-th iteration of the solution uin
k  is known, 

then using Lagrange’s formula E E E u ui n
k
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, /+1 2  are values of the vectors 
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E Ii i,  at the points n k n k, , / , .� � �� �1 2
To verify the result, let’s apply a slightly modified method of linearization, which is less 

time-consuming for the difference scheme. It is possible to proceed from equations (2.60), (2.61), 
(2.65)–(2.68), where Q q q qh m a0 0 0 0� � �, ,  are the flows of enthalpy, moisture, and air through the 
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k
0 1 0� � � � �/ ,  N is the number of nodes on x; 

Q q q qh m a1 1 1 1� � �, ,  are flows through the surface x l= :

q
V
S t

c c T r
Q

S X
X c ch aN va vN vv N vN

k e

N
N pa pv1 0 1

� �� � ��� �� � �� � �� ��
�

� � � TT rN ��
�

�
�0 ;

q
V
S t

Q
S Xm vN

e

N
1 1
� �

�� �
�
�
� ;

q
V
S t

Q X
S Xa aN

e N

N
1 1
� �

�� �
�
�
� .  (2.69)

Based on Lagrange’s formula, let’s present
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1 1 1 2 2 1 2, ,/ /+ +  are matrices formed as follows: 
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By analogy:
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The variables Q Q0 1,  are presented in the form:
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Taking into account these ratios, equations (2.65)–(2.68) are written as follows:
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The transfer coefficients are taken from the Lykov’s work [32]. This model describes mass 
transfer processes under moderate heat loads.

The capillary-porous material for which:
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Calculations are made for an aluminum plate and a capillary-porous material of different po-
rosity (cork tree). The flow of the continuous phase is assumed to be slow. Inertial terms are ne-
glected. Transfer coefficients are considered to be known functions of saturation and temperature.

T0 = 290 K, h = 2∙10-3 m, DLL = 1.5DL0, a0 = 0.2, R = 1.01325∙105 Pa, T0 = 8.31 J/Kmol,  
Mv = 1.8∙10-3 kg/mol, Ma = 2.9∙10-3 kg/mol, cpa = 1.006∙103 J/(kg∙K), cpv = 1.103∙103 J/(kg∙K),  
Cva = 718 J/(kg∙K), Cvv = 862 J/(kg∙K), aL=9.5∙10-1, r0

62 3 10* .� � J/kg,  Pe = 10 Pa,  
I = 5∙10-2 m, L=3∙10-2 m, П=9∙10-1, CL = 4.190∙103 J/(kg∙K), C0 = 103 J/(kg∙K), K m� �10 14 2,  
mL = 5∙10-4 kg/(m∙s), mef = mg = 10-5 kg/(m∙s), Def = 5∙10-5 m2/s, λ0 = 6∙10-2 W/(m∙K),  
λL = 6∙10-1 W/(m∙K), ag = 8.5∙10-1, al = aа = 10-1, ρ0 = 6∙10-2 kg/m3, ρL = 103 kg/m3, 
δ0 = 10-3 1/K, DL0 = 10-3 m2/s, Tc = 327 K, s/S = 10-4, V/S = 3∙10-2 m.

As an example, porous materials with the porosity Π = 0.4, 0.6, and 0.8 heated by heat flows 
q = 3∙103, 5∙103, 104 are considered and the influence of various parameters on drying processes 
is investigated. The results of the calculations are shown in Fig. 2.2–2.7. 

The solutions of the problem are obtained by finite-difference and iterative methods, and the 
comparison of the results of these solutions is used to study their accuracy. Calculations have 
shown that, depending on the magnitude of the heat flux, porosity, and initial saturation of the 
capillary-porous material, evaporation proceeds differently. The temperature (dependent on po-
rosity) under the action of the flow q = 3∙103, 5∙103, 104 W/m2 with the porosity Π = 0.4, 0.6 
during 500 s is monotonically increasing function of time, but for q = 104 W/m2 and Π = 0.8, this 
dependence is no longer monotonous either inside or on the surfaces of the material. With a heat 
flux q = 104 W/m2 and the porosity Π = 0.8, already at the 150th second of drying, a moisture 
of a certain mass is released from the material (condensation caused by oncoming warm and cold 
flows), while the temperature first decreases slightly and then increases with time slower than 
in a material with the same characteristics but with less porosity. In this case, the lower the po-
rosity, the greater the gradient of temperature rise. This property is used in problems of thermal 
protection of materials. With the same porosity and heat flow at the beginning of the evaporation 
process, the temperature increases faster with a lower initial moisture content of the material.
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 Fig. 2.2 Temperature variations in time for Π = 0.9 and α0 = 0.8.  
The curves 1, 2, 3 correspond to the q = 104, 5∙103, 3∙103, respectively
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 Fig. 2.3 Change in volumetric saturation in time on the outer surface for α0 = 0.8. 
The curves 1, 2, 3 correspond to the q = 3∙103, 5∙103, 104, respectively
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 Fig. 2.4 Temperature variations in time under the action of the flow q = 5∙103. 
The curves 1, 2, 3 correspond to the porosity Π = 0.4, 0.6, 0.8, respectively
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 Fig. 2.5 Change in volumetric saturation in time on the outer surface for q = 5∙103, 
a0 = 0.8. The curves 1, 2, 3 correspond to the porosity Π = 0.4, 0.6, 0.8, respectively
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 Fig. 2.6 Temperature variations in time on the heating surface (curves 1);  
external surface (curves 2) for q = 104, α0 = 0.8 for different values of porosity 
(dashed curves for Π = 0.4; solid curves for Π = 0.6, dotted curves for Π = 0.8)
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 Fig. 2.7 Change in air density in time on the heating surface (curves 1);  
external surface (curves 2) for q = 104, α0 = 0.8 for different values of porosity 
(dashed curves for Π = 0.4; solid curves for Π = 0.6, dotted curves for Π = 0.8)

1.2

1.1

1.0

0.9

0.8

0.7

0.60.6

ρ a

80 100 120 140 16020 40 60

1
1

1

2
22

t, s



77

2 DRYING PROCESS MODELS FOR A MULTI-COMPONENT SYSTEM OF CAPILLARY-POROUS STRUCTURE  
BASED ON THERMODYNAMIC RELATIONSHIPS OF MIXTURE THEORY

CH
AP

TE
R 

 2

CONCLUSIONS

The basic statements are formulated and fundamental thermodynamic relations for moisturized 
capillary-porous deformable systems are obtained when describing them using continuum repre-
sentations. Possible methods of choosing the parameters of the local thermodynamic state of a 
solid deformable multi-component system are presented, being consistent with their choice of 
the liquid (gaseous) phase. A complete system of equations is constructed to describe the drying 
process of dense packing of capillary-porous materials, based on the approaches of the theory of 
the mixtures of porous and dense packing of disperse materials of multicomponent three-phase 
media. There have been analyzed the influence of the external heat flow, the initial volumetric 
moisture saturation on changes in temperature, volumetric moisture saturation, and air density in 
body pores in time by the example of conductive drying. The magnitude of the heat flows of the ex-
ternal environment and the initial relative moisture saturation during contact drying of the material 
affects the behavior in time of both the temperature and the saturation of the porous solid. These 
characteristics are especially important in the first drying stage when the influence of the initial 
conditions is important. Therefore, the phenomena that occur at the heating stage with a large 
initial moisture content were considered.
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Mathematical modeling of drying processes in porous 
materials considering capillary properties

Abstract

The Chapter aims to provide a detailed understanding of the drying kinetics and to identify 
conditions under which drying is most efficient, considering external factors such as airflow and 
electric fields. The model aims to predict the distribution of liquid and gas phases within the porous 
structure and the resulting mechanical stresses, contributing to optimizing drying processes in 
industrial applications. A particular focus is on the capillary properties of the porous medium being 
dried. Moreover, a sustainable mathematical model is proposed for analyzing the moisture and 
temperature distribution, radial displacements, and stresses within a multicomponent dispersed 
material of the capillary-porous structure. By solving the key system of differential equations for 
mass and heat transfer, and incorporating the mechanical properties of the material, the model 
predicts the changes in moisture concentration, temperature, and mechanical stresses in a materi-
al at any point in time and its placement within the layer. The work results provide insights into the 
drying kinetics and mechanical behavior of the grain under different drying conditions.

KEYWORDS

Drying, porous materials, capillary properties, phase transition, mass transfer, diffusion, drying 
kinetics, mathematical modeling, structural model.

In modern conditions, sustainability is the primary requirement for developing all technologies 
used in the national economy. The field of agricultural product processing, specifically drying, is no 
exception. Since drying is an extremely energy-intensive process, one of the main requirements 
for its implementation is saving energy resources. Therefore, engineering tasks aimed at reducing 
energy consumption in the drying of agricultural products are urgent and relevant.

The application of mathematical modeling is one of the effective ways to solve engineering prob-
lems due to the accessibility of its tools and their powerful capabilities. Specifically, mathematical 
modeling is widely used to develop new drying technologies. 
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The problem under consideration is the convective-heat drying of a layer of wet dispersed ma-
terial with a capillary-porous structure. It is possible to consider the stage of falling drying, when 
the grain is already heated to the desired temperature and is dried for a certain period of time. 
The heating of the drying agent stops, i.e., the grain is blown by the drying agent of an ambient 
temperature. This will provide an opportunity for crucial savings on energy resources.

Models of drying are typically based on the thermodynamics of irreversible processes. The 
hypothesis of local thermodynamic equilibrium is accepted, which, for small deviations from the 
equilibrium position in continuous media, is justified in the works of S. de Groot, I. D’yarmati,  
A. Kovalenko, and others. 

Along with internal energy, the existence of a state function, entropy, is postulated. The con-
cept of entropy is introduced to distinguish between reversible and irreversible processes. The 
acceptance of the hypothesis of local equilibrium, considering the equations of state, entropy bal-
ance, energy, mass, and momentum in many cases allows for the determination of all parameters 
characterizing the irreversible process.

Drying models must consider the actual mechanisms of heat and moisture transfer depending 
on the drying method, the impact of kinetic and geometric characteristics of the body, the con-
trolling parameters of the drying agent, and their impact on the stress-strain state and stability of 
body shapes, maintaining their quality during the drying process. They are based on specific macro-
scopic physico-mathematical models of heat and mass transfer and require effective analytical-nu-
merical methods for solving the corresponding boundary value problems of mathematical physics. 

For the physico-mathematical modeling of processes in solid bodies, thermodynamic methods 
have been developed in the works of Y. Burak, E. Chaplya, O. Chernukha, and others [1]. Special 
attention is required for the mathematical description of the material structure. From the per-
spective of significance for the agro-industrial and food sectors of Ukraine’s economy, special 
attention is deserved by the modeling of drying processes of dispersed bodies with capillary-porous 
structures, which are multiphase and heterogeneous. 

The mathematical model of drying capillary-porous bodies, as a special case of the heat and 
mass transfer model in an n-component three-phase deformable porous moist medium with phase 
transitions and chemical reactions, studies the evolution of temperature, moisture content, pres-
sure, kinematic characteristics of the process, sensitivity to parameter influences and boundary 
conditions. A moist porous body is generally considered as a three-phase medium containing a 
skeleton (porous or granular structure), liquid, and gas (homogeneous steam-air mixture), filling 
the pores or gaps between the grains, although the material is generally treated with chemically 
active mixtures before drying, interacting both among themselves and with the material, forming 
n-phase structures.

For reflecting multiphase nature, approaches of mixture theory and methods of multi-velocity 
system mechanics, capillary models of the porous body, and combined methods are used. When 
modeling heat and mass transfer processes, capillary models are used, and when solving mechanics 
problems, methods of homogenizing the heterogeneous structure are employed, obtaining physical 
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relationships for the body as a whole based on certain assumptions about the nature of temporal 
and spatial changes in the studied fields.

The continuum-thermodynamic approach to building physico-mathematical models of solid solu-
tion mechanics, describing interconnected mechanical, thermal, and diffusion processes, consid-
ering local state changes of the components, was developed in the works of Y. Burak, E. Chaplya,  
O. Chernukha, B. Gayvas, B. Gera, and others. This approach is based on the following propositions: 
for spatially inhomogeneous and non-equilibrium systems, the hypothesis of local thermodynamic 
equilibrium is accepted, implying that the state of physically small subregions of the system is 
determined by conjugated physical parameters describing the equilibrium state. For describing 
mechanical, physical, and chemical processes, the conjugated parameters are pressure and vol-
ume; stress tensor and strain tensor; thermal conductivity – absolute temperature and entropy; 
diffusion – chemical potential and particle concentration. To determine the change in mass, energy, 
and momentum, balance and kinetic relationships and equations of state are used.

The description of interconnected thermal, mechanical, and diffusion processes in porous 
multi-continuum media was considered by B. Gayvas, O. Hachkevych, L. Khoroshun, Y. Kubik,  
R. Kushnir, R. Terlets’kyi, V. Chekurin and other scientists. If the characteristic distances over 
which the system parameters change are greater than the characteristic dimensions of the inho-
mogeneities, the principle of homogenizing the heterogeneous structure is used. Then the macro-
scopic parameters are taken as the average effective coefficients over elementary volumes, satis-
fying the classical equations of thermoelasticity. The effective coefficients for granular, fibrous, and 
layered media were determined based on stochastic equations for micro-inhomogeneous bodies.

For building models of finely dispersed media, the approach of multi-phase media mechanics 
is also used, developed in the works of A. Neimark, L. Heifets, R. Nigmatulin, V. Nikolaevsky, and 
other scientists.

Mathematical models of drying porous bodies are based on the laws of conservation of mass, 
momentum, and energy, as well as known experimental dependencies, on the basis of which equations 
of heat and mass transfer of moisture in the body are constructed. The possibility of quantitative 
estimation of heat passing inside the body due to thermal conductivity is based on Fourier’s hypoth-
esis. At the same time, diffusion flows are considered based on Fick’s laws, and filtration flows on 
Darcy’s law. The similarity of heat and mass transfer processes is considered in the works of A. Kutz,  
V. Mustyats, M. Razin, and others. When building models of convective mass transfer, both condi-
tions of convective mass exchange and conjugated problems using boundary layer theory are consid-
ered. In addition, the drying model includes the basics of the theory of thermoelasticity of viscoelastic 
bodies, considering the anisotropy of the structure and the basics of the theory of shape stability [2].

The formulation of drying problems is based on models describing interconnected phenomena 
and processes of heat and mass transfer and deformation occurring during drying. The drying 
process is not only a thermophysical one but also a technological one, where the forms of mois-
ture bonding with the material, the regularities of heat and moisture transfer in wet materials 
during the interaction of porous bodies with hot surfaces, heated gases, and electric fields play  
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a significant role. During drying, the technological, biological, and structural-mechanical properties 
of the material change, due to the change in the forms of moisture bonding with the material and 
its partial removal by evaporation. The science of the forms of moisture bonding with the material 
was developed by P. Rebinder and further developed in the works of S. Lipatov, G. Maksimov.

P. Kostrobij’s research in the field of thermodynamic potentials, diffusion processes, and sim-
ulation of interactions in a semi-infinite medium is related to the mechanisms of heat and mass 
transfer and reaction-diffusion processes in porous materials during drying and can be successfully 
applied to such problems. B. Markovych, M. Tokarchuk, I. Ryzha and others suggeste using non-in-
teger integral-differentiation to model systems, which are characterized by “memory” effects, 
structural heterogeneity, spatial non-locality, deterministic chaos, and self-organization.

A large number of works are devoted to the mathematical description and quantitative study 
of drying porous materials in stationary and non-stationary modes. Among them, the works of  
A. Bomba, N. Grinchik, O. Lykov, P. Lutsyk, Y. Sokolovsky, describe the processes in porous media 
based on the principle of homogenizing the heterogeneous structure of the body. The basics of this 
theory for describing moisture transfer within the material are formulated based on the classical 
theory of diffusion by P. Kosovich, A. Lebedev, Y. Miniovich, U. Lewis, and T. Sherwood.

In his research, O. Lykov introduced the concept of mass transfer potential, which serves as 
the driving force for the fluid flow under isothermal conditions and is based on experimental laws 
of heat and moisture conductivity [3]. The quasi-homogeneous approximation was used to analyze 
transfer processes, assuming the replacement of the real dispersed medium with a continuous 
medium with effective coefficients. The heat and moisture transfer equations included empirical 
coefficients dependent on temperature and pressure. Drying processes of capillary-porous bodies 
were studied within the framework of the single-continuum approach and based on the thermody-
namics of irreversible processes. For modeling the vapor source, the phase transition criterion was 
introduced. This parameter is generally considered a function of moisture content but depends on 
all process parameters and can be arbitrarily assigned by different authors.

Also, O. Lykov obtained a system of differential equations of heat and mass transfer in capil-
lary-porous materials in the region of hygroscopic moisture content. In particular, it is assumed 
that the non-equilibrium state of the system at any moment of the drying process is caused by 
the inhomogeneous distribution of temperature, moisture content, excess pressure, and defor-
mations. The increase in entropy in systems is associated with irreversible processes of thermal 
conductivity, molecular and convective diffusion, phase transition, moisture-thermal deformation, 
and irreversible cross-processes (Dufour and Soret effects).

T. Sherwood proposed the hypothesis of deepening the surface of moisture evaporation during 
drying. The walls of the porous body skeleton absorb water, causing the body to swell when moist-
ened and shrink when dried. To simplify the analysis of transfer processes in finely dispersed bodies, 
it is advisable to use averaged characteristics, whose use in models, as experiments show, gives 
results close to measured ones. The optimal control for the element functional properties under 
heating and the methodology for predicting its behavior is realized in [4].
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In the views on the mathematical modeling of heat and mass transfer in the non-stationary 
case, significant differences arose among scientists. For example, L. Heifets and A. Neimark be-
lieved that the formal introduction of the mass transfer potential obscures the real mechanisms 
of mass transfer [5]. Since the relationship between the evaporated liquid flow and the specific 
saturation is nonlinear, determined by geometric characteristics, the use of thermodynamics of 
irreversible processes and Onsager’s relationships, which assume a linear dependence of flows on 
thermodynamic forces, is unfounded. Their mathematical modeling methods for the drying process 
are based on the description of multiphase processes in porous media. The mutual distribution of 
phases in the pore space is one of the main characteristics of multiphase heterogeneous processes 
in porous media. In the case of processes with phase transitions, the mutual distribution of phases 
is established as a result of one phase transitioning into another and the redistribution of phases 
within the porous body due to the difference in capillary properties.

Recently, for modeling filtration processes in porous media, it has been proposed to use dif-
ferential equations with fractional-order derivatives both in time and coordinates (O. Lopatiev,  
Y. Pyanylo, A. Torskyy and others) [6].

A large number of works are devoted to the interaction of the body with the drying agent. 
Heat and mass exchange between the material being dried and the environment (drying agent) is 
one of the determining factors of the process. Heat exchange coefficients can be obtained directly 
from experiments, analytically using boundary layer theory and statistical methods, as well as from 
criterion equations. 

The heat exchange coefficient during forced movement of the environment is obtained from 
the Nusselt criterion based on the criterion equation Nu f Re Pr= ( , ),  constructed empirically from 
experimental data. 

Experimental studies by I. Fedorov, F. Polonskaya, and others have shown that the heat ex-
change coefficient in the drying process is greater than the pure heat exchange coefficient under 
the same conditions. In works of O. Lykov, P. Lebedev, V. Frolov and G. Shubin, it is shown that the 
heat exchange coefficient is constant only during the period of constant drying rate. In the period 
of falling drying rate, it continuously decreases, approaching the value of dry body heat exchange. 

An important component of optimization the modeling drying processes is determining the ef-
fect of porosity change on the stress state of the body [7]. The stress-strain state of the body can 
change, and the body can lose its stability under the action of various physico-chemical processes 
(mechanical action, drying, phase transitions, etc.). Due to the need for a more detailed study of 
the mutual influences of stresses on mass transfer and mass transfer on stresses in a porous 
layer, many studies are conducted. It is considered appropriate when describing mass transfer 
processes to proceed from capillary models of the porous body, and when describing strength 
characteristics from homogenized models considering distortion caused by heat and mass trans-
fer processes. Inhomogeneous deformations lead to the appearance of residual stresses, which 
are superimposed on the stresses caused by mechanical actions and can cause instability of the  
equilibrium shape.
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3.1 Mathematical modeling of the drying process

Mathematical modeling of the drying process is based on the selection of a model for the 
structure of the porous material; taking into account the specifics of multiphase mass transfer 
(interaction of phases with each other; considering phase and capillary forces that determine the 
mutual distribution of phases in the elementary physical volume of the porous body on one hand, and 
on the other are the driving forces of the process); formulation of boundary value problems that 
reflect the interaction of the external environment with the porous material under characteristic 
methods of drying intensification.

The movement of moisture under the influence of temperature (thermo-moisture conductivity) 
includes phenomena [3]:

– molecular diffusion of moisture, in the form of molecular leakage of steam, which occurs due 
to different velocities of molecules in the heated and cold layers of the material;

– capillary conductivity, due to the change in capillary potential, which depends on surface 
tension, which decreases with increasing temperature, and since the capillary pressure over the 
concave meniscus is negative, the decrease in pressure increases the suction force, resulting in 
moisture in the form of liquid moving from the heated layers of the body to the colder ones;

– movement of liquid in the porous body in the direction of the heat flow caused by the pres-
ence of trapped air. When the material is heated, the pressure of the trapped air increases and 
air bubbles expand. As a result, the liquid in the capillary pore is pushed in the direction of the heat 
flow (trapped air pushes the liquid to layers with a lower temperature).

The influence of trapped air, porosity, temperature, and material saturation with moisture on 
the process of conductive drying of a capillary-porous body is considered in [8, 9].

Since real porous materials have an irregular and random structure, stochastic structural models 
can claim adequacy [10, 11]. Statistical analysis of the distribution of liquid and gas in hydrophilic  
porous media is based on representing the pore space as a system of channels with variable 
cross-sections, which create a stochastic spatial lattice with a certain coordination number [5]. 
This representation allows the problem of liquid and gas distribution to be reduced to the problem of 
the mutual distribution of liquid and gas pores in a random lattice with certain statistical properties. 
Using the apparatus of penetration theory (percolation), it is shown that in the pore space during 
drying, moisture forms three characteristic configurations: a connected system of gas-filled pores 
that exits to the outer surface; a two-phase system (a set of unconnected liquid inclusions blocked 
by gas); and a liquid pore system. For each specific porous structure, there is a critical moisture 
content, at which the connectivity of the liquid phase is completely disrupted, and all moisture is 
localized in isolated inclusions. The value of the critical moisture content is a structural characteristic 
of the porous medium and can be used for a comparative analysis of different porous structures [12].

The mutual distribution of phases in the pore space has a significant impact on the processes 
occurring in the body. It determines the effective transfer coefficients across phases, the mag-
nitudes of interphase surfaces [13]. Capillary forces are responsible for the phase distribution. 
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Changes in the liquid content in the porous body occur through liquid evaporation and capillary 
absorption [5]. The heat and mass transfer processes occurring in the pores, the properties of 
liquids and gases in the pores, and the methods of their modeling are covered in [13]. Experimental 
studies of diffusion, capillary, and film transfer mechanisms [5] indicate the decisive influence of 
capillary and surface forces on the mass transfer process and drying intensity. An overview of 
research results on heat and mass transfer in porous media is provided in [13, 14].

To account for the influence of geometric factors, it is possible to use a statistical consideration 
of the process in an elementary physical volume based on a certain structural-metric model. One 
type of capillary model is systems of parallel capillaries of different radii. The statistical average can 
be represented using the distribution function. The capillary radius distribution function correlates 
with the functions of pore size distribution measured by various methods. This correlates with the 
method of studying the filtration of cement stone, wood, and other porous materials based on their 
averaged characteristics, which allows not to account for fluid movement along winding paths and 
interflows and to consider the porous body as a material with homogeneous properties for the 
chosen filtration direction. The reproduction of the mass transfer pattern using capillary models 
based on the description of the sizes and shapes of pores in porous bodies is proposed in work [5].

3.1.1  Heat and mass transfer with the external environment

A significant number of works are devoted to the interaction of the body with the drying agent. 
Heat and mass transfer between the dried material and the medium (drying agent) is one of the 
determining factors of the process. The heat transfer coefficients can be obtained directly from 
experiments, analytically using the boundary layer theory [15], and statistical methods, as well as 
from criterial equations [3]. The boundary layer theory [15] provides solutions to various problems 
of the hydrodynamic boundary layer. Based on experimental studies, N. Mikheev and B. Smolsky 
indicated the influence of internal mass transfer on the field of partial pressures at the beginning 
of the drying process and concluded that the heat transfer coefficient must be calculated based on 
the solution of the conjugation problem.

To generalize experimental data when describing the drying process, the theory of similarity is 
also used, which allows combining physical quantities that characterize the process into dimension-
less complexes. The obtained criteria are considered as new variables that reflect the influence of 
both individual factors and their combination [3].

The heat transfer coefficient during forced movement of the surrounding medium is obtained from 
the Nusselt criterion based on the empirical criterial equation constructed from experimental data. 

Experimental studies by I. Fedorov, F. Polonskaya, and others showed that the heat transfer 
coefficient during drying is higher than the pure heat transfer coefficient under the same con-
ditions. In the works of O. Lykov, P. Lebedev, and G. Shubin, it is shown that the heat transfer 
coefficient is constant only during the period of constant drying rate. During the period of falling 
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drying rate, it continuously decreases, approaching the heat transfer value of the dry body. The 
driving force of moisture exchange during moisture evaporation is considered to be the difference 
in partial pressures between the surface layer and the surrounding medium, although in the envi-
ronment of superheated steam, the difference in partial pressures is absent. O. Lykov believed that 
molecular-molecular mass exchange on the surface is determined by the gradient of the chemical 
potential and the total pressure. Calculations in this case showed that the necessary mass transfer 
can be ensured only under the condition of a slight overheating of the surface of the wet sample 
relative to the saturation temperature at a given pressure.

There is also an opinion that mass exchange during drying in a stationary environment is deter-
mined by the chemical potential difference between the surface of the body and the heat carrier. 
This explains the significance of the medium temperature, higher than 1400 °C, if drying of thin 
material in the environment of superheated steam exceeds the drying rate in the air environ-
ment. Experiments on geometrically identical samples with different initial moisture contents at 
a constant Reynolds number showed a decrease in the heat transfer coefficient with decreasing 
initial moisture content. Reducing the hydraulic radius increases the heat transfer coefficient.  
To determine the mass transfer coefficient, it is considered advisable to use the analogy between 
heat transfer and mass transfer.

Within the framework of the capillary approach, for porous bodies with small dispersion of the 
transverse dimensions of pores in the quasi-stationary approximation, complete systems of rela-
tions for describing the processes of natural or stimulated by blowing or external constant electric 
field drying are formulated.

In the works [16, 17], the problems of isothermal two-sided drying of an initially moisture-sat-
urated porous layer under the action of an external constant electric field are solved by adopting 
the model of cylindrical capillaries of a porous material. The law of phase boundary movement in 
time is determined for problems of enhancing natural two-sided drying of a porous layer, and the 
influence of electroosmosis on the drying of a porous layer under both natural and convective drying 
of one of the surfaces is investigated. Quantitative studies of the change in relative humidity over 
time due to the magnitude of the electric field intensity are conducted.

It is shown that with the increase in the intensity of the electric field, the drying process 
intensifies. The dependence of the critical time and the corresponding moisture content on the 
characteristics of the material and the intensity of the electric field is established. The curves of 
the relative moisture content over time during two-sided drying have a characteristic kink. Quan-
titative studies of the dynamics of the relative humidity of the layer indicate a reduction in drying 
time compared to the case when electroosmosis is absent.

In the work [19], a system of equations for the electrodynamics of a hereditary electrocon-
ductive nonferromagnetic porous body, taking into account the dependence of its characteristics 
on moisture and temperature, is formulated. The problem of high-frequency heating for such bodies 
is considered. The dependence of the heating intensity on the distance from the electrodes to the 
surface of the body being heated is studied. The absorption of heat and moisture by the solid body 
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leads to an increase in its volume, which, being non-uniform, creates stress. In particular, cyclic 
changes in the external conditions in which the material is located create variable stresses that can 
lead to the growth of defects of dangerous sizes.

Advancements in science and engineering have been significantly driven by the observed sim-
ilarities between heat and mass transfer processes and the universality of diffusion equations.  
By leveraging common principles and mathematical descriptions, scientists and engineers can de-
velop more efficient and effective solutions across a wide range of applications.

Recent investigations into complex systems have utilized heat and mass transfer models to 
achieve various outcomes. For instance, in [21] there is proposed an innovative approach for image 
restoration and contrast enhancement using a nonlinear reaction-diffusion model. This model sim-
ulates the behavior of a heat equation in low-gradient areas while halting diffusion in high-gradient 
regions to preserve edges. Their algorithm employs a divide-and-conquer technique coupled with a 
reaction-diffusion system. Similarly, a novel numerical approach using the Lattice Boltzmann meth-
od for a Gray-Scott-based reaction-diffusion model was introduced in [22], effectively handling 
noisy images by comparing pixel motion to fluid motion.

Further contributions include [23], which proposed a spatio-temporal dynamics model for a 
tritrophic reaction-diffusion system, offering methodologies for optimal system control. In [24], 
the spatio-temporal dynamics using a fractional order SEIR model, relevant for understanding dry-
ing processes, are explored. The work [25] developed a nonlinear fractional partial differential 
equation for image inpainting, applying nonlinear diffusive filters. Stability analysis techniques for 
reaction-diffusion systems with delay, essential for drying process models, are provided in [26]. 
In [27], a diffusive phytoplankton–zooplankton–nanoparticle model with a density-dependent pred-
ator death rate is formulated, as well as the analysis of its local stability. A time-fractional diffusion 
equation for image and signal smoothing is used in [28], demonstrating the use of anomalous 
diffusion behaviors in image processing.

In the context of catalytic reactions, in [29] it is provided a statistical description of catalytic 
hydrogen oxidation, incorporating both the diffusion of reactants and the magnetic properties of 
ions and atoms involved. A generalized Cattaneo-type diffusion equation in time-fractional derivatives 
was developed for electrons, accounting for the complexity of relaxation electromagnetic diffusion 
processes in layered nanostructures in [30]. In [31], it is suggested a discrete solution for nonlinear 
parabolic equations with diffusion terms, proving the existence and uniqueness of weak solutions 
using an internal approximation combined with the backward Euler scheme. A DDFV scheme for 
nonlinear parabolic reaction-diffusion problems on general meshes, applicable to complex geome-
tries in capillary-porous structures is developed in [32]. In [16], solving Stefan’s linear problem 
for drying cylindrical timber is addressed, proposing solutions for phase change problems in drying.

In [33], identification of diffusion scattering parameters for a modified viral infection model is 
proposed, while in [34] the examination of the dynamics of a diffusive SARS-CoV-2 model using 
fractional Laplacian operators is carried out. In [35], kinetic and hydrodynamic approaches in the 
theory of dense gases and liquids far from equilibrium are unified, under arbitrary Knudsen number 



90

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 3

conditions, with insights into liquid and gas interactions. In [36], it is discussed coupled compress-
ible two-phase flow, providing further insights into these interactions. In [37], focus is made on 
impurity diffusion processes, essential for accurately describing mass transfer equations. 

In finance, it is proposed a penalty approach for pricing the American-style Asian option under 
the Merton model, capturing the skewness and kurtosis features of return distributions [38]. 
In [39], the diffusion of money income, providing methodologies for solving financial diffusion prob-
lems, is modeled. Calcium profiles in neuronal cells are studied in [40], allowing insights into the 
dependency of calcium concentration on variable diffusion coefficients. 

The problem of optimizing the drying time of porous bodies is still relevant, determining the 
most efficient operation mode of the drying installation [7]. The optimization problem formulation 
includes a functional that should be minimized and a set of admissible solutions. As a rule, the objec-
tive function is a function of many variables. The objective functional is minimized on a set from the 
functional space. Given the environmental parameters, based on the solution of the direct drying 
problem of an initially moisture-saturated porous layer, the problem of minimizing the total drying 
time by temperature T and pressure P on the layer surface is formulated. The problem is reduced 
to the problem of minimizing the temperature on the moving phase transition front under certain 
constraints. The optimal pressure on the layer surface and the minimum temperature on the phase 
transition boundary that minimize the total drying time are found, given the known parameters of 
vapor and air densities (or relative humidity) and the temperature of the atmospheric environment, 
as well as the geometric parameters of the body and the boundary layer. If an analytical solution 
to the drying problem is found, choosing the necessary optimization criterion, one can optimize the 
drying regime of the material.

3.1.2 Equations of thermo-hygro-mechanical processes in a porous body in 
the homogeneous approximation (generalized coordinates: temperature, 
deformation, moisture content)

Consider a porous body in which the phase transition of liquid to vapor occurs, resulting in a 
vapor flow. The reduction of moisture in the body and its heating can cause shrinkage and ther-
mal expansion of the material. Additionally, intensive drying generates additional pressure in the 
vapor-air mixture. Consequently, stresses arise in the body, the magnitudes of which, as studies 
show, can cause deformation and destruction of the body. In formulating the equations of ther-
mo-mechanical-mass transfer, it is possible to follow the works [3, 11].

Assume that the primary physical processes occurring in the body during drying are mass and 
heat transfer and deformation. Let’s consider these processes in the homogeneous approxima-
tion. Under the hypothesis of local equilibrium, the thermomechanical state of a physically small 
element of the body will be characterized by the parameters: stress tensor σ  – strain tensor e ; 
temperature T – entropy S; chemical potential m – moisture content W. The corresponding Gibbs 
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equation for free energy is written as [11] dF de SdT dW� � �� � � : ,0  where ρ0 is the density

of the absolutely dry body. The state equations in terms of moisture content are: �
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If the free energy of an elastic isotropic body is represented as a Taylor series expansion 
in terms of the components of the tensor e  and retaining terms no higher than second-order 
smallness [11]:
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where F0(0,0,T,W) is the free energy per unit volume in the absence of deformations; l1 = e is the 
first invariant of the strain tensor; l2 = eijeij is the second invariant of the strain tensor, then the 
components of the stresses can be expressed as:
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In the absence of deformations e  the change in free energy F0 due to changes in temperature 
and moisture content and the averaged specific heat capacity in the isochoric process can be 
represented as follows:
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 where CW,e is the specific heat capacity in the absence of

deformation and at constant moisture content.
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If U is the internal energy of the body, then in an isothermal-isochoric process (T const e� �� �, : 0):
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is the specific heat of the phase transition; εΦ is the degree of completeness of the phase transi-
tion, similar to the phase transformation criterion introduced by O. Lykov [3].
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Young’s modulus; K is the bulk modulus; G is the shear modulus; ε is the resulting change in the 
unit volume of the body in the absence of stresses; T0 is the initial temperature; T is the actual 
temperature; P is the pore pressure; P0 is the atmospheric pressure; αTW is the coefficient of 
linear thermal expansion; bTW is the coefficient of linear shrinkage.

The free energy of an elastic isotropic body can now be written as [3]:
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where e u� � �




 is the relative volume change of the body; 


u  is the displacement vector.
Then the state equations (3.1) take the form [3]:
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For small changes in moisture content and temperature, the equations (3.4)–(3.6) can be 
linearized by perturbations of these quantities:
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To derive the heat conduction equations, it is possible to use the entropy balance equation [3]:

T
S
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,  (3.8)

where � �� �� �0 1 W  is the density of the wet system; l is the total power of the heat sources; 
t is time; 




j Tq q� � ��  is the heat flux.
Using the state equations, equation (3.8) is reduced to the heat conduction equation of the 

deformed system during drying:
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where a
Cq

q

W

�
�

� �0 ,

 is the thermal diffusivity coefficient; �p

P
T

�
�
�

 is the temperature coefficient 
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of excess water vapor pressure, such that 
1

αp

 is the change in the phase transition temperature 

due to the emergence of excess pressure.
The linearized equation of diffusion-convective mass transfer, according to [11], is written as:

�
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,  (3.11)

where am is the coefficient of molecular diffusion of substance absorption; ap is the coefficient of 
convective diffusion; δ is the coefficient of thermogradient mass transfer; Kp is the permeability 
of the system.

The equations of motion for a deformable system, neglecting the convective velocity compo-
nent, are given by:

� � � �
� � � �

�
�

� �F
u

t

2

2 .  (3.12)

Here 


F  is the external force vector per unit volume. The components of the stress tensor σ  
are determined by the relations (3.6). The relations (3.6), (3.7), (3.10)–(3.12) form a complete 
system and are used in the practice of investigating interconnected mechanical processes and 
heat-mass transfer processes. Considering the quasi-stationarity of the system’s process, inertial 
forces in the equations of motion can be neglected. Then the equations of motion (3.12) can be 
written as:

� � �
� � � �� F 0.  (3.13)

When formulating problems of moisture-thermomechanics, it is necessary to add the appropri-
ate boundary conditions to the equations (3.10)–(3.13). Initial conditions can be taken in the form:

T T W W P P u u
u
t

t t� � � �
�
�

� �0 0 0 0 0 0, , , , .     at 
 





�  (3.14)

The boundary conditions for mechanical quantities involve specifying displacements or forces:

 

u u� �  or � �� � �
� �n �  for 



r �� �� .  (3.15)

The surface conditions for thermal quantities can be of the first, second, or third kind, i.e.:
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where 


n  is the normal to the surface (Σ). Similar conditions can be set for moisture content W:

W W j n j
W
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W Ww W� � �
�
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� �� � �� � or  or 




� 0 0.  (3.17)

The boundary conditions for pressure P on the surface (Σ) typically reflect the equality of this 
pressure to the atmospheric pressure or the pressure in the boundary layer [5]:

P P� �.  (3.18)

When considering semi-infinite regions, it is necessary to add appropriate conditions (bound-
edness of the solution) at infinity. For cylindrical or spherical regions using cylindrical or spherical 
coordinate systems, it is also necessary to formulate boundedness conditions on the cylinder axis 
or at the sphere center.

For isothermal processes, equation (3.9) is not considered, and equations (3.10), (3.11) are 
reduced to the system:
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.  (3.19)

This allows the moisture mechanics problem to be solved sequentially. In the first stage, it is 
necessary to find the solutions of the mass transfer problem (3.14), (3.17)–(3.19) with subse-
quent determination of the stress-strain state of the body from the mechanics equations (3.6), 
(3.13), (3.15). When solving the mechanics problem, the solutions of the mass transfer problem 
are used. Experimental studies show that the equilibrium distribution of liquid in the pore space 

during evaporation is determined by the relative vapor pressure � �
P
Ps

,  or the related capillary

pressure P
RT
Vk

L

� ln .�  As χ increases, the porous body is saturated with capillary condensate,

and as χ decreases, evaporation occurs and the porous body is saturated with gas by moving the 
meniscus along the pore. This means that under nonequilibrium conditions, gradients of capillary and 
surface forces are the driving forces of mass transfer in the gas and liquid phases and have a deci-
sive influence on the intensity of mass transfer. Gradients of partial and disjoining pressures arise 
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due to the uneven moisture content during drying. During drying, the amount of liquid decreases 
due to the release of pores from condensate, thinning of films, and reduction of relative vapor 
pressure. Since the amount of liquid in films and in the gas phase is small compared to bulk liquid, 
it makes sense to only track changes in saturation. The space freed from the liquid is occupied  
by air. Since the molar volume of air is greater than the molar volume of the liquid, the air flow is 
much smaller than the liquid flow and can be neglected. The equations of motion during evaporation 
represent filtration equations complicated by diffusion in the gas phase.

3.1.3 Mathematical modeling of the drying process of porous bodies considering 
capillary properties

To describe the mutual distribution of phases in a porous medium, structural models of porous 
media, particularly with irregular and random structures, are used. In this regard, it is necessary to 
use stochastic structural models [5]. The pore space is treated as a statistical ensemble of inter-
connected structural elements (pores), whose distribution is probabilistic. The most suitable model 
should be a simple statistical model that adequately describes the structure. To establish effective 
transfer coefficients for each phase, their connections as functions of macrovariables, conditions 
of the process in an individual pore, and geometric characteristics of the porous structure, the 
choice of an appropriate averaging technique is crucial. The necessary characteristics to describe 
the kinetics of the process in an individual pore are obtained based on mathematical models, the 
results of which are confirmed by experimental studies in capillaries [14].

The construction of capillary models is based on comparing known literature data on the sizes 
of the conductive elements of the material obtained through microscopic studies of the body’s 
structure with the corresponding data obtained using capillary conductivity kinetics [5].

In real materials, whose pores represent a complex system of heterogeneous elements, capil-
lary equilibrium is established, and the filling of an individual pore by a particular phase depends on 
the characteristics of the pore and its connections with other pores. The properties of the mutual 
distribution of phases are determined both by the distribution function of the structure character-
istics of individual elements and by parameters reflecting the interconnection of these elements. 
The influence of the porous structure is taken into account by introducing effective coefficients 
of binary interaction into the Stefan-Maxwell equations [16]. Effective transfer coefficients are 
determined by the random geometry of the pore space, the nature of microinhomogeneities, or 
empirical dependencies that relate them to the parameters of the porous structure. In a quasi-ho-
mogeneous approximation, macroscopic transfer equations are applied, the structure of which 
coincides with the structure of equations valid in an individual elementary pore, in most cases in a 
straight cylindrical capillary.

The simplest model of the pore space of a polydisperse porous body is a system of cylindrical 
capillaries with ideal connections. In such a model, if the pores of radius rf are filled with wetting 
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liquid, then the pores of smaller radius are necessarily filled as well. This implies that each satura

tion value �m m
mz

L
L

� �  corresponds to a critical radius r zf m( )  of the filled pores, where Lm is the 

moving phase transition coordinate. The walls of other pores with a radius r rf>  are covered with 
equilibrium polymolecular films. The film flow equation in the porous medium can be represented as 

j
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V
Ppl
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3

 is the effective permeability coeffi-

cient of the films, which depends on the relative vapor pressure χ; rf(χ) is the boundary radius of 
the filled pores at relative vapor pressure χ (in the gas zone rf(χ) = rmin); Π is the porosity; mL is 
the viscosity.

The equilibrium film thickness h is determined by the relation 
A
h

RT
V

P
PL n6 3�

� ln .  For water,

A = 7∙10-21 J; VL is the molar volume; h is the equilibrium film thickness; R is the gas constant; 
T is the absolute temperature. The relative pressure of saturated vapor χ over the curved surface 

of the meniscus is determined by the Kelvin equation: �
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 where Pn is 

the saturated vapor pressure over a free surface; σLg is the surface tension; r is the radius. In the 
framework of the “well-mixed pores” model, the averaging operations for the gas phase are inte-
gration operations over r with a weighting function φ(r) within the limits r r rf( ); ,max�� ��  for example 
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Experimental studies show, and theoretical ones confirm, that polymolecular films should be 
taken into account only when χ > 0.96. In capillaries with a radius of r < 10 nm, which are filled 
with capillary condensate at χ > 0.96, film flow is not observed. In wide pores with molecular 
diffusion mode (r > 500–1000 nm), vapor flow prevails, while in narrow capillaries with a radius of 
10 <r < 50 nm, χ > 0.96, film flow must be considered. In transitional pores (50 <r < 500 nm),  
the contributions of both mechanisms to mass transfer are comparable [3]. In pores with molecu-
lar diffusion mode, film flow can be neglected. In [3], it is argued that film transport of liquid due to 
the gradient of disjoining pressure and thermoosmosis at temperatures of the wet zone 60–70 °C 
can also be neglected. These assumptions are justified for intensive drying, where the heating of 
the wet zone occurs quickly, and the processes of internal evaporation and redistribution of film 
moisture have much less impact than the processes of moisture removal due to phase transitions.

The pressure in the gas zone consists of the partial pressures of vapor and air. In the case of a 
gas pore (a pore free of capillary condensate), the transfer is carried out both by convection and dif-
fusion of the vapor-air mixture and by film flow under the influence of the disjoining pressure gradient.
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The averaged flow in the gas zone is as follows:

J r j j j
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�1 ,,

where Kg and KpL(r) are the effective permeability coefficients for the gas zone and film filtration; 

D1va and ρg are the effective diffusion coefficient and gas density, respectively, and P r
rkap

Lg

f

� � � 2� �cos
, 

where rf is the critical radius. In the presence of a partial pressure gradient in the gas phase, vapor 
flow is observed in the capillary. The nature of gas movement in a straight cylindrical capillary is 

determined by the parameter Kn
r

�
�
2

 (the Knudsen number, which represents the ratio of the 

number of molecular collisions with the walls to the number of intermolecular collisions), where 
λ is the mean free path length of the molecules, which depends on the gas composition and the 
total pressure of the mixture, and r is the radius. Depending on the Knudsen number, there are 
three characteristic regions of gas flow: Knudsen flow Kn ��� �,  transitional flow Kn �� �1 ,  and 
molecular flow Kn �� �0 .

The use of the “dusty gas” model allows the identification of the structure of binary interaction 
coefficients in the Stefan-Maxwell system of equations. Within this model, interpolation formulas 
for effective diffusion coefficients in the transitional region between Knudsen and molecular diffu-
sion are derived. They are also applied when the linear dimensions of the pores are so small that 
they are comparable to the mean free path length of the molecules. The generalized gas-kinetic 
binary diffusion coefficients, obtained in the first approximation of the Chapman-Enskog method, 
have the form:

D RT m cij ij ij ij�
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�

�
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8
2
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2 1
� ��/ ,�

where σ ij
2  is the effective collision cross-section for the pair (i, j); m

M M

M Mij
i j

i j

�
�� �

 is the reduced

molecular mass; Mi is the molecular mass of the i-th component of the mixture; Ωij is the collision 
integral; R and T are the universal gas constant and the temperature of the mixture; c ci�� ;   
ci is the number of moles of the i-th component per unit volume.

To describe the molecular flow of a binary gas mixture in a porous medium with micro- and

macropores, the relation j D
d
dzi ij

i� 1

�
 is used. In this case, the effective diffusion coefficient can

be taken as:
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where D and D∞ are the molecular and Knudsen diffusion coefficients. At low Knudsen numbers, 
there is a viscous flow regime, in which the interaction of the gas with the capillary walls leads to 

slip with velocity υsi. In this case, the average gas flow velocity is �
�

�i
i

i

r
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dP
dz
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8
1 8 * ,  

where the second term expresses the slip effect; ξ* is the dimensionless slip coefficient, which 
varies in the range of 0.67–1.43 [12].

The total convective flow of the gas mixture in the range from purely viscous flow to the transitional 

regime with � * i �
2
3

 is determined from the Weber equation j
r

P D
Kn

Kn
d
dzi i� �

�

�
��

�

�
�� �

�
�

�
�
�

��

�
�
�

��
�

2

8
4

1�

 �/

.

This interpolation formula provides accurate results for Knudsen, purely viscous, and transitional 
flows. The slip velocity is comparable to the average velocity even in capillaries whose radius ex-
ceeds the mean free path by tens of times. Only when Kn → 0 can the slip effect be neglected. 
The mass flows Ji are related to the molar ratios Ji = Miji.

At the phase transition boundary, the moisture density equals the critical density correspond-
ing to the maximum negative pressures of the capillary moisture, which is in a bound state, causing 
moisture migration to the boundary. At this boundary, there is an energy jump equal to the amount 
of heat needed to convert the liquid to vapor. It should be noted that the phase transition tempera-
ture in a porous body also depends on the curvature of the interface. An analysis of stresses con-
sidering pore size dispersion and in the equivalent pore model [14] suggests that liquid evaporation 
occurs in a narrow zone separating areas occupied by liquid and gas.

A characteristic feature of describing the drying of capillary-porous bodies is the need to 
consider their capillary properties as fully as possible at the continuum level [5]. Note that the 
approach based on using the mass transfer potential [3] does not allow for this sufficiently.

In theoretical studies of heat and mass transfer processes, approaches are used where com-
plex transfer processes in porous bodies are reduced to the Stefan problem with a moving phase 
boundary. In this approach, the evaporation conditions are recorded differently. The moisture con-
tent at the phase boundary can be taken as the initial moisture content, assuming that there is 
a moist area with the initial moisture content and a dry area where the moisture content is zero. 
In other studies, the moisture content at the phase boundary is taken as the average integral 
moisture content of the moist area located in the first half of the material’s thickness behind  
the dry area.

In this regard, when describing the drying process, let’s base it on the approach of [5], where 
the driving forces of mass transfer in the pores are taken to be the gradients of the partial pres-
sures of the components of the pore gas and the capillary pressure. On this basis, it is possible 
to formulate a complete system of relations for the drying of porous bodies for characteristic  
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methods of modeling external influences on them, neglecting the pore size dispersion. Let’s sep-
arately consider the possibility of the drying process under the influence of an external constant 
electric field (electroosmotic drying).

3.1.4 Capillary model of a porous body. Problem statement

Let’s consider a capillary-porous body occupying the region (V) of Euclidean space and bounded 
by a smooth surface (S). Let’s assume that the porosity is open. At the initial moment of time, 
the body is saturated with liquid. Let’s consider a class of materials whose transverse pore size is 
characterized by a small dispersion, which it is possible to neglect. The body on the surface (S) is in 
contact with a gas medium, which is a mixture of dry air and water vapor. Provided that the water 
vapor in the surrounding air relative to the body is unsaturated, the process of moisture evapo-
ration from the pore space of the body and the gradual drying of the pores from the surface (S)  
into the body will occur. Due to the uniform transverse pore sizes, this process will proceed equally 
across the entire cross-section of the body, parallel to the surface (S). As a result, two zones will 
form – dried pores and liquid-filled pores, with the boundary of these zones in each pore being the 
meniscus of the liquid, the convexity or concavity of which is determined by the properties of the 
pore surface (its hydrophilicity or hydrophobicity). The surface enveloping the meniscus vertices 
will be denoted as (S*).

Let’s note that pore drying is never complete. In hydrophilic pores, water remains in the form 
of a wall layer (bound water). In the zone of dried pores, air and water vapor are present. It is 
possible to assume that the transverse pore size is significantly larger than the mean free path of 
the molecules present. This allows the expressions for the flows 



ja  and 


jv  of air and vapor in the 
dried zone to be written as [5]:







j D k a vk k k� � �� �� � � , , , 

where ρa and ρv are the densities of air and vapor, respectively; D’ is an effective coefficient of 
binary diffusion in pores. The flow of air inside the body is quantitatively much smaller than the flow 
of steam outside, generated as a result of the water-steam phase transition. In this regard, in the 
future it is possible to neglect the air flow 



ja  putting 


ja = 0.
Let’s also neglect the local change in vapor density ρv, assuming [5]:

�
�

�
�v

t
0,

which leads to the following vapor mass balance equation:




� � �jv 0.  (3.20)
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From these assumptions follow the isothermal Stefan-Maxwell equations for the binary gas 
mixture in the dried zone:

� � � � � �a a v vD D


 





� �� � � � � ��� � �0 0, .  (3.21) 

The average mass velocity 


υ  satisfies the Darcy equation [13]:
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It is possible to assume that the ideal gas law applies to the gas mixture P
M M

RTg
a

a

v

v

� �
�

�
��

�

�
��

� �
,

where Pg is the gas pressure in the pores; Ma is the molar mass of air; Mv is the molar mass of 
vapor; R is the gas constant.

Using the state equation for the gas mixture and Darcy’s law (3.22), it is possible to write the 
Stefan-Maxwell equations in terms of the key functions ρa and ρv (the densities of air and vapor):
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RT D 0,  (3.23)

where Kg is the permeability coefficient dependent on the radius and shape of the pores; mg is the 
dynamic viscosity coefficient of the gas.

The written equations are valid in the region of dried pores, which is bounded by the surfaces (S)  
and (S*). Note the non-linearity of the differential equation system (3.23).

On the moving surface (S*), the vapor density can be taken as the saturated vapor density [5]:

ρv = ρvn. (3.24)

The form of the boundary conditions on the surface (S) depends on the method of modeling the 
interaction of the body with the environment.

In the considered case of the body’s surface (S) contacting with a medium that is a mixture of 
air and vapor, under natural drying conditions, it is possible to assume that at a distance from the 
surface (S), the densities ρve of vapor and ρae of air reach constant values ρv1, ρa1, respectively, 
which are characteristic of atmospheric air, i.e.:

lim , lim ,� � � �ve
r

v ae
r

a
�� ��

� �1 1  (3.25) 

where r is the distance from the surface (S).
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In the region outside the body, mass transfer processes will be described by the Stefan-Max-
well equations under the condition of constant atmospheric pressure:
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On the surface (S), the normal component of the vapor flow from the drying body must be 
continuous, i.e.:
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e
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��
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�
�� ��

�
,  (3.28)

and the densities of the mixture components must be equal, which follows from the equality of the 
partial pressures on the surface (S):

� � � �ae a ve v� �, .  (3.29)

Equations (3.23)–(3.29) constitute the complete system of relations and can be used to 
describe mass transfer during the natural drying of a porous body [5].

Often, when studying the drying process, especially under intensified blowing conditions, the 
external problem is posed only for the boundary layer of some finite thickness δ [5]. In this case, 
mass transfer in the boundary layer is described by the equations (3.23), (3.24). On the surface (S)  
of the body, the conjugation condition (3.29) holds, and on the outer surface (S**) of the boundary 
layer, the condition:

� � � �ae a ve v� �1 1, .  (3.30)

It is possible to note that a number of authors [5] do not consider the boundary layer near the 
body surface, instead placing a Newton-type mass transfer condition on the surface (S):



n jv v v� � �� �� � � 1 ,  (3.31)

as well as the condition:

� �a a� 1.  (3.32)
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Here b is the mass transfer coefficient of the body with the environment. In this case, the 
mass transfer parameter depends on the conditions of the impact (blowing) on the surface (S) of 
the body.

In this case, it is not possible to pose an external mass transfer problem and will describe the 
drying of the body with the system of relations (3.21)–(3.24).

To characterize the moisture content of the body, it is advisable to introduce the quantity:

�m
L

L

m
m

�
0

,  (3.33)

where mL, m0L are the current and initial masses of the liquid in the body, respectively. The rate of 
change of the liquid mass will be determined from the equation:

dm
dt

n j dSL

S

� � �� �
� �
�




, (3.34)

under the initial condition:

mL = m0L at t = 0. (3.35)

The vector 


jv  of the vapor flux density from the body is the solution of the above-formulated 
problems (3.30); or (3.23), (3.24), (3.26); or (3.23), (3.35).

In terms of relative humidity, the equations (3.23), (3.35) have the form:

d
dt m

n j dSm

L S

�
� � �� �

� �
�

1

0





,  (3.35)

αm = 1 at t = 0. (3.36)

The values of moisture content in the zones of dried and liquid-saturated pores are determined 
as follows:

W

dV

Vv

v
V

s s

v�
� �

�
( ) ;  (3.37)

in the zone of dried pores:

W
V
VL

L L

s s

�
�
�

,  (3.38)
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in the zone of liquid-saturated pores, where (Vv) is the region of dried pores; Vv, VL, Vs are the 
volumes of the regions of dried and liquid-filled pores and the volume of the skeleton.

It is possible to note that in general, due to the nonlinearity of the equations (3.23), (3.26), 
finding exact solutions to the drying problem constitutes a significant mathematical challenge. 
Approximate solutions to problems for canonical regions of a layer and a sphere are given, in par-
ticular, in the works [5].

Now proceed to Section 3.2 of our study, namely the mathematical model for analyzing the 
moisture and temperature distribution, radial displacements, and stresses within an individual particle 
of a multicomponent dispersed material of the capillary-porous structure during its convective drying.

3.2 Mathematical modeling and computational analysis of moisture, temperature, 
and stress distribution in grain in convective drying. Problem formulation 
and key system of equations

Let’s consider a layer of thickness L , which is blown by a drying agent (gas) with the convec-
tive transfer velocity in the intergranular medium for the falling-rate drying stage. The layer is com-
posed in a certain way from identical wet grains, which we assume be of a R-radius spheres and is 
referenced to the Cartesian coordinate system so that the Oz axis is perpendicular to its surfaces. 

The movement of gas in the stationary layer of dispersed particles is characterized by the flow 
around the particles that make up the layer and the flow in the channels between them. Each grain 
is considered a two-component solid solution (consisting of the main substance and moisture) of 
the so-called equivalent volume, which is referenced to the spherical coordinate system with the 
origin at its center (r = 0).

The drying process of the grain occurs through its outer surface of contact r = R with the 
intergranular medium. The moisture concentration cz  at the location of the selected grain across 
the layer thickness z is determined from the solution of the mass transfer problem in the intergran-
ular space, where the steam-air mixture is uniformly filtered in the complete displacement regime.

Under isothermal conditions, let’s accept temperature T, the vector of radial displacements of 
the grain ur, and moisture concentration c as the defining functions [3].

Based on the criterion of similarity of heat and mass transfer processes, the equations for the 
moisture concentration cz and temperature Tz in the intergranular space of the layer are as follows [13]:

�
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c c
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c
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Jz z
z
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�

2

2 ,  �
�

�
�
�

�
�
�

�
T T

z
T
z

Jz z
Tz

z
T�

� �
2

2 ,  (3.39)

where ∂T is the diffusion coefficient of moisture in the pore space; aT is the thermal diffusivity;  
J, JT are the intensities of the local sources of moisture and heat resulting from evaporation from 
individual grains; τ is time; z is the coordinate.
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To determine the intensity of the local moisture source J, it is necessary to study the moisture 
diffusion in a separate grain.

It is possible to consider the grain substance as a two-component solid solution consisting of 
the main substance and moisture. The local thermodynamic state of such an isotropic system is 
determined by the values of the conjugate thermodynamic parameters: absolute temperature T, 
entropy S, components of the Cauchy stress tensor σ, strain ε, and chemical potentials of the 
solution components ��k , concentrations Ck(k = 1,2).

Then, applying the approaches of the theory of solid solutions [1] and choosing temperature T,  
displacement 



u , and moisture concentration C2 as the solving functions, under certain physical 
assumptions in the linear approximation, let’s obtain:

1. Equation of state:
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2 .  (3.40)

2. Equilibrium equations and compatibility conditions:
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 (3.41)

3. Balance equation of concentration and thermal conductivity equation:

�
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c
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a tT
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, .


 

  (3.42)

Here, K is the bulk modulus; G is the shear modulus; ε = Trε is the first invariant of the 
strain tensor ε; β, α are the concentration and temperature coefficients of volumetric expansion; 
c C C� �2 2

0( )  and t = T–T(0) are deviations of moisture concentration and temperature from their 
values C2

0( )  and T(0) in the initial state; I


 is the unit tensor; 


� �  is the Hamiltonian operator;  
D is the diffusion coefficient; Dε is the coefficient of the influence of the volumetric strain gradi-
ent on the mass flow; at is the thermal diffusivity coefficient; 



J  is the moisture diffusion flux; 
� � � ��

 

 is the Laplace operator; the symbols “∙”, “Ч”, “⊗” denote the scalar, vector, and 
tensor products, respectively.

It should be noted that for the so-called “soft regimes” of drying, it is possible to assume that 
( ) /T T T� ��0 0 1 .
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A separate grain in the geometric approximation of a spherical particle is referenced to the 
spherical coordinate system with the origin at its center (r = 0). The drying process occurs 
through the surface r = 0 of contact with the intergranular air medium, whose characteristics 
depend on the coordinate z in the layer. Then, for the grain, the displacement vector has only a 
radial component ur and accordingly:

� � ��� ��rr
r rdu

dr
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�
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� � ��� ��  (3.43)

From the equilibrium conditions (3.41), the state equations (3.40) [13], and the formulas (3.43),  
it is possible to obtain the relations of the volumetric strain gradients with the concentration 
expansion gradient.

From the equations (3.42) and (3.43), it is possible to obtain the key system of equations 
for a single sphere in the form of the displacement equation and the moisture concentration ba- 
lance equation:
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where � � �3 3 4K K G/ ( )  is the mechanical constant; � � � � �u r u rr r/ / .2
At the initial moment of time (τ = 0):

u c c constr = = =0 0, .  (4.45)

On the surface of the sphere r = R, which is free from external loads, the condition �
� �
� �n 0 

is written as:
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0.  (3.46)

It is possible to assume that the moisture flow on this surface is proportional to the concen-
tration difference on the surface of the grain and the intergranular medium cz: c c RR( ) ( , )� ��  [13]:
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�
�
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�
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� �� �D
c
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D
r

k c cR z�

�
,  (3.47)

where k is the mass transfer constant on the surface of the sphere.
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It is possible to assume that the sought functions and their derivatives at the center of the 
sphere (2.r = 0) are limited, in particular:

c
c
r r

( , ) , .0 0
0

� � �
�
�

�
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  (3.48)

Since in the centrosymmetric problem, the relations hold:
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the moisture balance equation (3.44) in the grain is written as:
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 (3.50)

and the boundary condition (3.47) is:
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where D D D� � �� �  is the effective moisture diffusion coefficient; H k D= /   is the reduced 
mass transfer coefficient.

The heat conduction equation for temperature can be written as:
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The initial and boundary conditions for temperature are as follows:

�
�
�

� �� � � �
�

�
�

�

t
r

H t t
t
rr R

T z R r0 00, , 

t t r f rT0 0, , , .�� � � � � � � � �  (3.53)
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3.3 Development of solution algorithms for moisture content and stress-strain 
state of the grain

During the analysis of the moisture diffusion process in the grain, the moisture concentration 
in the intergranular space of the layer can be considered independent of time, i.e., cz = cz(z). 
The function cz is found from the solution of equation (3.39) under the corresponding boundary 
conditions in the quasi-stationary approximation (neglecting the partial derivative with respect to 
time, but the time dependence remains in the source). The solution of the problem is sought by the 
method of separation of variables [3]. Let’s outline new functions:

� � � � � �( , , ) ( ) ( , , ), ( , , ) ( ) ( , , ),r z c z c r z r z T z T r zz T z� � � �  (2.54)

for which the problem (3.50)–(3.53) takes the form:
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where � � � �R R( ) ,� � � , � � � �TR T R( ) ,� � � .
Then the solution of the problem (3.55)–(3.57) is written as [1]:
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mn, mTn are the roots of the characteristic equations:

tan , tan ,�
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  (3.59)

where Fo HR= , Fo H RT T=  are the Fourier numbers.
According to the relation (3.54), for the moisture concentration and temperature in the grain, 

let’s find:
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For the moisture and temperature fluxes JR, JTR through the surface of the sphere:
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Then the intensity of the local sources of moisture and temperature in the case of evaporation 
from individual grains J, JT, which appear in the original equation (3.39), will be:

J J J J JR T TR T T TR� � � � � �( ), ,  (3.62)

where α, αT are coefficients that depend on the size of the spheres (radius) and their  
packing (simple cubic, body-centered cubic, or face-centered cubic, etc.), δT is the thermo- 
gradient coefficient.

Given the accepted assumptions, the process of convective diffusion in the intergranular space 
of a layer of thickness z = L, composed of identical grains, is a fast process compared to the pro-
cess of moisture diffusion from the volume of the grain to its surface. Therefore, further analysis 
of the drying process will be performed based on the equations:
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where the function J is determined by expression (3.62). Considering that J, JT can be written in 
the form (3.62), the equations (3.63) will be written as:



110

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 3

D
d c

z
dc

z
c J c Jz

z z
z

2

2 0 0 0�
�

�
� �� � �( ) ( ),  (3.64)

� � � �Tz
z z

z T T

d t
z

dt
z

t J t J
2

2 0 0 0�
�

�
� �( ) ( ).

Here,

J
D
R

An

nn
n n n0

1

2
( )

( )
sin cos ,� �

�
�

� � �� � �� �
�

�

�


J
a
R

A
T T

T Tn

Tnn
Tn Tn Tn0 1

1

2
( )

( )
sin cos .� �

�
�

� � �� � �� �
�

�

�

Equations (3.64) will be solved under first-kind boundary conditions:
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where cz
n  is the concentration of saturated vapor, cc is the concentration of the steam-air mixture 

in the external environment, tz
n  is the temperature corresponding to vapor saturation.

The solution of the problem (3.64), (3.65) is sought by the method of variation of constants [3]. 
After the corresponding calculations for the first case of boundary conditions, let’s obtain:
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Further, it is possible to use the dimensionless coordinate z z L= / . Then:
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where � �i iL� ,  � �Ti TiL� ,  i = 12, .
In the case of third kind boundary conditions, the sought functions cz and tz are also determined 

by formulas (3.67), in which:
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Integrating the second equation (3.49), for the volumetric strain it is possible to obtain:

� � � �� � �( ) ,c t L  (3.68)

where the function L(z,τ), the “integration constant”, is determined from the condition of zero 
strain at its center, i.e.:

L z c z t z( , ) ( , , ) ( , , ) .� � � � � �� � ��� ��0 0



112

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 3

From here:
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The displacement ur is found from the condition of zero radial stresses (3.46) on the surface 
of the sphere r = R. There is:
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To determine the radial displacement at an arbitrary point of the grain, it is possible to inte-
grate the first expression (3.49). As a result, taking into account its limitation for r = 0 and the 
expression (3.70) for r = R, let’s obtain:
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Here from formula (3.68):
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Based on the determined moisture concentration c and temperature t (formulas (3.66), (3.67)), 
displacement ur (formula (3.71)), strain ε (formula (3.69)), let’s obtain the stresses σrr, σθθ,  
σϕϕ (formula (3.72)).

Thus, based on the proposed model, it is possible to calculate the stress-strain state of an 
individual grain, which depends on its location in the layer, the characteristics of the grain material 
and the intergranular space, the size and packing of the grains under different regimes of convec-
tive-diffusive moisture transfer.

CONCLUSIONS

Well-known mathematical models are typically based on quasi-homogeneous approximations. 
This approach is successfully applied to describe processes in which products and reactants form 
a single phase that uniformly fills the pore space. However, the application of interpenetrating con-
tinua methods is unjustified when studying processes with phase transformations and interphase 
boundaries. The interaction of phases determines capillary transport mechanisms. Capillary proper-
ties and phase transformation processes regulate the distribution of phases in the pore space and 
the magnitudes of interphase surfaces where heterogeneous transformations occur. Therefore, 
the use of capillary models, especially in the second stage of drying when phase transitions deepen, 
and the use of structural stochastic models are necessary.

Thus, the development of approaches and methods for mathematical modeling of heat and 
mass transfer processes in multiphase, multicomponent bodies, taking into account the sizes and 
nature of the phases, is relevant. In drying tasks, the efficiency of the process and the quality of 
the dried product are also important issues. This necessitates the study of the stress-strain state 
and the stability of the shape of thin-walled flat objects.
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DRYING OF A POROUS LAYER IN AN EXTERNAL CONSTANT 
ELECTRIC FIELD (ELECTROOSMOTIC DRYING)

Abstract

In this Chapter, mathematical modeling of the drying process of a porous layer under the 
influence of an external constant electric field is presented, taking into account the electroosmotic 
effects on mass and heat transfer. A mathematical model of electroosmotic drying is formulated 
based on the coupled equations of moisture transport, electrokinetic flow, and thermal effects. 
The analysis considers both natural and convective drying conditions, incorporating the impact of 
electroosmotic forces on moisture migration within the porous medium.

In the study, the fundamental mechanisms governing electroosmotic moisture removal are 
explored, including the formation of a double electric layer at the interface between the pore 
liquid and the solid skeleton, the competition between electroosmotic and capillary forces, and the 
transition between different drying regimes. A system of governing equations, including modified 
Stefan-Maxwell relations and generalized Darcy’s law, is derived to describe the transport pro-
cesses in the porous domain.

Numerical simulations are carried out. The experiments have demonstrated the effect of key 
parameters, such as electric field intensity, moisture content, temperature, and mass transfer co-
efficients, on drying kinetics. Results indicate that increasing the electric field intensity significant-
ly accelerates moisture removal, particularly during the initial drying stage when electroosmotic 
forces dominate.

KEYWORDS

Electroosmotic drying, porous media, moisture transport, external electric field, capillary ef-
fects, ponderomotive force, convective drying, unilateral drying, bilateral drying, boundary layer 
properties, isothermal drying, electrokinetic flow, sustainable technology, numerical methods. 

In drying processes, external mass transfer can be intensified through an active hydrody-
namic regime in the near-wall layer, induced by the action of external physical fields of various 



118

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 4

natures [1–10]. Thus, the application of physical fields can stimulate efficient moisture removal 
from wet materials.

The works [11–14] explore the feasibility of using electroosmosis for moisture removal 
from various dispersed systems. These studies emphasize the role of electrokinetic properties 
in the process of liquid transport and separation under an applied electric field. The study by 
O. Berezniak [15] presents an experimental investigation of electroosmotic dewatering of kaolin, 
highlighting the potential practical application of this drying method. 

The possibility of using electroosmosis for mass transfer intensification is associated with the 
existence of a double electric layer at the interface between the pore liquid and the solid skeleton. 
This concept has been explored in theoretical and experimental studies [16–18], demonstrating how 
electrokinetic effects influence moisture movement in porous media and complex dispersed systems. 
To the issues of intensification of heat and mass transfer processes under the influence of an external 
electric field are devoted the works [19–21]. They have demonstrated the role of electromagnetic 
fields in controlling thermal stresses and optimizing heating modes in electrically conductive materials.

In [16], L. Lysenko has analyzed electrokinetic soil purification, which shares fundamental prin-
ciples with electroosmotic drying.

Mathematical modeling has played an important role in understanding electroosmotic drying 
processes. The works [22, 23] have focused on the mathematical representation of moisture 
transport in porous bodies, considering phase transition kinetics and deformations. 

Additionally, research on applied electroosmosis has extended to diverse fields, including in-
dustrial drying and food processing. Studies such as those by O. Severyn and A. Fariseev [24, 25] 
investigated drying systems enhanced by electroosmotic effects, demonstrating their potential in 
improving energy efficiency and process control.

Moreover, electroosmosis has been studied for its influence on multiphase systems and re-
active environments [26, 27]. The interplay between electrokinetic forces and fluid dynamics in 
these systems suggests promising applications for controlling moisture distribution and enhancing 
separation processes. 

The possibility of using electroosmosis for moisture removal from a body is associated with the 
existence of a double electric layer at the interface between the pore liquid and the solid skeleton. 
The presence of electric forces alters the nature of the drying process.

At the initial stage, a dried zone forms within the body only near a portion (S1) of the surface (S)  
on the side of the acting forces (dried Zone 1). The other part (S2) of the body’s surface remains 
moist, and if the electric force exceeds the capillary force caused by the curvature of the liquid-gas 
contact surface, electroosmotic liquid outflow will occur through this region. The liquid-gas phase 
transition surface is denoted by S*.

As the dried zone expands, its electrical resistance and voltage drop increase. Consequently, 
the voltage and the electric field intensity in the liquid-filled region will decrease. The reduction in 
liquid content during drying will also lead to a decrease in its total electric charge. The pondero-
motive force ρqE



 (ρq is the average charge density of the diffuse layer, 


E  is the electric field 
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intensity in the pores) acting on the liquid due to the electric field will diminish throughout the 
drying process. Meanwhile, the capillary force remains nearly unchanged at this stage.

Once these forces reach equilibrium, the electroosmotic liquid outflow through the surface (S2) 
ceases, and a dried zone also begins to form there. From this moment, the dried zones propagate 
inward from the surfaces (S1) and (S2), moving toward each other. Thus, the drying process occurs 
in two stages:

The 1st stage of drying. 
The mass transfer equations in the dried zone and the boundary conditions will be assumed 

under the following formulation:

  
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M M
RT D 0,  (4.1)

where ρv is water vapor density; ρa is air density; Kg is permeability coefficient of the porous 
medium, depending on the radius and shape of the pores; mg is dynamic viscosity coefficient of the 
gas; Ma is molar mass of air; Mv is molar mass of water vapor; R is universal gas constant; T is 
temperature; D` is effective binary diffusion coefficient in the pores.

On the moving surface (S*), the vapor density can be assumed to be equal to the saturated 
vapor density [28, 29]:

ρv = ρvn. (4.2)

The form of the boundary conditions on the surface (S) depends on the method of modeling the 
interaction between the body and the surrounding environment.

In the case under consideration, where the body is in contact with an environment consisting of 
an air-vapor mixture on the surface (S) under natural drying conditions, it can be assumed that at 
a sufficient distance from the surface (S), the vapor density ρve and air density ρae reach constant 
values ρv1 and ρa1, respectively, which are characteristic of atmospheric air, i.e. [3, 12, 35, 36]:

lim , lim ,� � � �ve
r

v ae
r

a
�� ��

� �1 1  (4.3)

where r is the distance from the surface (S).
In the region external to the body, mass transfer processes will be described by the Ste-

fan-Maxwell equations under the assumption of constant atmospheric pressure:





� �
�
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�
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e
eD

v 0,
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On the surface (S), the normal component of the vapor flux from the drying body must be 
continuous, i.e.:








n j
D

v nv ve
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e
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�
�

�
��

�

�
�� ��

�
,  (4.6)

as well as the component densities of the mixture, which follow from the equality of partial pres-
sures at the surface (S):

� � � �ae a ve v� �, .  (4.7)

Equations (4.1)–(4.7) form a complete system of relations and can be used to describe mass 
transfer under natural drying of a porous body [30, 31].

At the first stage, the liquid moves under the influence of electric forces toward the sur- 
face (S2) with velocity (Generalized Darcy’s law):







�
�

�L
L

L
q k

K
E P� ��� �,

where KL is the permeability coefficient of the body relative to the liquid; mL is its dynamic viscos-
ity; Pk is the pressure induced by the curvature of the liquid-gas contact surface. It is possible to 
assume that the liquid freely exits the pores. At this stage, the phase transition of liquid to vapor 
near the surface (S2) will not be considered.

Thus, the amount of liquid in the body will decrease both due to drying from the surface (S1) 
and due to electroosmotic removal of moisture through the surface (S2). The mass balance equa-
tion in this case takes the form:

dm
dt

j n dS j n dSv
S

v
S

� � �� � � �� �
� � � �
� �1 1 1 2 2 2

1 2

 

,  (4.8)

where 
 

n n1 2,  are the outward normals to the surfaces (S1) and (S2), respectively; 


jv1  is the vapor 
flux through the surface (S1); 



jL  is the liquid flux through the surface (S2):
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j vL L L� ��


.  (4.9)

The 2d stage of drying.
At the moment when the electrical and capillary forces balance each other, i.e.:

�q L
V

kEdV P S
f



� �
� � �1 0* ,  (4.10)

the liquid outflow ceases, and a second dried zone (Zone 2) emerges, which will expand from sur-
face (S2) into the depth of the material. In (4.10) (VL) represents the region of the body occupied 
by the liquid; VL is its volume, and S1

*  is the area of the gas-liquid contact surface.
The problem of drying Zone 2 is formulated similarly to the drying problem for Zone 1. The mass 

balance equation for the moisture in the material now takes the form:

dm
dt

j n dS j n dSL
v

S
v

S

� � �� � � �� �
� � � �
� �1 1 1 2 2 2

1 2

 

.  (4.11)

Determination of electrical quantities.
The electric field intensity is determined from the corresponding electrostatics problems. For 

the first stage, the governing equation is given as:

�� �j j jE j� � �� �� �0 12, , , ,  




 (4.12)

which applies to the region (V1) (j = 1), bounded by surfaces (S1) and S1
*� � , and the region (VL) 

(j = 2), occupied by liquid, with the boundary conditions:

� � � �1 01 2 021 2� �  on the surface  on the surface ( ), ( ),S S  (4.13)

and the conjugation conditions at the interface:

� �1 2 1 1 2 1 10� � �� � �, , ( ),*  on the surface 


 

n j j S  (4.14)

where




j E jj j j� �� �� , , . 12  (4.15)

Here, 
 

j j1 2,  are the current density vectors, while σ1, σ2 denote the electrical conductivity 
coefficients in regions (V1) and (VL), respectively. The vector 



n1  represents the normal to the 
interface S1

*� �.
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For the second stage of drying, the electrostatics problem is formulated as:

�� �m m mE m� � �� �� �0 12 3, , , , ,  




 (4.16)

for the regions (V1) (m = 1), (Vf) (m = 2), and (V2) (m = 3), bounded by surfaces S2
*� �  and (S2), 

under the boundary conditions:

� � � �1 01 3 021 2� �  on the surface  on the surface ( ), ( ),S S  (4.17)

and the conjugation conditions:

� �1 2 1 1 2 10� � �� � �,  on the surface 


 

n j j S, ( ),*

� �2 3 2 2 3 20� � �� � �,  on the surface 


 

n j j S, ( ),*  (4.18)

where 


n2  is the normal to the surface S2
*� � .

The average charge density of the diffuse layer for a binary electrolyte solution, based on the 
theory of the double electric layer and works [1, 32, 33], is determined by the formula:

�
� �

q
f

p

fC
fRTk

zF
T

�
2 1�

�

,  (4.19)

where εf is the average absolute dielectric permittivity of the liquid phase; TΓ is the tortuosity 
factor; kp is the permeability coefficient of the porous medium; φ1 is the surface potential at the 
closest approach of ions [7]; z = z+ = –z–, where z+ and z– are the valencies of cations and anions; 
Ff is the Faraday constant; C is the electrolyte concentration; Π is the porosity of the material.

Thus, the problem of electroosmotic drying of a porous body includes the relationships given 
by (4.1)–(4.9).

It should also be noted that the use of an isothermal model for describing electroosmotic drying 
requires imposing appropriate restrictions on the magnitude of the external electric field.

4.1 Electroosmosis drying a porous layer

Let’s consider the problem of the influence of electroosmosis influence on drying a porous 
layer, where free evaporation occurs on one of its surfaces into the external environment, while 
the other surface is supplied with moisture from a well-permeable wet medium. This problem can 
model the drying of basements after floods.
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A porous layer initially saturated with moisture is examined, with one of its surfaces (Surface 1)  
in contact with an environment that is a mixture of air and vapor, while Surface 2 borders a 
well-permeable wet medium. 

The air and layer temperatures are assumed to be equal.
Since the vapor in the pores is saturated at the liquid surface, while the surrounding environ-

ment is unsaturated, vapor outflow occurs from Surface 1. As a result, a region of dried pores filled 
with a mixture of air and vapor is formed within the body, where these components are considered 
separate constituents of the filling gas. During the drying process, this zone expands deeper into 
the material. The coordinate of the moving boundary is denoted as z = Lm. 

To intensify the drying process via electroosmotic moisture removal from the porous layer, a 
constant potential difference is applied between Surfaces 1 and 2. Due to the influence of the elec-
tric field on the charge of the diffuse part of the electrical double layer at the solid skeleton-pore 
liquid interface, an additional (ponderomotive) force arises, inducing an electroosmotic moisture 
flux j3 toward Surface 2. Under the action of the electric field, a directed movement of electric 
charges in the diffuse part of the electrical double layer occurs, accompanied by the movement of 
the liquid layer along the pore surfaces (electroosmosis) [34, 35].

If a well-permeable wet medium is present on the side of Surface 2, a significant portion of 
moisture is absorbed into the porous layer through capillary imbibition. Capillary imbibition, driven 
by the gradient of capillary pressure, results in the formation of a filtration flux j2.

As a result of the combined action of these fluxes, changes in the relative moisture content 
of the porous layer occur. Notably, if the dispersion of pore sizes in the porous body model is 
neglected, the relative moisture content αm, defined as before, coincides with the phase inter- 
face boundary:

z
L
Lm
m=
0

.

The mass of liquid lost during the drying process is given by:

� �m m m S L zLn L L m� � � �� �� 0 1 ,

where S is the pore area; ρL is the density of water; Π is the porosity of the material. Given that 
the rate of change of liquid mass in the layer is determined by the vapor and liquid flux j from the 
layer, let’s arrive at the differential equation governing the relative moisture content αm in the 
layer, which can also be interpreted as the equation of motion for the phase interface:

d
dt

dz
dt

j z

L
m m m

L

�
�

� � �
� �
� 0

,
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where j zm� � is the total flux acting in the porous medium, which is the sum of the vapor flux, the 
electroosmotic flux, and the flux induced by capillary pressure, counteracting the electroosmotic flow.

The phase transition from liquid to vapor at the gas-liquid interface is accounted for by spec-
ifying the density of the saturating vapor on this surface, which depends on the temperature and 
is given by the formula:

�n

T vT e
M
RT

( )
.

� � �
�

�� �
�

�
�
�

�

�
�
�

133
18 681

4105
35  kg/m .3  (4.20)

As a result of solving the nonlinear boundary problem, the dependence of the convective-diffusive 
vapor flux on the parameters of the porous and boundary layers is determined in the form [30, 39]:

j z
B zm

m
1

0

� � �
�
�
�

,  (4.21)

where Ω is a parameter characterizing the intensity of moisture transfer, which depends on the 
physical properties of the medium and the drying conditions; B is a coefficient that depends on 
the effective diffusion and permeability characteristics of the porous medium; Γ0 is a parameter 
characterizing the influence of the electric field on the mass transfer process [2].

4.1.1  Capillary moisture flow

The transfer caused by capillary imbibition is considered. The capillary pressure is determined 
by the Laplace equation:

P P P
Rk L g
Lg� � �

�2� �cos
,

where q is the angle formed by the meniscus surface with the solid surface; PL, Pg are the pres-
sures in the liquid and gas phases, respectively; σLg is the surface tension coefficient at the  
liquid-gas interface.

In the Laplace equation, R  represents the equivalent Kelvin radius. The flux j2 caused by capil-
lary imbibition is determined using Poiseuille’s equation:

j
K P

L zL
L

L

K

m
2

0

� ��
�

,  (4.22)

where KL is the permeability of the liquid; mL is the dynamic viscosity of the liquid.



125

4 DRYING OF A POROUS LAYER IN AN EXTERNAL CONSTANT ELECTRIC FIELD 
(ELECTROOSMOTIC DRYING)

CH
AP

TE
R 

 4

4.1.2 Electroosmotic liquid flow

The liquid flow caused by the action of an external constant electric field is considered under 
the condition of the presence of a dried pore zone. The effect of the electric field on the pore liquid 
is associated with the presence of a double electric layer near the pore surface. The skeleton 
material is assumed to be hydrophilic, and the minimum transverse pore size is significantly larger 
than the thickness of the diffuse part of the double electric layer δe = 1/Ke, where for a symmetric 
binary electrolyte solution [1, 32]:

K F Z C RTe f� 2 2 2
0

1� �/ ,( )

where Ff is Faraday’s constant; Z is valence of ions considering their charge sign; C0 is electrolyte 
solution concentration; ε(1) is absolute dielectric permeability of the liquid.

Then, on average, the charge density ρe in the diffuse part of the double electric layer is 
determined as [1]:

� �e e

K R r
e e�
� �� �

0 ,  (4.23)

where ρe0 is charge density value on the surface of capillaries; r is running radial coordinate.
For the assumed condition of the smallness of the double electric layer thickness compared to 

the capillary radius, K Re >> 1.
The force density across the capillary section:

f Ee e L� � ,

where EL = UL/Lm is electric field intensity; UL is voltage applied to the liquid-filled part of  
the capillary.

The average force density:

f
E

K R
E

K R
ee

e L

e

e L

e

K Re� � � �2 2
10 0

2

� �
( )

( ).

For the earlier assumption RKe >> 1, let’s obtain:

f
E

K R
E

Re
e L

e

L� �
2 20� �

,

where � �� e eK0 / .
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The force acting on the charge in the capillary:

F f SLe e m= .

The average pressure caused by electrical forces:

P F S f Le e e m= =/ .

The gradient of this pressure:





� � � � � � � � � �P dP dz e dP dz P L F SL fe e z e e m e m e/ , / / / . 

Considering that the current forces Ig and IL in the dried and liquid-saturated pore regions are 
equal, i.e., Ig = IL, according to Ohm’s law:

I U R I U Rg g g L L L= =/ , / , 

let’s obtain U U R Rg L g L/ / .=
Here

R L L S R L Sg g m L L m� � �� �* *( ) / , / ,0  

where ρ ρg L
* *,   are the specific resistances of these regions.

As the voltage U between the layer surfaces is U U Ug L� � ,  then:

U
U

z

z

z

zL

g m

L m

m

m

� �
�� �

� �
�� �

1
1

1
1�

� ��

*

* .  (4.24)

Here � � �� � L g
* */  is the ratio of specific resistances in the liquid and dried zones, and z L Lm m= / .0

From (4.24), it follows that:

U Uz z zL m m m� � ��� ��� �� �/ ( ) .1

Then the electric field intensity in the liquid zone is:

E U L U L z zL L m m m� � � ��� ��/ / ( ) .� �� �0 1

The formulas for determining the pressure gradient and the magnitude of the electroosmotic 
flow j3 are given as follows:
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dP
dz

f
R

U

L z z
e

e
m m

� � � �
� ��� ��

2
10

� �

�
�

� ( )
;

j L3 3� �� � ;

�
� �

� �

�
�

�

3

0

2

1
� � �

� �� ��� ��

K dP
dz

K
R

U

L z z
L

L

e L

L m m

.  (4.25)

4.1.3 Solution of the problem and results of quantitative analysis

The determination of the change in relative moisture content during the drying process is 
reduced to the Cauchy problem, where the convective-diffusion flow is determined from (4.21), 
and the capillary and electroosmotic flows are determined from (4.22) and (4.23), respectively:

dz
dt B z

K
z

K
z K z

zm

m m m m
m� �

�
� �

�� � � � � ��
�0

1

21
0 1

 

, ;  (4.26)

 K
K

R L
K

K E

RL
L

L

Lg L

L

� �
�

�

�

���2 2

0
2 1

0

, . 

Equation (4.26) can be written as follows:

a z a z a z
a z a z a

dz
dt

m m m

m m

m32
3

22
2

12

21
2

11 01

1
� �
� �

� ;

where

a K K K K21 2 0 2 1 01 1� � � � �� � �( ) ( ) ;   

a KB K K K B11 2 0 11� � � � � �� �  ( ) ; 

a KB01 =  ; a K32 0 21� �� ( );  

a B K22 2 01� � � �( ) ;�  

a B12 = ;

or 

a
a

z a z a z
a z a z a

dz dtm m m

m m
m

32

21

42
2

41

21
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11 012
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�
� �

�

�
�
�

�

�
�
�

� ;  



128

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 4

a a
a a
a42 22
32 11

21

� � ;  

a a
a a

a41 12
32 01

21

� � .

The solution of (4.26) using the initial condition zm 0 1� � �  has the form:

1
2

1 1
2 2

32

21

2 42

21

42 11

21
2
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a
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a a
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�

�
��

�

�
�� lnn ,f z f z tm m2 � � � � � �  (4.27)

where
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Otherwise,
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21 01
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The formulas obtained above are the basis for a quantitative analysis of the influence of geo-
metric and physical parameters on the drying a porous layer of cement stone.

Table 4.1 shows the dependence of relative moisture content at a fixed point in time on tem-
perature and boundary layer thickness during capillary infiltration under natural drying (without an 
electric field). The influence of an external constant electric field is illustrated by the data given in 
Tables 4.2 and 4.3 for different boundary layer thicknesses.
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 Table 4.1 Consideration of capillary imbibition (t = 104 s, L0 = 0.1 m)

�m mz�

δ, m T1 = 300 K T2 = 310 K T3 = 320 K T4 = 330 K

0.0001 0.573 0.428 0.254 0.082

0.001 0.591 0.445 0.27 0.091

0.01 0.727 0.59 0.416 0.209

0.1 0.967 0.933 0.875 0.784

 Table 4.2 Influence of electric field intensity on relative moisture content at E = 200 V/m

�m mz�

δ, m T1 = 300 K T2 = 310 K T3 = 320 K T4 = 330 K

0.0001 0.561 0.415 0.242 0.075

0.001 0.577 0.432 0.257 0.083

0.01 0.705 0.569 0.396 0.193

0.1 0.914 0.873 0.81 0.718

 Table 4.3 Influence of electric field intensity on relative moisture content at E = 400 V/m

�m mz�

δ, m T1 = 300 K T2 = 310 K T3 = 320 K T4 = 330 K

10-4 0.524 0.377 0.206 0.059

10-2 0.647 0.511 0.343 0.149

In Fig. 4.1 and 4.2, the dynamics of relative moisture content dependence on time are shown 
for δ = 0.001 m and δ = 0.1 m, respectively (curves 1, 2, 3, 4) for T = 300 K, 310 K, 320 K, 
and 330 K.

From the provided quantitative data, it follows that the intensity of drying significantly depends 
on the thickness of the boundary layer. When the thickness of the boundary layer increases by a 
factor of 100, the relative moisture content may increase by a factor of 10 or more. At a boundary 
layer thickness of δ = 0.1 m and temperatures of 300 K, 310 K, and 320 K, the relative moisture 
content decreases by no more than 10 % over approximately 3 hours.

An electric field intensity of E = 200 V/m and E = 400 V/m (these are not high fields) counter-
acts liquid infiltration through wall 2, leading to a resultant reduction in relative moisture content 
of up to 40 %.

Let’s investigate the influence of electroosmosis on the drying process of a porous layer under 
convective mass transfer on one of its surfaces. Let’s consider a porous layer initially saturated 
with moisture, where one surface (Surface 1) is in contact with a gaseous environment (air), 
while the other surface (Surface 2) is in contact with a moisture-saturated, highly permeable 
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wet medium. It is assumed that gas flow can be applied to Surface 1 and a constant difference in 
electric potential can be created between Surfaces 1 and 2. This allows to explore the possibility 
of stimulating and controlling the drying process through air blowing on Surface 1 and electroos-
motic moisture removal. The transport of air and vapor in the dried region is described by the 
Stefan-Maxwell equations [31] with boundary conditions on Surface 1.

 Fig. 4.1 Dependence of relative moisture content on time at different 
temperatures for δ = 0.001 m
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 Fig. 4.2 Dependence of relative moisture content on time at different 
temperatures for δ = 0.1 m

1.00

0.90

0.80

0.70
0

1
2

3

4

5·103 1·104

zm
_

t, s



131

4 DRYING OF A POROUS LAYER IN AN EXTERNAL CONSTANT ELECTRIC FIELD 
(ELECTROOSMOTIC DRYING)

CH
AP

TE
R 

 4

4.2 Enhancement of convective drying of a porous layer surface by 
electroosmosis

Solving the nonlinear boundary value problem, let’s determine the vapor density at the wall η1 
and the vapor flux magnitude j1:

�1
2 2� � �� � � � �A Bz U Sz B zm m m

* * * ,  (4.28)

j H a Bz U Sz B zm m m1 1
2 2� � �� � � � ��

��
�
��

* * * .  (4.29)

Due to the pressure effect under the meniscus of the water surface in the pores at the 
gas-liquid contact boundary, capillary moisture inflow occurs from the medium in contact with the 
layer at Surface 2. The competition between drying and moisture inflow may lead to a steady-state 
moisture content level in the layer. To further reduce moisture, a constant electric field generated 
by an external source can be used. The action of the field on the electric charge in the diffuse part 
of the double electric layer at the solid-liquid interface creates an additional (ponderomotive) force 
that reduces moisture inflow or drives electroosmotic moisture flux toward Surface 2. The vapor 
outflow conditions through Surface 1 of the drying body are modeled using third-kind mass trans-
fer conditions (4.29). The mass transfer coefficient is related to the nature of the air blowing on 
Surface 1, which intensifies the drying process.

The total flux j consists of the diffusion-convective flux j1, the flux due to capillary imbibition j2, 
and the electroosmotic liquid flux j3, caused by the force with which the electric field acts on the 
charged liquid. 

For partial filling of the capillary with liquid, surface forces act at the three-phase liquid-gas-sol-
id interface, forming a meniscus – a curved gas-liquid boundary surface.

The flux j2 due to capillary imbibition, according to Poiseuille’s equation, is defined as:

j v
K P

L z
L L L

L

L

K

m

2

0 1
� �

�� �
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� *
.  (4.30)

The electroosmotic flux is given in the form:

j v
K E

R z z
L osm

L L

m mL

3

2

1
� �

�� � ��� ��
�

�
�

��

�
�

�

�
�

.  (4.31)

Thus, the problem reduces to the following Cauchy problem:
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dz
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f z a Bz U Sz B zm m m m
* * * * ,� � � � �� � � � �1

2 2  (4.33)

under the initial condition zm
*( ) ,0 0=

where K
K P
L
L L k

L n

�
�
� ��0

;  P
Rk � �

2�
;  K2 � ��;  K3 1= ;  K
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� � �

�� �
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By substituting the variables U Sz B z z Bm m m� � � �* * * ,2 2 � (4.33) transforms into:

�
� �� �
�� �
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2

2

2

2 1 2

B S BU

S B

d
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H a f
� �
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where

�1 � �S U;

�2 2 3� �K K ;  

�1 22� K B;
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Equation (4.34) can be rewritten as:

�
� �� � � �

�� � �� � � �
�
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2
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1 4

2
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� ,  (4.37)
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f c c c c4 1 2 3 4� � � � �� � � �� � �� � �� � �� �,

where c ii i� �� , , 14  are the roots of the fourth-order polynomial appearing in the numerator of 
equation (4.35).

The solution to this equation, considering the initial condition zm
*( ) ,0 0=  is given by:
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The transcendental equation (4.38) establishes the relationship between the relative mois-
ture content in the porous layer and time, depending on the system parameters, as presented in  
Tables 4.4, 4.5, and Fig. 4.3–4.5.

 Fig. 4.3 Time variation of relative moisture content for different temperature 
values in the absence of an external electric field
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 Fig. 4.4 Time variation of relative saturation as a function of temperature at a 
given electric field strength E = 200 V/m
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 Fig. 4.5 Time dependence of relative moisture content for different values of 
the mass transfer coefficient at E = 200 V/m
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4.2.1 Numerical analysis of parameter influence on convective  
electroosmotic drying

Fig. 4.3–4.5 show the time dependence of relative moisture content considering capillary 
imbibition in the absence and presence of an external electric field. In Fig. 4.3 and 4.4, curves 1  
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correspond to a temperature of 300 K; curves 2 correspond to 310 K; curves 3 correspond to 320 K;  
curves 4 correspond to 330 K. The calculations were performed using b = 0.01 and L0 = 0.1 m.  
The analysis of the results indicates that at T = 300 K, an electric field intensity of E = 200 V/m  
reduces the relative moisture content of the layer from 0.960 to 0.574 for t = 106 s, whereas at 
T = 330 K, it decreases from 0.620 to 0.313, nearly by a factor of two.

 Table 4.4 Dependence of relative moisture content z zm m� �1 *  on temperature at a mass transfer 
coefficient b = 0.01 for E = 200 V/m, and E = 400 V/m

E, V/m
T, K

300 310 320 330

200 0.574 0.488 0.397 0.312

400 0.395 0.319 0.261 0.222

 Table 4.5 Dependence of relative moisture content zm  on the mass transfer coefficient b at T = 300 K, 
E = 200 V/m, and E = 400 V/m

E, V/m
β

0.01 0.005 0.0025 0.001 0.0005 0.0001

200 0.574 0.594 0.617 0.646 0.656 0.664

400 0.349 0.395 0.429 0.455 0.462 0.47

In Fig. 4.4 and 4.5, curves 1–6 correspond to the values of the mass transfer coefficient 
b = 0.0001, 0.0005, 0.001, 0.0025, 0.005, and 0.01. In Fig. 4.4, curves 1–4 almost coincide 
with the abscissa axis, indicating that the relative moisture content corresponding to these curves 
is approximately equal to one, meaning that the moisture content of the layer remains nearly un-
changed over the studied time interval. In the presence of an external constant electric field (Fig. 4.5),  
the drying process of the layer becomes significantly more effective. The drying rate also increases 
with higher mass transfer coefficients and temperature.

4.3 Influence of an external constant electric field on bilateral natural drying 
of a porous layer

A porous layer, initially saturated with moisture, is considered within a Cartesian coordinate 
system (x, y, z) and occupies the region 0 < z < L0. The layer undergoes mass exchange with 
the surrounding environment from both sides, while the temperature of the medium and the layer 
remains the same. A constant difference in electric potential is maintained between the surfaces 
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of the layer. Due to the action of the field on the electric charge within the diffuse part of the 
electrical double layer near the solid matrix–pore liquid interface, an additional (ponderomotive) 
force arises, inducing an electroosmotic moisture flow within the body. The surface from which the 
electroosmotic flow is directed will be referred to as the first surface (Surface 1), while the other 
surface (toward which the flow is directed) will be referred to as Surface 2. The coordinate system 
is chosen such that Surface 1 coincides with z = L0 and Surface 2 with z = 0.

As a result of liquid evaporation from the pores and vapor outflow to the external environment, 
a zone of dried pores forms on the side of Surface 1, filled with a mixture of air, vapor, and residual 
liquid bound to the pore surfaces, which remains stable against drying at a given temperature. During 
the drying process, this zone expands deeper into the material. Let’s consider a class of materials 
with low permeability to liquids, where the influence of a two-phase zone can be neglected [1]. There-
fore, the formation of two distinct zones is assumed: dried pores and liquid-filled pores. The boundary 
between these zones within each pore is marked by a liquid meniscus, the convexity or concavity 
of which is determined by the properties of the pore surface (its hydrophilicity or hydrophobicity).

4.3.1 Mass transfer in the surrounding gas

When formulating the mass transfer problem in the surrounding gas, it is assumed that chang-
es in the density of its components – air and vapor – occur only within a certain layer of thick- 
ness �i i, ( , ) � 12 , which occupies the regions L z L0 0 1� � � � , 0 2� � �z � . At the surfaces 
z L� �0 1� , z � ��2 , the air and vapor densities are equal to their values in atmospheric air. Thus, 
the mass transfer problem in the surrounding gas includes:

– the Stefan-Maxwell equations [31]:
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RT
� � 1 ,  (4.39)

in the regions L z L0 1 0� � �� , 0 2� � �z � ;
– the boundary conditions:
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� � �,  on the surface z = 0;  (4.42)
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� �ve v2 2� ,  � �ae a2 2� ,  � �a
a g a

v
v

M P

RT
M
M2

1
2� �  on the surface z � ��2,  (4.43)

where ρvei , ρaei  are the vapor and air densities, respectively; ρvi, ρai  are the vapor and air den-
sities at the surfaces z L� �0 1� , z � ��2; υi  is the mass-averaged velocity; j1, j2 are the vapor 
fluxes at the surfaces.

4.3.2 Mass transfer in the zone of dried pores

Mass transfer in the gas zone within the porous layer will also be described using the Ste-
fan-Maxwell equations [31]. However, the gas pressure P in the pores depends on the coordinate, 
and the mass-averaged velocity υ  satisfies Darcy’s law. Then, the transport equations in the 
region L z L0 > > max  take the form:
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where Lmax  is the coordinate of the gas-liquid contact boundary within the porous layer.
The boundary conditions at the surfaces z L= 0 and z L= max in the gas zone are given as follows:
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�
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� � 1
 on the surface z L= 0;  (4.45)

� �v n�  on the surface z L= max.  (4.46)

When a zone of dried pores forms near Surface 2, the mass transfer in this region is described 
by equation (4.44) with the following boundary conditions:
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vK P
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� 2
 on the surface z = 0, 

� �v n�  on the surface z L= min . (4.47)

Equations (4.39)–(4.48) form a complete system of relationships for determining the convec-
tive-diffusive vapor flux in the given porous layer. The expression for this flux is obtained in the form:

j z
B zm

m
1

0

� � �
�
�
�

,  (4.48)
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where zm  is relative moisture content of the porous layer; B is a coefficient characterizing 
the convective-diffusive transfer equation, which includes material and transport properties; 
Γ0  is a coefficient accounting for the influence of relative moisture content zm  on mass transfer; 

C0  is initial concentration of moisture; �
�
�0

1� v

n

 is a dimensionless parameter expressing the ratio 

of vapor density ρv1 to a reference density ρn; a, b are coefficients of porosity and diffusion prop-
erties, respectively.

The electroosmotic flow is described by equation (4.25):
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.  (4.49)

4.3.3 Liquid flow under the influence of capillary forces

Let the electric forces be sufficiently strong so that the liquid flows out through Surface 2.  
In this case, the capillary pressure P P P Lg Rk L� � � 2� �cos /  induces a flow of liquid j4 in the 
direction opposite to the electroosmotic flow:
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. (4.50)

The total liquid flux jL is determined as the sum of fluxes j3 and j4:
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. (4.51)

During electroosmotic displacement of liquid through Surface 2 (i.e., reduction of para- 
meter zm ), the magnitude of the first term in equation (4.52) will increase, while the second term 
changes weakly due to the smallness of parameter ερ, or even decreases (Stage 1). The total liquid 
flux through Surface 2 will decrease until it reaches zero. At this moment, the electric field can 
be switched off. The capillary pressures at surfaces z L= max  and z = 0  will equalize, and the pore 
liquid will reach equilibrium. Drying of the layer through Surface 2 will then commence, governed by 
equations (4.39), (4.42), (4.45), (4.47), and (4.48).

Thus, the acceleration of the drying process due to electroosmosis will be observed only during 
the first stage.
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Setting the total liquid flux jL to zero in equation (4.51), let’s obtain the following expression 
for the parameter zm

* , which defines the thickness of the saturated layer at the transition from 
the first to the second drying stage:

z
Um

* .�
�� � �

�
� � ��� �1

 (4.51)

Expression (4.51) is written for a zero wetting angle.

4.3.4 Mass balance equation for liquid

The rate of liquid reduction in the layer is determined by the fluxes of liquid and vapor from the 
body. For the first drying stage, the mass balance equation for the liquid can be written as:

dm
dt

j j SL� � �� �� 1 .  (4.52)

Considering that for the first drying stage m S L S L zL m L m� �� �� � 0 , equation (4.54) can be 
rewritten in terms of the parameter zm  as:

dz
dt L

j jm

L
L� � �� �1

0
1�

,  (4.53)

with the initial condition:

zm = 1 at t = 0.  (4.54)

The final value of the parameter k km m= * corresponds to the first drying stage.
It is noteworthy that the relative moisture content �m zm m� / 0 of the porous layer (mz  being 

the residual moisture mass in the layer after drying, and m0 the initial moisture mass) during the 
first stage is determined by the parameter zm , i.e.:

�m mz� .  (4.55)

Indeed, using the definitions m S L S L zz L L m� �� �� �max 0  and m S LL0 0� � � , let’s obtain the 
expression �m zm m� / 0  for relative moisture content.

For the second drying stage, the mass balance equation takes the form:
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dm
dt

j j S� � �� �� 1 2 , (4.56)

with the initial condition:

m S L zL m� � � 0


*  at t t= *.  (4.57)

Here, t *  represents the time at which the parameter zm  reaches its final value zm
*  in the 

first drying stage.
The relative moisture content in this stage is given by:

�m m m

L L

L
z z�

�� �
� �� �max min

0
1 , (4.58)

where L L zmmin = 0 1  is the coordinate of the boundary between the dried and saturated zones on 
Surface 2 of the porous layer. Since the change in the moisture mass of the layer is now deter-
mined by:

� � �m m m� �1 2,  � �m S z zL m m1 � �� �� 

* ,  � �m S zL m2 1� � ,  (4.59)

where the change Δm1  (change in zm ) is governed by the vapor flux j1, and Δm2 (change in zm1) 
is governed by the flux j2, the problem (4.56), (4.57) can be formulated as two Cauchy problems:

dz
dt

j
L

m

L

� � 1

0�
,  (4.60)

under the initial condition:

z z t tm m= =* *; at  (4.61)

and

dz
dt

j
L

m

L

1 2

0

�
�

,  (4.62)

under the initial condition:

z t tm1 0= = at *.  (4.63)

The relative moisture content is now determined by the formula �m m mz z� � 1,  and the drying 
process is completed when the condition z zm m= 1  is met (i.e., �m � 0).
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3.5 Solution of the problem and analysis of the obtained results

The convective-diffusive fluxes j1 and j2 are determined from the solutions of problems (4.39)–
(4.41), (4.44)–(4.46) and (4.39), (4.42)–(4.44), (4.47), (4.48) and are given by [40]:
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Using expression (4.52) for the liquid flux in the layer and formula (4.64) for the flux j1, the 
Cauchy problem (4.55), (4.56) for the first drying stage is formulated as:
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Equation (4.65) can be rewritten as:
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where
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a K32 01 21� �� �� ,  a B K22 1 2 011� � �� � � � ,  a B12 1= .

The solution of equation (4.65) with the initial condition (3.18) is given by:
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The transcendental Eq. (4.67) provides the dependence of relative moisture content in the 
porous layer on time during the first drying stage. The final moment t * of the first stage is given by:
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where zm
*  is given by Eq. (4.53).

The solution of the problem (4.67), (4.68) of the drying at Stage 2 has the form:
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and of the problem (4.68), (4.69):
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The relative moisture content at Stage 2 of drying ( )*t t>  is determined by the expression:
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Let’s proceed to the quantitative analysis of the obtained correlations.
Based on the obtained formulas, a quantitative analysis is conducted. The study examines 

the variation of relative moisture content αm  over time for different temperatures and external 
electric field intensities. Results are presented in Fig. 4.6–4.7. 

 Fig. 4.6 Temporal dependence of the relative moisture content of the layer 
during the second stage of drying at E = 200 V/m for temperatures of 300 K, 
310 K, 320 K, and 330 K
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 Fig. 4.7 Temporal dependence of the relative moisture content of the layer 
during the second stage of drying for a temperature of 300 K at E = 200 V/m, 
400 V/m, and 1000 V/m
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Fig. 4.6 and 4.7 illustrate the nature of the temporal dependence of relative moisture content 
for different temperatures (Fig. 4.6) and different intensities of the external electric field applied 
during the first stage of drying (Fig. 4.7). It follows that this dependence is linear. The drying rate 
(slope of the curve) during the second stage is determined by the temperature. The initial humidity 
level in the second stage of drying is lower for higher field intensities applied during the first stage.

4.3.6 Estimation of temperature change in the layer due to the influence of the 
electric field

In this work, the change in temperature due to Joule heating, caused by the action of the 
electric field in the first stage of drying, is neglected. Let’s substantiate this by estimating such a 
change for the maximum electric field intensity (E = 1000 V/m). 

The heat generation density in the liquid according to Joule-Lenz’s law is given by:

Q E t� � 2 ,

where σ  is the electrical conductivity coefficient. This heat is used to heat the liquid and the skel-
eton. It is possible to assume that the heating time is significantly greater than the heat transfer 
time from the liquid to the skeleton, meaning that the heating of the layer is considered uniform. 
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The thermal balance equation is:

� � � �� � �E t C C Ts s L L
2 1� �� � ��� �� ,

where Cs  and CL  are the specific heat capacities of the dry material and liquid, respectively. From 
this equation, let’s obtain:

�
�
� �

T
E t

C Cs s L L

�
�� � �
�

� �

2

1
.

Let E = 1000 V/m, the density of dry pine wood �s � 500 3kg/m , water �L � 1000 3kg/m ,  
porosity � � 0 291. , specific heat capacities Cs = 1.604 kJ/(kg⋅K), CL = 4.19 kJ/(kg⋅K), and  
σ = 10-3 S/m [37]. 

A quantitative estimate for the rate of temperature change gives:

�T
t
� �10 4K/s.

For the above-mentioned durations of the first stage of drying, this results in a temperature 
change of fractions of a degree, which can be neglected.

4.4 The influence of electroosmosis on bilateral convective drying of  
a porous layer

Let’s consider the formulation and solution of the problem of drying a porous layer that is in 
contact with an environment consisting of a mixture of air and vapor, under the influence of con-
vective airflow and the enhancement of this process by an external electric field.

The objective here is to formulate and solve the problem of drying an initially moisture-sat-
urated porous layer, stimulated by convection and electroosmosis. As in previous sections, the 
quasi-homogeneous approximation is used, based on the application of macroscopic equations anal-
ogous to those in an individual pore, but with effective transport coefficients, while neglecting  
film transport.

4.4.1 Object of study and problem formulation

Let’s consider an initially moisture-saturated porous layer, referenced to a Cartesian coordinate 
system ( , , )x y z , occupying the region 0 0< <z L . Let’s investigate the effect of electroosmosis  
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on the drying process of the porous layer under convective mass exchange at one of the sur- 
faces (Surface 1). The temperature of the air and the layer is assumed to be equal. Since the 
vapor at the pore surface is saturated, while the surrounding medium is unsaturated, vapor flows 
outward. As a result, a zone of dried pores filled with a mixture of air and vapor forms in the ma-
terial, with air and vapor considered as separate components of the gas phase. During the drying 
process, this zone expands deeper into the material. The coordinate of the moving boundary is 
denoted as z Lm= .

To intensify the drying process by electroosmotic moisture removal from the porous layer, 
a constant potential difference is applied between Surfaces 1 and 2. Due to the action of the 
field on the electric charge of the diffuse part of the double electric layer near the solid-liq-
uid interface, an additional (ponderomotive) force arises, inducing an electroosmotic moisture  
flow j3 toward Surface 2. In opposition to the osmotic pressure, capillary forces arise, leading 
to a filtration flow j2.

On Surface 2, moisture removal occurs via convective evaporation of the saturated vapor. 
Due to the displacement of the moving boundary and neglecting film transport, the vapor at the 
opposite side (Surface 2) of the porous layer remains saturated. The vapor flux from Surface 2 is 
given by [1, 38, 39]:

j zn4 2 0 0� �� � �� � �  at .  (4.69)

As a result of the combined effects of the forces that arise during drying, the relative moisture 
content in the porous layer changes. Using the notations adopted in Section 2, the transport of 
dry air and vapor in the dried region L z Lm0 < <  under a quasi-stationary process, while neglect-
ing the flow of dry air into the pores, is described by the nonlinear Stefan-Maxwell differential  
equation (4.43) [31].

The convective mass transfer conditions at the surface z L= 0  are:

�
�

�
� �v

g

v
a a

K P
z

D
z

j
�
�

�
�
�

� � �, ,0  (4.70)

where j v� �� �� � �1 0 .
The phase transition from liquid to vapor at the gas-liquid interface z Lm=  is accounted for by 

prescribing the density of the saturated vapor at this surface, which depends on temperature and 
is determined by equation (4.20). At the phase transition surface z Lm= :

< � �v n� ,  (4.71)

where ρn  is the density of the saturated vapor.
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4.4.2 Solution and quantitative analysis of the problem

From the solution of the problem about convective-diffusive vapor transport [2], the vapor 
density η1  at the wall k = 1 is determined as follows:

�1
2 2� � �� � � � �A Bz U Sz B zm m m

* * * ,  (4.72)

where 

A
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b
�

�� �1
,
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S B A� �� �2 0� ,
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,  �
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L
D
0 z zm m

* ,� �1  (4.73)

� � �a a� 1 ,  � � �v n� ,  z L z= 0 ,  
� �1 1
�

�z
.

The convective-diffusive flux j1:

j H a Bz U Sz B z a Am m m� � �� � � � ��
��

�
��

� �1
2 2

1 0
* * * , . �  (4.74)

Since the moisture reserve in the porous layer is limited, drying occurs in two stages. In the 
first stage, a filtration-osmotic regime is established, which lasts until the electroosmotic and 
filtration fluxes equalize. The capillary pressure forces induce the flow j2  equation (4.22):

j
K P

L z
L L L

L

L

K

m

2

0 1
� �

�� �
� �� � �

� *
.  (4.75)

To determine the electroosmotic flow, let’s use the quasi-homogeneous approximation for the 
porous body. The electroosmotic liquid flow in the porous layer is given by equation (4.25):

j v
K E

R
L osm

L L

m mL

3

2

1
� �

�� � ��� ��
�

�
�

��

� � �
�

�

�
�

.  (4.76)

The critical relative moisture content at which the liquid flows balance and the second drying 
regime begins is determined from equation (4.27). Since the rate of liquid mass change in the 
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drying process is defined by the vapor and liquid fluxes from the layer, let’s arrive at the following  
Cauchy problem:

dz
dt

H a Bz U Sz B z
K

z
K

K z K z
m

m m m
m m m

� � �� � � � � �
�

�
�� � �1

2 1

2 3

2

1 1
* * *

* * *

 

��

�

�
�

�

�

�
�
,  (4.77)

under the initial condition:

zm
* ,0 0� � �  (4.78)

where
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L n
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,  K2 � ��,  K3 1= ,  � � �� ZF
C
RT1 2 ,  � � �� 0 r .

By substituting variables U Sz B z z Bm m m� � � �* * *2 2

� , Eq. (4.77) transforms into:
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where

�1 � �S U,  �2 2 3� �K K ,  �1 22� K B,  �0 2 1 3� � �K K U� ,  a = 1,  
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Equation (4.79) is written in the form:

�
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where c ii i� �� , ,14  are roots of Eq.   

a b c d e� � � �4 3 2 0� � � �� � � . The solution of Eq. (4.81) 
has the form:
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tions of the following system of algebraic equations:
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The transcendental equation (4.83) establishes the relationship between the relative moisture 
content in the porous layer and time in the first drying regime. When the relative moisture content 
reaches the value z zm kr= , the evaporation regime begins, where the change in relative moisture 
content is determined by the following Cauchy problem:

dz
dt

H a Bz U Sz B zm
m m m

*
* * * ,� � �� � � � � � �� ��

�
�

�

�
�1

2 2 2
021

�
�

�  (4.84)

under the condition that at t tkr= , z zm kr
* � �1 .

By introducing a a2 1 02 21� � �� �� � � / , let’s obtain the equation:

dz
dt

H a Bz U Sz B zm
m m m
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��
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which, upon introducing the variable χ, transforms into:
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under the initial condition:

t tkr kr� � � � ,  (4.86)

where 

�kr kr kr krU Sz B z z B� � � �* * * ,2 2  z zkr kr
* * ,� �1

and tkr  is determined from the solution of the Cauchy problem (4.75), (4.76).
Integration of equation (4.85) under condition (4.86) leads to the following transcendental 

equation for χ:
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C
B S B U

S a B
1

2 2

2

2

2 4

2
�

� �� �
�� �

,
 
C

Ba S S B U

S a B
2

2
2 2

2

2

2 4

2
�

�� � � �� �
�� �

,
 
C

BU Ba Sa

S a B
3

2
2

2

2

2

2 2 2

2
�
� � �

�� �
.

Equation (4.87) establishes the relationship between relative moisture content and time over 
the range zkr − 0. Graphs of the dependence of the layer’s relative moisture content on the mass 
transfer coefficient, electric field intensity, and temperature are presented in Fig. 4.8–4.11. 
Calculations were performed for a coarse-porous material, where D’ represents the molecular 
diffusion of the vapor-air mixture, which is a function of temperature.

 Fig. 4.8 Dependence of relative saturation on the mass 
transfer coefficient β2
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In Fig. 4.8, the mass transfer coefficients b2 = 0.01; 0.05; 0.1; 0.5; 1 (curves 1–5, respec-
tively), with E = 200 V/m (b = 0.1; T = 300 K, L0 0 1= .  m, zkr = 0 543. , tkr = 23 h), correspond 
to complete dehydration times of 139; 39.751; 31.305; 23.733; and 23.244 hours, respectively.

In Fig. 4.9, curves 1 and 2 correspond to the electric field intensities of E = 200 V/m and 
E = 400 V/m. Here, L0 0 5= .  m, T = 300 K, and b = 0.1. The points where curve branching 
occurs correspond to the critical values of z zm kr=  for humidity. The curve branches after the 
branching point, from right to left, correspond to mass transfer coefficient values of b2 = 0.01; 
0.05; 0.1; 0.5; and 1.
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 Fig. 4.9 The effect of electric field intensity on humidity variation over time
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 Fig. 4.10 Time dependence of relative moisture content for different temperatures

1.00

0.75

0.50

0.25

0.097
0.096

0

zm
_

0 200 400
t, h

1

2
260

269.62
180
194

Thus, at E = 200 V/m, zkr = 0 178. , tkr = 377 hours, the total dehydration time for b2 = 0.01 
is 395.552 hours, and for b2 = 1 it is 377.65 hours.

For E = 400 V/m, �kr � 0 097. , tkr = 260  hours, the total dehydration time for b2 = 0.01; 
0.05; 0.1; 0.5; 1 is 269.62; 261.11; 260.555; 260.185; 260.185 hours, respectively.
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Quantitative calculations, the graphical results of which are shown in Fig. 4.10, were con-
ducted for E = 400 V/m, b = 0.1; L0 0 5= . m. At zkr = 0 097. , tkr = 260  hours, and temperature 
T = 300 K, the corresponding total dehydration times for mass transfer coefficient values of 
b2 = 0.01; 0.05; 0.1; 0.5; 1 are 269.62; 261.11; 260.555; 260.185; 260.185 hours.

For zkr = 0 096. , tkr = 180 hours, and temperature T = 310 K, the total dehydration times 
for the same b2 values are 185.74; 180.82; 180.205; 180; 180 hours, respectively.

Conclusions

Based on the electroosmotic drying model, a series of problems have been solved regarding 
the influence of external constant electric field parameters on moisture mass transfer in pores.  
The effects of the following parameters have been investigated: 

a) boundary layer properties;
b) electric field intensity in unilateral natural drying;
c) moisture exchange coefficients in convective drying when the second side is saturated with 

moisture (a process relevant to basement flooding);
d) bilateral drying. 
It has been demonstrated that in bilateral drying the electric field affects the process primarily 

during the first stage of drying, when the ponderomotive force dominates over the capillary force. 
As a result, the relative moisture content curve exhibits a breakpoint, both in natural and convec-
tive drying. It has been shown that the temperature change induced by a constant electric field 
in a moist body can be neglected. Increasing the intensity of the electric field enhances the drying 
process. Numerical results are provided for cement stone material.
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ON THE ISSUES OF OPTIMIZATION AND REGULATION OF  
THE CONVECTIVE DRYING PROCESS OF MATERIALS IN  
DRYING UNITS

Abstract

The Сhapter presents the main approaches to optimizing and regulating the drying process 
of materials, taking into account the structural characteristics and operating principles of drying 
equipment. An essential factor in optimizing such processes is the consideration of the drying object 
and the mathematical methods used to describe drying problems. To this end, widely applied prac-
tical methods of mathematical modeling of capillary-porous and dispersed materials are analyzed, 
along with the specific features of models that describe heat and mass transfer in such materials.

Particular attention is given to the role of diffusion and thermo-diffusion mechanisms in mois-
ture transfer regulation. Optimization strategies are developed using fundamental drying principles, 
where the Kirpichov criterion provides a quantitative assessment of moisture transport dynamics, 
while Nusselt numbers serve as key parameters for controlling temperature gradients and ensuring 
efficient moisture removal. Additionally, the Postnov criterion is used as a means of evaluating 
the balance between temperature gradients and moisture content distribution, helping to prevent 
excessive stress accumulation that may lead to cracking. The study further explores empirical re-
lationships between these criteria and essential process parameters, including moisture content, 
temperature, and airflow velocity, to enhance drying efficiency and maintain structural integrity.

The study investigates the peculiarities of constructing mathematical models of non-iso-
thermal moisture transfer and deformation during the drying of capillary-porous, dispersed, and 
fractal-structured materials from the perspective of continuum mechanics, mixture theory, and 
statistical approaches. This allows for the broadest possible range of model implementations, ac-
counting for the anisotropy of thermomechanical properties, elastic and viscoelastic behavior, 
material shrinkage, and other relevant factors.

KEYWORDS

Mathematical modeling, drying, capillary-porous body, dispersed materials, gas-suspended 
state, fluidization, relative moisture content, stress, optimization, heat and mass transfer, defor-
mation, anisotropy, numerical methods.
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The effective resolution of several significant scientific and technical problems related to the 
drying processes of capillary-porous bodies requires consideration of the material’s structure, 
real mechanisms of heat and moisture transfer depending on the drying method, the influence of 
kinetic and geometric characteristics of the body, and the control parameters of the drying agent. 
Additionally, these factors affect the stress-strain state and the stability of the body’s shape. 
The preservation of material quality during the drying process is based on specific macroscopic 
physico-mathematical models of heat and mass transfer and necessitates efficient analytical and 
numerical methods for solving the corresponding boundary value problems of mathematical physics. 
These models are constructed using the fundamental principles of continuum mechanics and the 
thermodynamics of non-equilibrium processes.

However, capillary-porous bodies are multiphase and heterogeneous during the drying process. 
To represent multiphase characteristics approaches from mixture theory and methods from the 
mechanics of multi-velocity systems are utilized alongside capillary models of porous media and 
combined methods. These approaches incorporate capillary models for heat and mass transfer 
modeling while employing homogenization methods for solving mechanical problems, deriving phys-
ical relationships for the body as a whole based on specific assumptions about the temporal and 
spatial variations of the studied fields.

To account for the material’s structure, the interaction of heat and mass transfer processes 
within the body, and the impact of heat and mass exchange between the body’s surface and the 
drying agent on phase transition processes, methods of effective properties and stochastic ap-
proaches are applied.

5.1 Fundamentals of heterogeneous media description

In multiphase systems, structural effects and their changes, interphase interactions – par-
ticularly capillary effects – phase transitions, particle rotation, and collisions occur [1]. Colloidal 
mixtures occupy an intermediate position between heterogeneous and homogeneous mixtures. The 
solid particles in a dispersed mixture are referred to as dispersed, while the continuous carrier 
phase is called the dispersion medium.

The laws governing the motion of heterogeneous systems are essential, especially in processes 
involving a fixed granular layer through which a gas mixture is passed, processes with a granular 
layer suspended by a gas flow, and processes in a porous medium, which represents a heteroge-
neous system containing liquid or gas in its pores. When analyzing heterogeneous systems, it is 
assumed that the size of inclusions and inhomogeneities in the mixture is significantly larger than 
molecular-kinetic scales but smaller than the inhomogeneities at which the macroscopic or aver-
aged parameters of the mixture change substantially.

These assumptions allow for the investigation of the behavior of individual inclusions and the 
processes occurring near them. This includes studies on heat exchange, phase transformations 
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around and within particles, deformations within the particles or the skeleton of capillary-porous 
bodies, and the behavior of mixtures in channels, among other aspects. Most materials undergo 
drying in a dispersed state, which has led to the increasing application of various hydrodynamic 
modes of fluidized beds for drying.

In each continuum, distinct macroscopic parameters are defined, such as velocity, density, 
pressure, and temperature. The results of microprocess studies are incorporated into continuum 
equations through averaged parameters describing interphase interactions.

Homogeneous mixture. 
In homogeneous mixtures (such as solutions and gas mixtures), the components interact at 

the molecular or atomic level, and their relative motion velocities are small. These velocities need to 
be considered only when determining the concentration of components. The diffusion approximation 
in mixture mechanics is associated with neglecting the dynamic and inertial effects of diffusion 
velocities.

The relative motion of components, described by diffusion velocities or diffusion fluxes, is de-
termined by the diffusion mechanism, which establishes dependencies on concentration gradients, 
temperature gradients, and pressure gradients. In this approach, the inertia of the relative motion 
of the components is disregarded [2].

Model of a heterogeneous mixture. 
Unlike homogeneous mixtures, liquid-solid suspensions (e.g., slurries, water-saturated  

soils, etc.) are described by a multi-velocity model that accounts for dynamic effects due to velocity 
mismatches between the components (phases). In a heterogeneous mixture, each phase occupies 
only a fraction of the total volume. Therefore, volume fractions of the mixture are used, along with 
specific densities, in addition to the apparent densities.

The phases exist as macroscopic entities relative to molecular dimensions. Consequently, the 
deformation of each phase, which determines its state and response, is associated not only with 
the displacement of external boundaries – described by the velocity field v, which may differ signifi-
cantly from the mass-averaged velocity field v of the selected volume – but also with the displace-
ment of interphase surfaces within the selected mixture volume.

For each phase, both the external deformation rate tensor and a set of tensors accounting for 
the displacement of the substance of phase і at interphase boundaries are considered. Thus, the 

true deformation rate of a phase is determined by the tensor: e e ei
kl

i
kl

ij
R

j j i

m
* *

,

.� �
� �
�
1

 The determi-

nation of eij
R*  is associated with considering the conditions of joint deformation and motion of the 

phases, as well as the structural properties of the medium’s components. When strength effects 
are negligible, such as in gas-suspended states or in solid bodies under high pressures, the condi-
tions for joint motion are simpler than in the general case. They reduce to equations defining phase 
volume fractions, pressure equality conditions between phases, or incompressibility conditions for 
one of the phases. 
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If the temperature Ti of each phase can be determined at any arbitrary point in the mixture, then, 
unlike the homogeneous case, the equations of state take the form: � � � � �i

kl
i
kl

i i
mp

i i i
re T� ( , , ,..., ),0 0 1  

u u Ti i i i i i
r� ( , , ,..., ).� � �0 1  These equations are defined not by the average, but by the true densities 

of the components ρi
0.  

Additionally, the laws governing the relative motion of the phases become more complex, as this 
motion is influenced not only by diffusion processes but also by phase interactions at the macroscop-
ic level. For example, in a gas-suspended state, the influence of interphase forces must be taken 
into account, including phase inertia, mass exchange, force interactions, and energy interactions. 

When the relative motion processes are insignificant compared to the phase-averaged ve-
locity, and the dynamic and inertial effects of this motion are small, a diffusion approximation can 
be applied to describe heterogeneous mixtures, with some modifications due to the presence 
of a suspended phase. A notable example of a non-inertial diffusion law is Darcy’s filtration law: 
�i iw k P� � .

To close the system of equations, barotropic-type state equations are used: P P Pi i i� � ( ).�0  
This approach is valid when the size of inclusions significantly exceeds molecular dimensions.

Motion of a heterogeneous medium with phase transitions. 
The momentum exchange between phase i and phase j per unit time and per unit volume is 

expressed as P P R v i j mji ij ji ji� � � �, ( , ,.. ),1  where Rji is the interphase force per unit volume due 
to friction, pressure, and adhesion between phases, and vji represents the velocity or momentum 
of mass undergoing transformation from phase j to phase i. 

If each phase is assumed to be homogeneous up to the phase boundary surface within an ele-
mentary volume of the mixture, and if the energy of each component is proportional to its mass, then 
the influence of the interfacial layer – on the order of the molecular interaction radius (10-9 m) –  
can be neglected. This assumption requires that all inclusion sizes be significantly larger than the 
thickness of this layer. Furthermore, the energy equation should not account for small-scale flow 
effects, such as micro-scale chaotic motion of inclusions. Under these conditions, the kinetic ener-
gy of the mixture, when represented homogeneously, is additive over the mass of the phases. The 
introduction of phase temperatures is linked to the hypothesis of local equilibrium. 

Using averaging methods, the momentum equations, heat flux equations for phases, and ener-
gy equations for pulsational (small-scale) motion can be derived [26, 30].

Porous medium saturated with liquid or gas. 
In a two-phase mixture of a porous solid phase with liquid or gas, the total stress is deter-

mined by the fictitious stresses and the pressure exerted by the liquid or gas. Fictitious stresses 
are defined through directly measurable quantities and pressure and interpreted as part of the 
average stress tensor in the solid phase or skeleton. These stresses are caused by an independent 
force transmission mechanism through contacts between the grains, rather than by the liquid. The 
strength properties of the solid phase manifest in the fictitious stress tensor.

Studies [4, 5] have classified drying objects. A. Lykov divided all solid wet materials into three 
groups: capillary-porous, colloidal, and capillary-porous colloidal materials. Capillary-porous colloidal 
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materials are those in which liquid exhibits different forms of bonding, which are characteristic 
of both capillary-porous and colloidal bodies. In particular, in capillary-porous bodies, the liquid is 
bound by capillary forces. Upon dehydration, capillary-porous bodies become brittle. They exhibit 
low compressibility and high liquid absorption capacity. Capillary forces significantly exceed gravi-
tational forces.

Colloidal materials are those in which moisture is primarily bound by adsorption and osmotic 
forces. When dried, colloidal bodies contract with maintaining elasticity [2]. When moistened, they 
absorb liquids that are most similar in polarity. These materials are quasi-capillary-porous bodies, 
where molecular sizes are comparable to microcapillary dimensions.

B. Sazhin [6] classified dispersed materials into four groups based on the decreasing critical 
pore radius: greater than 100 nm; from 100 to 6 nm; from 6 to 2 nm; 2 nm or less. Additionally, 
he introduced subgroups and classes considering the particle size of the material, its adhesion-co-
hesion properties, and drying duration.

A two-phase dispersed mixture that contains dispersed particles of uniform shape and size 
within an elementary macro volume is called monodisperse. If the particles vary in size, the mixture 
is polydisperse. The carrier phase is a spatially connected volume (the dispersion medium).

An essential characteristic of convective drying is the gas and vapor pressure in both the drying 
agent and the material being dried.

Models of corpuscular structure. 
Dispersion is a thermodynamic characteristic of a system that determines the magnitude of 

the phase interface. The degree of dispersion is the degree of fragmentation of the substance in 
the dispersed phase, which is inversely proportional to the particle size s = 1/I, where I is the linear 
dimension that determines the particle size. L. Frevel [7] studied the method of forming regular 
packings composed of identical spheres. The distance between spheres varied from 3R,  corre-
sponding to the densest packing, to ρM, corresponding to the vertical alignment of layer centers 
directly above one another. The porosity ε in such packings varies from 0.2595 to 0.3954, and the 
coordination number for the densest packing equals 8.

K. Schlichter [2] studied another method of forming regular packings in the form of layers. The 
centers of the spheres were arranged at the nodes of rhombohedral lattices defined by the acute 
angle ω of the rhombus, with vertices at the centers of adjacent layers. An angle of ω = 60° 
corresponds to the densest packing with ε = 0.2595, while ω = 90° corresponds to simple cubic 
packing with ε = 0.4764. The coordination number for such packing is N = 12.

If regions around the voids are cut out such that the cutting planes pass through the narrow-
est cross-sections of pore necks, the porous body is divided into elementary cells – polyhedra. An 
elementary pore in such a cell represents a cavity bounded by spherical surfaces with several necks 
connecting it to other elementary pores. In cubic packing, the elementary pore cavity is bounded by 
eight spheres and connected to six square-shaped necks leading to neighboring cavities.

The sizes of elementary pores in framework packings are characterized by the radius ρrop of 
the sphere inscribed in the cavity and the equivalent radius ρrop of the circle inscribed in the neck.
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According to V. Karnaukhov, for framework packings: �
�
�3>@ R�

�
0 45

1
, .  The shape and sizes of 

pores in random sphere packings vary, but their qualitative appearance is similar to elementary 
pores in regular packings. The specific surface area of particles is given by: sy = S/VM, where S and 
VM are the surface area and volume of the particles in the material.

Drying of natural organic materials. 
The process is accompanied by structural changes, physicochemical transformations, endo-

thermic and exothermic reactions. Variations between isosteric and calorimetric values of specific 
heat of evaporation for starch and cellulose have been observed. These variations are caused 
by changes in the configurational entropy of solid components and the entropy of mixing due to 
interactions between solvent molecules (water) and macromolecules of high-molecular substanc-
es. However, during the removal of capillary and adsorbed moisture, an increase in the specific 
heat of evaporation is observed by only 3–5 % and 20 % relative to the evaporation heat of bulk  
liquid, respectively.

At low moisture contents, individual water molecules reside in micropores, comparable in size 
to the sorbate molecule, and interact via hydrogen bonds with the polar functional groups of the 
sorbent. If the pores are larger and not fully filled, translational motion of sorbate molecules may 
occur inside them. As the pores fill, mobility decreases. At high moisture contents, the material 
swells, and pore sizes increase. Water molecules in such conditions are more mobile, and as 
intermediate and macropores fill, their mobility approaches that of ordinary water molecules. 
The swelling process is analogous to the dissolution of water in a high-molecular substance. With 
increasing moisture content, water molecule clusters merge and form a continuous phase within 
the sorbent, defining the physical properties of the sorbate, which become similar to those of a 
typical liquid.

The sorption isotherm on swollen colloidal materials is described as 1 / ln( ) ,W n P IP as� �  
where W is the moisture content, PsIP is the relative vapor pressures of the sorbate, and a, p are 
constants. The primary indicator characterizing a material as a drying object is moisture resistance, 
which determines the limit of residual moisture in the dehydration process. Living cells exhibit high 
moisture sensitivity. Their physicochemical properties and responses to dehydration conditions 
vary significantly. Consequently, no consistent pattern has been found linking residual moisture to 
microbial cell viability, often resulting in a final product with a low count of viable cells.

When biological systems are dried, they enter a state of dry anabiosis, in which vital processes 
are suppressed, but a lethal state does not occur. Upon restoration of favorable conditions, normal 
metabolic processes can resume. Water acts as a regulator of essential metabolic processes 
between the cell and its external environment [7, 8].

Experimental data reveal a pattern for vegetative microbial cultures of various origins, showing 
a sharp loss of microbial cell viability within the moisture content range of 50–80 %. The effect 
of residual moisture on microbial viability exhibits a stepwise nature, where the primary lethal 
factor is the sudden rupture of the cell membrane. The critical moisture content, corresponding to  
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a drastic change in microbial viability, coincides with the maximum hygroscopic moisture content, 
and the viability decline region aligns with the sorption isotherm segment where moisture is pri-
marily capillary-bound.

For a given relative air humidity, the average capillary radius is determined using the Thomson 
equation: 

r
P
v

L

�
2

1
� �
� �

cos
ln( / )

.
�

Thus, for � � 0 96. ,  the mean capillary radius is r � �10 5  cm. In this case, the capillary rise 
height is h = 150 m, and the pressure of such a column is approximately 1.5 MPa. If the capillary 
height is less than h, a negative pressure is generated within the capillary, causing deformation of 
the elastic body skeleton (cell membranes). Liquid under negative pressure exists in an unstable 
metastable state. However, a metastable phase can persist indefinitely under unchanged ther-
modynamic conditions, which is associated with the stationary state of a dehydrated biological 
system – anabiosis. A necessary condition for anabiosis is the presence of a metastable liquid film 
around a living cell, forming part of the capillary-porous body structure.

In work [9], a model for unsteady processes of a single-component liquid was proposed, ac-
counting for the mutual influence of vapor pressure, liquid pressure (determined by capillary and 
surface forces), temperature on phase mass exchange intensity, thermocapillary flows, and the 
conditions for mechanical and dynamic equilibrium of thin liquid layers on curved phase interfaces.

Material permeability. 
In work [10], a dependence of the permeability coefficient on the effective pore size was ob-

tained based on the differential pore characteristics of the material and Darcy’s law for different 
moisture contents. The permeability of dry materials is expressed through the linear dependence of 
gas flow through a porous medium on the gas pressure gradient.

As the liquid is removed from a material initially saturated to its maximum moisture capacity, 
it exits the largest pores and then the smaller ones. During this process, the effective porosity of 
the material and the permeability coefficient change. By maintaining a constant pressure difference 
under filtration conditions, the volumetric airflow rate J0 can be measured. Given the known sample 
thickness, filtering surface, and viscosity of the absorbed liquid, the material’s permeability can be 
calculated as a function of the minimum diameter of open pores.

Since the applied air pressure compensates for the capillary pressure of the liquid in the 
material’s pores, the minimum diameter of open pores is determined using Laplace’s equation.  
A stepwise increase in pressure difference leads to the sequential displacement of liquid from pro-
gressively smaller pores, thereby altering the permeability coefficient. To determine the material’s 
permeability and the minimum diameter of open pores, the moisture content of the sample must be 
measured at each pressure difference increment. Studies show that the effective radius of open 
pores significantly influences the permeability coefficient.
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Drying process and product quality. 
The quality of the final product obtained through drying is determined by the heat-moisture 

conditions and the mechanism of heat and mass transfer. Studying diffusion and thermodiffusion 
processes enables a better understanding of substance movement within the material, the identifi-
cation of effective ways to control mass transfer mechanisms, and the development of new drying 
technologies to enhance product quality.

If liquid moisture diffusion occurs during drying, water-soluble substances accumulate on the 
surface. In contrast, when vapor-phase moisture diffusion dominates, water-soluble components 
remain within the material.

Suspended-state grain drying. 
The method of drying grain in a suspended state involves a continuous alternation between 

heating and cooling processes. In intermittent drying, the surface layer of the grain cools more 
than the inner layers. In such cases, thermomoisture conductivity supports moisture transfer, and 
the heat flux aligns with the moisture flux. Moisture evaporation starts from the surface, causing 
water-soluble nutrients to remain near the surface and close to the germ, promoting its growth 
and improving the seed quality.

During drying, materials undergo shrinkage. High-quality material maintains uniform shrinkage 
throughout its thickness. Significant variations in moisture content and temperature during drying 
result in volumetric stress-strain states that exceed permissible limits, leading to cracking or 
complete structural failure. Materials may warp or develop pores. The surface with lower moisture 
content contracts more, causing the sample to warp toward the drier side. Ideally, the moisture 
transfer mechanism should ensure equal moisture removal rates from both surfaces.

Temperature gradients drive moisture movement inside the material. The moisture flux toward 
the surface decreases by an amount proportional to the thermodiffusion-induced moisture flux, 
which opposes the movement of moisture from the central layers to the surface. Thermodiffusion 
reduces the moisture gradient, decreases moisture transfer rates, and limits the accumulation of 
water-soluble substances on the surface. Changes in the temperature gradient’s direction alter 
the material’s physicochemical and biochemical properties. To retain water-soluble substances 
within the material, the most intense evaporation should occur inside the material rather than at 
the surface.

The temperature gradient increases with airflow velocity. In thick materials, an increase in 
temperature gradient results in a moisture content gradient, leading to internal stresses and  
crack formation.

Steam-heat treatment drying. 
In steam-heat drying, saturated steam is used as the heat carrier. Heat is transferred from 

the steam-air mixture to the solidifying material through convection. A temperature gradient is 
established in the material, generating internal stresses. Since the surface temperature is lower 
than that of the steam-air mixture, a condensate film forms on the surface, and moisture migrates 
from the surface layers to the center, leading to material reabsorption of moisture. The hydration  
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reaction occurring during this process can cause the material’s temperature to exceed that 
of the surrounding environment. Intense evaporation at high moisture levels results in directed  
pore formation.

To control moisture transfer, it is essential to establish the relationship between diffusion and 
thermodiffusion coefficients with moisture content and temperature, particularly using stationary 
and non-stationary mass transfer methods.

Models based on continuum mechanics.
Changes in the volume and shape of solid porous bodies during drying in the absence of external 

forces indicate the emergence and development of a stress-strain state caused by moisture-ther-
mal effects [15]. Colloidal materials undergo dimensional changes during drying. The removal of 
moisture from the material requires energy, which corresponds to breaking the bonds between the 
moisture and the material.

Physico-mechanical bound moisture is present in large capillaries and on the external surface 
of the material. Removing this moisture requires energy equal to the heat of vaporization. Physi-
co-chemical bound moisture is retained on the internal surface of pores by adsorption forces. The 
amount of adsorbed moisture depends on the temperature and humidity of the external environment.

As temperature increases and moisture content in the body decreases, two opposing process-
es occur: thermal expansion and contraction, which are governed by the physical properties of the 
material. These opposing deformations restrict each other, leading to the formation of nonstation-
ary stresses, which can exceed the strength limit, resulting in crack formation and propagation.

Studying the stress-strain state in drying kinetics and comparing stress values with material 
strength characteristics allows optimization of drying processes based on strength parameters.  
In work [15], a mathematical drying model was developed that accounts for the stress-strain state 
of the material based on non-equilibrium thermodynamics and continuum mechanics.

It is assumed that the wet body is isotropic and undergoes small elastic, nonlinear elastic, and 
plastic deformations, where linear deformation theory holds. The capillary-porous body is consid-
ered as a local superposition of a solid porous or granular component and a fluid phase (in liquid and 
vapor states) filling the pores. During drying, the body is treated as a heterogeneous non-equilibri-
um system that exchanges energy and mass with the surrounding environment.

The principle of local equilibrium in non-equilibrium thermodynamics enables the description 
of the system using equilibrium state parameters. During drying, the temperature, volume, and 
composition of the system change. The composition changes only due to phase transitions of the 
liquid and vapor removal. 

If evaporation occurs at temperature Т, evaporation of liquid in the pores occurs, an excess 
vapor pressure arises in the system p P P� � 0,  where Р0 is the barometric pressure. This excess 
pressure causes tensile deformation p E/ ,0  which leads to convective mass transfer, alters the 
phase transition temperature, affects the mass transfer intensity, and influences material com-
pression. At different drying stages, the intensities of these components vary, and the resulting 
deformation may manifest as either tensile or compressive deformation.
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A mathematical model of capillary-porous material drying is formulated, including:
1. Equation of state.
2. Diffusion-convective mass transport equation.
3. Momentum equation.
4. Heat conduction equation.
5. Compatibility conditions for deformations.
A closed system of nonlinear equations describes the time-dependent processes of heat and 

mass transfer and deformation, considering the dependence of thermophysical, heat and mass 
transfer, and physico-mechanical properties on temperature and moisture content.

These equations, with initial and boundary conditions, define a nonstationary drying problem and 
establish the interrelation between heat and mass transfer and the stress-strain state.

In drying process formulation in displacements, the diffusion-convective mass transport equa-
tions in displacements are used along with the corresponding heat and mass exchange boundary 
conditions and mechanical boundary conditions ensuring deformation compatibility.

For drying technology applications, interest lies in the deformations and stresses induced 
by moisture-thermal effects. It is shown that in transport equations, the mechanical coupling 
terms can be omitted, while in equilibrium equations, hydro-barothermal field variations can  
be disregarded.

The continuum mechanics approach to studying the stress-strain state is detailed in work [16].
Stress and deformation relations.
The stresses induced during drying lead to elastic-plastic deformations, which are determined 

by the relationship between the strain tensor εij and the stress tensor σij: 

� �ij ijf� ( ).

Since drying-induced stresses have a negligible effect on the excess vapor-air mixture pres-
sure within the body, the coupling effect is insignificant in problems concerning moisture-thermal 
stresses in drying materials.

In the heat conduction equation, the mechanical coupling terms can be neglected, and in the 
momentum equation, the inertial term can be omitted. The interaction between heat and mass 
transfer and the stress-strain state is also negligible in most cases.

On the boundary surface, the components of internal stresses must equal the external surface 
forces. In many drying cases, volume and surface force loads can be neglected.

As a result of heat and mass transfer through the material thickness, nonstationary tempera-
ture, moisture content, and pressure fields develop, which are determined from the heat and mass 
transfer equations.

To solve the drying problem, six stress tensor components σ ij  must be determined, satisfying:
a) six equilibrium equations;
b) deformation compatibility equations;
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c) boundary conditions;
d) these relationships enable a comprehensive analysis of moisture-thermal stresses and de-

formations in drying processes.
Models based on mixture theory. 
In works [17, 18], the laws of non-equilibrium thermodynamics were applied to a three-phase 

medium consisting of a solid skeleton, liquid, and vapor-air mixture in a porous deformable system 
to analyze interphase interaction forces, considering phase transitions.

The porous body was treated as a thermodynamic system comprising solid, liquid, and gaseous 
phases. The solid particles were tightly packed into either a granular skeleton or a capillary-porous 
body. Initially, the pores were filled with moisture and air. Under the influence of external heat 
sources and pressure differences between the pores and the surrounding environment, intercon-
nected heat and mass transfer and deformation processes occurred.

It was assumed that the gaseous phase is homogeneous. Due to capillary forces, pressure 
differences in the capillaries, and chemical activity of liquid and gaseous phase particles, chemical 
transformations and phase transitions of the components may occur in the capillaries.

Particles of the same chemical species, when in different aggregate states, exhibit different 
diffusion, filtration, and thermal conductivity coefficients. In a p-component three-phase system 
with chemically active elements, phase transitions of the components can occur.

Chemical transformation can be considered as a complex interaction of thermal, mechanical, 
mass, and electrical processes among the subsystems. 

The mass balance equations for each component and the law of conservation of total energy 
of the system are postulated. Balance relations for the momentum of the total system mass, con-
sidering chemical transformations, potential, kinetic, and internal energies, entropy, and the Gibbs 
equation for free energy are obtained.

Assuming that the kinetic potential is a function of thermodynamic forces, kinetic relations for 
the thermodynamic system are derived [17, 18].

Thus, a complete nonlinear system of equations for the model is constructed, including:
1) the coupled heat conduction equation;
2) the equation of state (expressing the dependence of entropy, the total stress tensor, and 

chemical potential on temperature T, ���,  Ck
j( );

3) equations for liquid and gas phase pressures;
4) the equation for the density of saturated vapor;
5) mass balance equations for the skeleton, air, vapor, and liquid;
6) relations for the liquid, vapor, and air fluxes in terms of gradients T, ���,  Ck

j( );
7) invariants for the volume-averaged mixture related to skeleton dilation due to concen- 

tration differences;
8) the compatibility equation;
9) the momentum balance equation for the skeleton;
10) expressions for the components of the fictitious stress tensor;
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11) the total stress tensor as a function of fictitious stresses and the stress tensor of the 
liquid and gas phases taking into account the viscosity effects;

12) the difference in pressure between the carrier and solid phases due to mechanical strength;
13) relations for volume-averaged velocities and skeleton deformations.
Application to engineering problems of conductive drying. 
Based on this model, the problem of conductive drying of a porous layer is formulated as follows:
A thin plane plate with surface area S and thickness hw is exposed to an external heat flux qe(t) on 

one side. The plate has density ρw and specific heat capacity cw. A moisture-saturated capillary-porous 
material of thickness I is placed on the plate. The material has the porosity Π, density ρ0

0, specific 
heat capacity c0, thermal conductivity coefficient in the dry state λ0. From the exposed surface of the 
capillary-porous material, liquid evaporates into a cavity with volume V and depth V/S. The thermally 
insulated cavity has an opening, through which the vapor-air mixture escapes into the ambient envi-
ronment at pressure Pe. Heating of the material induces filtration flow of both liquid and gas. The liquid 
flow is driven by the gradients of relative saturation α (the volume fraction of liquid in the pores), tem-
perature T, and vapor-air mixture pressure P. The vapor and air fluxes are governed by pressure and 
mass concentration gradients of vapor in the mixture. The relative permeabilities of liquid and gas are 
proportional to their respective saturations. Appropriate initial and boundary conditions are formulated.

A model of convective-thermal drying of a layer in a drying system, considering the movement 
of the phase transition boundary, has also been developed.

In work [20], the drying problem was formulated for a non-stationary thermal regime of the 
drying agent in a drying system. The use of time-varying thermal regimes during drying can signifi-
cantly reduce energy consumption and improve material quality.

When the temperature of the drying agent decreases, the temperature of the material’s sur-
face layers also decreases, creating an additional temperature gradient, which serves as a driving 
force for moisture migration within the material. This leads to an increase in relative humidity and 
moisture treatment of the material surface, reducing internal stresses.

The timing and duration of heat-moisture treatment are critical for different materials. There-
fore, it is necessary to develop methods for: 

a) investigating heat and mass transfer processes; 
b) diagnosing the stress-strain state of materials; 
c) determining optimal drying agent parameters based on diagnostic results; 
d) formulation of the drying problem for a layer under a time-varying thermal regime.
To assess the influence of a time-dependent thermal regime in the drying system, the drying 

process is formulated for a layer ( )� � �L z L , where moisture removal occurs through its surfac-
es under the influence of a convective-thermal non-stationary flow of the drying agent.

The problem is reduced to solving the Stefan problem, which includes the following system of 
equations in the dried zone:

1. Energy equation.
2. Mass transfer equation for the vapor-air mixture.
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3. State equation for the binary vapor-air mixture.
4. Energy balance equation at the moving phase transition boundary.
5. Linearized state equation at the moving phase transition boundary z Lm= .  
6. Equation of motion for the phase interface.
7. The boundary conditions at z L=  express heat exchange between the material surface and 

the drying agent by the Newton’s law. 
At the phase transition boundary z Lm= ,  the transition temperature Tm  is unknown and de-

pends on the pressure Pn  of the saturated vapor ( ( ))T f Pm n=  is to be determined; the time-depen-
dent temperature of the drying agent is represented as a Fourier series expansion.

The solution algorithm was validated using a wood drying model (pine). The problem was re-
duced to solving the Stefan-Maxwell system of equations. Given a specified vapor flux across the 
thickness, the relationship between the phase transition coordinate and time was constructed. 
By solving the heat and mass transfer equations under a non-stationary drying agent regime with 
three-stage temperature control [20, 21], it was shown that as the mass transfer coefficient 
and temperature increase, and as the vapor density decreases, the relative humidity of the layer 
decreases; numerical results demonstrate parabolic dependencies of relative saturation over time 
and linear dependencies on changes in mass transfer coefficients.

The temperature distribution across the material thickness was determined as a function of 
dimensionless coordinate z  and phase transition coordinate zm; the phase transition temperature 
variation over time was analyzed; the change in the phase transition coordinate over time was 
evaluated in relation to the relative saturation of the drying agent; the relationship between drying 
time and the width of the dried zone zm  was studied as a function of the heat transfer coefficient, 
mass transfer coefficient, permeability, diffusion, and average temperature.

It was shown that in a non-stationary regime, drying time depends both on the equation of 
state at the phase transition boundary and the heat and mass transfer coefficients. In a gentle 
drying regime, the process can be controlled by increasing or decreasing airflow speed via heat or 
mass transfer coefficients; adjusting the drying agent humidity; modifying the temperature change 
intervals of the drying agent using the control function expansion coefficients u( ).τ  The study 
demonstrated the possibility of selecting and minimizing optimal drying criteria [17–21].

The drying of dispersed materials in a suspended state was studied in [22]. The external heat 
and mass transfer process was analyzed based on the simultaneous consideration of the equations 
of motion and continuity for the drying agent flow and the convective-diffusive transfer of vapor 
and heat in the moving drying agent.

Experimental data on the intensity of external heat and mass transfer were presented as 
dependencies between similarity criteria derived from the governing equations and corresponding 
uniqueness conditions. The mass transfer coefficient appears in the Nusselt criterion, whose value 
is a function of the Reynolds and Prandtl numbers.

For forced airflow along a wet surface, the criterion equations for heat and mass transfer were 
provided based on experimental studies on the intensity of heat and mass exchange between the 
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drying agent and the material, whose surface remains moist due to moisture supply from internal 
zones of the material.

Further, moisture undergoes phase transformation into vapor within the internal zones, caus-
ing the external surface temperature to increase and the heat and mass transfer coefficients to 
change. The variation in heat transfer coefficient due to decreasing moisture content was account-
ed for by the ratio of moisture content u to the critical value ukr , at which the constant drying 
rate period ends, and the surface ceases to be wetted. An approximate formula was derived, in-
corporating the contributions of the frontal and rear sections of a spherical body in mass transfer.

It should be noted that the equations of motion for the drying medium are nonlinear, and for 
the numerical implementation of velocity, an alternative approach was developed in [23] through 
the phase state diagram of an infiltrated dispersed medium. This diagram includes not only the sta-
tionary bed and the boiling layer but also vertical pneumatic transport and the circulating fluidized 
bed. Expressions were derived for calculating an important characteristic of flow systems – the 
transport velocity; the critical point on the phase diagram was identified, which determines the 
velocity at the onset of fluidization.

The heat and mass transfer in a dispersed medium were studied in [24] as occurring in a 
homogeneous continuum or in multiple coexisting homogeneous continua within each point in space 
without considering microscopic transport phenomena near individual particles. Macroscopic heat 
or mass conservation equations were formulated for a continuous medium containing dispersed 
phase particles, neglecting the effect of random fluctuations of the medium and particles on the 
transport processes.

5.2 Statistical methods for studying the drying of capillary-porous bodies

In works [25, 26], the problem of random pulsations in a coarse-disperse fluidized bed was 
formulated. Additionally, the problem of convective thermal conductivity or diffusion near an individ-
ual particle was posed. The problem was solved for low Péclet numbers, which characterize heat 
and mass transfer in the vicinity of an individual particle. It was assumed that the spatial scale L of 
temperature fields or impurity concentration in a dispersed system is significantly larger than the 
internal structure scale I of the system, such as the distance between neighboring particles. The 
dispersed system was considered as a superposition of coexisting continua, each characterized by 
its own average velocity and temperature. The variations of these quantities were described by 
averaged conservation equations. A system of conservation equations for mass, heat, momentum, 
and angular momentum of continua was developed, simulating the phases of a monodisperse sus-
pension. If the phases of the dispersed medium are stationary, these equations describe transport 
processes in composite granular materials.

Using the mass conservation equations of the phases, a model was derived in which the dis-
persed medium is considered a superposition of two continua, each having different velocities and 
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temperatures. The equations contain unknown variables, such as concentration and temperature, 
averaged over the ensemble of particles. The problem of determining these variables in the form of 
functions or functionals of unknown variables and physical parameters is analogous to the problem 
of obtaining rheological equations of state for suspensions.

Averaged equations describing heat transfer in the continuous phase near a selected particle 
were formulated. Their solution allows for the calculation of the average temperature and heat flux 
on the particle surface. In the ensemble averaging process, it was assumed that particle placement 
is random and that the correlation weakening condition holds. This condition states that conditional 
averages, obtained by averaging over the particle distribution function, given that a certain fixed 
point is occupied by the center of a test particle, asymptotically approach the corresponding un-
conditional averages as the distance from this point increases.

Furthermore, the average temperature of the continuous phase at a given point approximately 
coincides with the value obtained by averaging the temperature only over those configurations 
in which the presence of a particle center at that point would be possible. By analyzing integral 
sums and neglecting terms quadratic in random deviations of local values from their averages, a 
differential heat transfer equation was derived for both the continuous and dispersed phases on 
average. The heat transfer in the continuous phase was represented as transport in a hypothetical 
medium that fills the entire space and contains distributed heat sources. The equation describing 
heat transfer near a particle with its center at r = 0  was obtained similarly to the equation for 
the continuous phase, assuming conditional averaging only over configurations of all other particles 
that are compatible with the presence of a particle center at a fixed point. In such averaging, terms 
quadratic in fluctuations of values relative to their mean were neglected; a heat transfer equation 
was obtained in a coordinate system associated with the center of a particle in the continuous 
phase. The heat transfer inside a test particle was described, considering its rotation. On the 
surface at r a=  of the test particle, continuity conditions for temperature and heat flux were 
imposed, defining the interaction between the particle and the continuous phase, which closes the 
heat conduction problem near the test particle.

The evaporation or condensation of moisture is accompanied by a sudden absorption or release 
of latent heat of vaporization, which is determined at the normal boiling temperature according to 
Trouton’s rule r Tboil boil= 88 ,  since from the Clapeyron-Clausius equation dp dT r T v� / ,�  where 
dp dT is the derivative of pressure with respect to temperature, which is determined from the phase 
equilibrium curve. If the phase transition data are missing, r RT T P T Tboil kp boil kp kp boil� �( ln ) / ( ) is put.

The structure of a body is influenced by the liquid contained within the porous medium. Swelling 
is a specific case of structural deformation caused by the interaction of the liquid with the material. 
In the absence of specific interactions between the body and the liquid, swelling pressure Pswel is 
proportional to the surface tension of the liquid.

To describe the distribution of phases within a porous medium, it is necessary to apply struc-
tural models of porous media [30]. Since real porous materials possess irregular and random 
structures, only stochastic structural models can claim adequacy. The pore space is represented 
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as a statistical ensemble of interconnected structural elements (pores), whose properties follow 
certain probabilistic laws.

In the elementary physical volume of the medium, a specific porous medium model must be se-
lected. The most suitable statistical model should accurately describe the structure. To determine 
the effective transport coefficients for each phase, their interconnections as functions of macro-
scopic variables, the conditions governing the process within an individual pore, and the geometric 
characteristics of the porous structure, a key factor is the choice of an averaging method, which 
is determined by the selected porous medium model.

The principle of local equilibrium is applied to determine the characteristics of phase distri-
bution. This principle considers the process in an elementary physical volume as occurring in an 
unbounded porous medium, neglecting transport phenomena and accounting only for the conditions 
of interphase boundary formation under capillary dynamic equilibrium between the phases. The 
distribution of phases in the pore space is governed by pressure differences between phases and 
capillary properties, considering electrochemical transformations, if present.

The statistical analysis of liquid and gas distribution in hydrophilic porous media is based on 
representing the pore space as a network of variable cross-section channels, forming a stochastic 
spatial lattice with a specific coordination number. This representation reduces the problem of 
liquid and gas distribution to that of the mutual arrangement of liquid-filled and gas-filled pores in a 
random lattice with certain statistical properties.

During drying, the gas phase in the pore space forms three characteristic configurations:
a) a connected system of gas-filled pores that extends to the external surface;
b) a two-phase system consisting of isolated liquid inclusions trapped by gas;
c) a liquid-filled pore system.
For each specific porous structure, there exists a critical moisture content at which the con-

nectivity of the liquid phase is completely disrupted, and all moisture is localized in isolated inclu-
sions. The critical moisture content is a structural characteristic of the porous medium and can be 
used for comparative analysis of different porous structures.

The connectivity factor plays a key role in transport processes. The transport of any substance 
through either the gas or liquid phase is only possible within a connected network of gas (or liquid) 
pores, some of which are dead-end pores blocked by liquid (or gas) at one end. If a given pore 
belongs to an isolated inclusion, long-range transport is impossible. In the case of gas-filled pores, 
moisture transport occurs through: convection, vapor diffusion in the vapor-air mixture, film flow 
driven by the disjoining pressure gradient. As the moisture content changes during drying, the 
mechanisms of transport also change.

The mutual phase distribution in the pore space determines the effective transport coefficients 
for each phase and the interphase surface areas. The capillary forces are responsible for the dis-
tribution of phases. The liquid content in a porous body changes through evaporation and capillary 
absorption. In a capillary-porous body, vapor, filtration, and film mechanisms of moisture transfer 
operate, aiding in the establishment of capillary equilibrium.
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The vapor mechanism follows the sequence: evaporation → vapor transport through the va-
por-gas phase → condensation. The filtration mechanism occurs due to liquid flow under the cap-
illary pressure gradient. During evaporation, the meniscus recedes only in a wide capillary, while in 
a narrow capillary, the recession begins only after the entire wide capillary has been dehydrated. 
Additionally, the volume of liquid evaporated from the narrow capillary is immediately replenished at 
the rate of evaporation by liquid from the wide capillary.

It can be lowered below the equalizing mechanisms’ rate by artificially reducing the evaporation 
rate through external drying conditions. For example, reducing the external moisture transfer 
rate increases the moisture content, leading to a nearly uniform moisture distribution across the 
thickness of the porous body. Non-uniform moisture distribution causes undesirable deformation 
of porous materials.

Experimental data confirm that the distribution of pore volumes governs the equilibrium distri-
bution of liquid within a porous body according to capillary pressures Pk and the influence of the 
temperature gradient on the moisture content gradient in the porous body. During drying, the 
mutual phase distribution is established through the interaction of two factors: the transition of 
one phase into another and the redistribution of phases in the porous material due to differences 
in capillary properties. 

The control of heat and mass transfer processes in heterogeneous, fluidized, and vibro-circu-
lating media has been extensively studied in works [23–29].

In the monograph [30], it is shown that during the drying process, three distinct zones are 
formed: the outer gas zone, where all pores are completely dried, and the gas distribution across 
the thickness is nearly uniform; the intermediate two-phase zone, where both dried pores and 
liquid-filled pores coexist; the inner liquid zone, where all pores remain filled with liquid. If the re-
moval of vapor from the evaporation zone is rapid, and capillary inflow and recondensation cannot 
sufficiently replenish moisture in the dried pores near the surface, the two-phase zone disappears, 
leading to the formation of a spatial front inside the material. This front separates the liquid and gas 
zones and gradually moves deeper into the material. Conversely, if capillary inflow and reconden-
sation are effective, but vapor removal is hindered, the phase boundary follows pores of a specific 
radius – one that depends on the amount of liquid present but not on spatial coordinates. In this 
case, the two-phase zone extends throughout the entire volume.

During evaporation, the connected liquid system undergoes fragmentation. Once a critical 
threshold is reached, the liquid phase connectivity breaks within the elementary volume of the 
porous medium. The connectivity of the liquid phase plays a key role in the mechanism of capillary 
moisture transfer. The redistribution of moisture in disconnected inclusions occurs through capil-
lary recondensation. In diffusive or migratory transport within a connected liquid system, provided 
that this system remains connected to the outer surface, the effective diffusion or electrical con-
ductivity coefficients depend on the amount of connected liquid. If liquid-phase transport becomes 
impossible due to the loss of connectivity at moisture content u ukr< ,  it leads to a non-uniform 
concentration of liquid during evaporation. The connected liquid pore system is also heterogeneous 
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in terms of transport processes due to the presence of dead-end pores – pores that are blocked 
by gas at one end.

Model of intersecting variable-section capillaries. 
If pores are represented as circular cylinders with a radius r  that varies along their length and 

does not intersect, then the serial model of the porous medium is applied. The liquid-gas interface 
at any given time is located within the critical pore and moves deeper into the material during evap-
oration. Pores with a radius larger than the critical value are referred to as supercritical pores. 
These supercritical pores can branch, which facilitates gas penetration into the porous medium.

Random process model. 
A randomly selected supercritical pore located at the surface of the material ( )y = 0  can, 

through branching and blocking, generate 𝑠 supercritical pores with probability p ys( ).
The pattern of pore filling with vapor depends on the relationship between the probabilities of 

blocking λ and branching v. If � � v,  the probability of blocking a supercritical pore near the surface 
is given by p y F y os= =0( ) ( , ).  To determine λ and v, it is necessary to define the type of random 
process governing the radius variation along the pore length.

Random walk model. 
In a purely random process, the blocking probability does not depend on the pore radius. 

However, in reality, the blocking probability of a supercritical pore depends on its radius. Thus, in 
the random walk model, the blocking process of supercritical pores occurs stepwise: evaporation 
begins in the widest pores, then progresses to narrower supercritical pores, these pores transition 
to the subcritical class with higher probability as their radius decreases. This process resembles a 
random walk in the radius space of pores.

Serial model. 
In [31], a numerical solution to the two-dimensional problem of non-isothermal moisture trans-

port in an anisotropic wood structure under convective drying was obtained by the serial model. 
Based on elasticity theory, internal thermohygroscopic stresses were determined.

The values for elastic modulus and strength limit were taken from the formulas derived by G. Shu- 
bin [32] for pine wood. The study showed that at the beginning of the drying process, internal stress-
es in the surface zone increase and later decrease. A stress drop was observed after the moisture 
content of the inner zone fell below the fiber saturation point, estimated at 25 %. The appearance 
of significant residual deformations leads, at the end of drying, to a change in the sign of stresses. In 
the dried board, residual compressive stresses remain in the surface layers, while tensile stresses are 
present in the inner zone. For initial moisture content below 25 %, stress relaxation was not observed.

Fractal models and fractional-order differential equations. 
In [33], a literature review on the mathematical modeling of non-isothermal moisture transport 

and viscoelastic deformation in capillary-porous materials with fractal structures was conduct-
ed. For describing unsteady processes in media with fractal structures, which exhibit: biological 
variability of rheological properties; structural heterogeneity; memory effects; self-organization; 
deterministic chaos; the mathematical apparatus of fractional-order differentiation was employed. 
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The Riemann-Liouville, Caputo, and Grünwald-Letnikov approaches, along with fractional integration 
operators, were applied.

Significant contributions to the development of mathematical models were made by B. Ugolev, 
G. Shubin, Ya. Sokolovskyy, I. Krechetov, and P. Biley.

The elastic and viscoelastic deformations have been extensively studied, whereas models incor-
porating fractal material structures remain underexplored.

Advances in mathematical models. 
In [34], the mathematical model of non-isothermal moisture transport in capillary-porous dry-

ing materials was refined to account for their fractal structure and anisotropy of thermomechanical 
properties. The heat and mass transfer process during drying is described by a system of fraction-
al-order partial differential equations based on the Riemann-Liouville formulation. The solution was 
implemented using the finite difference method.

The model accounts for: 
1) elastic, viscoelastic, and residual deformations;
2) memory effects and self-organization;
3) the impact of wood species properties on moisture content variations;
4) the effect of fractal structure on the stress tensor distribution in wood.
Additionally, the Voigt, Maxwell, and Kelvin fractal models were considered.
The relationship between stress and strain components in wood drying, considering the fractal 

structure of the medium, is presented as a system of fractional-order differential equations. These 
equations were derived from the integral equations of viscoelasticity, which are based on the he-
reditary Boltzmann-Volterra theory.

To determine the criteria for selecting the relaxation kernel, the rheological behavior of wood 
and its fractal structure were taken into account. The kernel was chosen based on literature and 
experimental data. The solution was obtained using the predictor-corrector finite difference meth-
od. A two-dimensional viscoelastic deformation model of wood as a fractal medium was investigated 
under non-isothermal moisture transport conditions. The influence of drying process parameters on 
the distribution of temperature, moisture content, and stress-strain components was established.

5.3 Drying process control and optimization for energy efficiency and 
sustainability

The issue of controlling drying processes is addressed in many works, emphasizing the impor-
tance of precise process regulation to ensure efficient moisture removal while minimizing material 
degradation. Given the complex dynamic nature of drying, achieving optimal control requires the 
application of advanced mathematical models and systematic process analysis [35].

To simplify the study of complex dynamic systems, various structural transformations and 
equation modifications have been suggested, including:
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Decomposition. Dividing the complex system into weakly coupled subsystems by selecting in-
verse connections, allowing the system to be managed through simpler, autonomous subsystems, 
each controlled independently by local regulators.

Aggregation. Combining smaller components into larger functional blocks to prevent excessive 
system complexity and order increase.

Transformation. Converting the system into a standardized form without changing the equation 
order, ensuring a more structured representation of the control scheme.

While these methodological approaches improve the structural representation of drying pro-
cesses, a key challenge remains: achieving energy-efficient drying without compromising product 
quality. The drying process is energy-intensive, and unoptimized control strategies can lead to 
excessive energy consumption, material defects, and operational inefficiencies.

Thus, optimizing drying processes has become a crucial factor in advancing sustainable indus-
trial practices. Strategies such as real-time process monitoring, adaptive control algorithms, and 
heat recovery systems contribute to energy savings and reduced environmental impact. Moreover, 
incorporating sustainability principles into drying system design ensures that industrial drying aligns 
with global energy efficiency goals and eco-friendly production standards.

Addressing drying optimization from an energy-saving and sustainability perspective requires 
an integrated approach, balancing technical performance, economic feasibility, and environ- 
mental responsibility.

3.1 General information on convective drying of porous materials in drying 
installations

To proceed with the optimization of drying processes, it is essential to first understand the 
fundamentals of technological processes occurring in industrial drying facilities. In particular, a 
comprehensive knowledge of the types of drying equipment used and their specific purposes is 
required. The selection of appropriate drying methods and operating conditions depends on the 
properties of the material, the target moisture content, and the efficiency of heat and mass 
transfer mechanisms.

The optimal process parameters – such as environmental temperature Ts, air humidity in the 
drying chamber φ, and airflow velocity υ – must be carefully chosen considering the technological 
characteristics of the material being dried.

Moisture removal under heating is constrained by the maximum allowable temperature for a 
given material and the permissible gradient of its change over time. The control of temperature and 
humidity in drying chambers is achieved by regulating the dry-bulb Tc and wet-bulb Tm temperatures 
of the drying agent.

In steam-based chamber drying installations, the drying process follows the characteristics of 
dry-bulb Tc and wet-bulb Tm temperature changes.
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In Fig. 5.1, the relative change in drying duration is plotted along the x-axis, representing the 
ratio of actual drying time τ  to the standard drying cycle time τnom  of 48 hours. The y-axis shows 
the relative value of the dry-bulb temperature, where a reference temperature of 120 °C is taken 
as the unit value.

 Fig. 5.1 Changes of Tc and Tm in the process of drying
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During the drying process, three main stages can be distinguished:
1. Material heating stage.
2. Isothermal heating stage throughout the cross-section.
3. Falling drying rate stage.
The dry-bulb temperature varies at different stages of the drying process: 
a) during the material heating stage (segment OA), the temperature increases at its maximum rate; 
b) during the isothermal heating stage throughout the cross-section (segment AB), the tem-

perature rise slows down, allowing temperature equalization across different layers of the mate-
rial’s thickness; 

c) in the final stage (segment BC), dry-bulb temperature changes, and intensive moisture 
removal occurs along with changes in the drying potential.

In the first two stages (heating and isothermal heating), the moisture loss per unit time (drying 
rate) remains constant. As long as the moisture supplied to the surface exceeds the amount that 
the surrounding medium can absorb, the surface moisture content remains constant, meaning the 
material’s surface remains moisture-saturated. Consequently, the moisture removal rate stays 
unchanged. Throughout this period, the surface temperature of the material remains stable and 
equals the adiabatic saturation temperature of the air (i.e., the wet-bulb temperature). The central 
part of the material, in contrast, heats up more slowly compared to the surface and reaches the 
wet-bulb temperature somewhat later in the drying process.

During the isothermal heating stage, the surface temperature and the temperature at the 
material’s core remain unchanged, meaning that the temperature gradient inside the material  
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is zero. At the same time, the temperature difference between the air and the material’s surface 
remains constant. Under these conditions, with a constant heat transfer coefficient, the drying 
rate remains stable. This phase is referred to as the constant-rate drying period, characterized by 
an unchanging material temperature.

During this phase, moisture evaporates from the material’s surface, as it is continuously sup-
plied from the inner layers, keeping the surface moist. The material temperature closely approxi-
mates the wet-bulb temperature, and the drying rate reaches its maximum. This stage continues 
until the moisture content reaches a critical level, beyond which the surface temperature starts 
rising over time, and the drying rate begins to decline. The linear drying curve segment tran-
sitions into a curve that asymptotically approaches the equilibrium moisture content. The core 
temperature also rises, but its curve lags slightly behind the surface temperature curve. Con-
sequently, a temperature gradient develops within the material, gradually diminishing until the 
equilibrium moisture content is reached, at which point the temperature gradient becomes zero. In 
this equilibrium state, moisture content no longer decreases, and the material temperature equals  
the air temperature.

The falling-rate drying period (segment BC for temperature increase, segment BD for drying rate 
decrease) is characterized by a gradual rise in material temperature and a decline in the drying rate.

Once all layers reach the same temperature, it becomes possible to lower the wet-bulb tem-
perature by removing moisture-laden air from the drying chamber using an exhaust fan, increasing 
the dry-bulb temperature, and reducing steam humidification. This adjustment continues until the 
psychrometric difference (corresponding to a specific material moisture content) reaches a pre-
defined value. The two-stage drying mode should be set according to material thickness, initial and 
final moisture content, and air velocity inside the chamber.

When temperature distribution is uniform, shrinkage does not induce critical stresses. Howev-
er, shrinkage development is associated with the emergence of internal stresses. Preventing ma-
terial cracking can be achieved by reducing tensile stresses through minimizing moisture gradients 
within the material’s cross-section. This can be accomplished by softening the drying mode at the 
initial stage and applying thermal treatment in the middle and final stages.

In the two-stage drying process, during the constant-rate drying period, a high relative vapor 
pressure and a relatively low temperature are maintained. In the falling-rate drying period, the 
dry-bulb temperature increases to its maximum, while the relative vapor pressure decreases. The 
moisture content of the capillary-porous material at the transition from the first to the second 
stage should be equal to the fiber saturation point of the material.

For high-temperature drying modes, it is crucial to consider that the rate of moisture migration 
from the core to the surface is proportional to the moisture conductivity coefficient. The moisture 
conductivity coefficient increases with temperature, while the moisture content gradient increases 
as the relative humidity of the vapor decreases, due to the corresponding reduction in surface 
moisture. In high-speed, high-temperature hydrothermal treatment, controlling moisture gradients 
is critical for maintaining process rigidity, efficiency, and safety.
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The rigidity of the drying regime is characterized by the magnitude of the psychrometric dif-
ference Tc–Tm and plays a critical role in high-temperature, high-speed drying. The rigidity must be 
adjusted continuously throughout the entire drying process when dealing with high initial moisture 
content and should be periodically regulated during low-temperature drying. The efficiency of the 
drying process is defined as the ratio of the normal drying time to the time spent in high-tempera-
ture mode. The safety of the process is determined by the ratio of the material’s strength limit to 
the maximum stresses that develop under the given drying conditions.

One of the main obstacles to high-speed drying is cracking. The cause of cracks is the develop-
ment of surface stress in the material, which exceeds the allowable limit. This stress state is cre-
ated by unacceptable shrinkage, which occurs due to the uneven distribution of moisture content 
and temperature within the material. Cracking can be avoided by reducing tensile stresses through 
minimizing moisture gradients across the section. This can be achieved by softening the drying 
regime at the beginning and performing heat treatment in the middle and at the end of the process.

If to assume that local failure occurs in the elastic region under the action of normal tensile 
stresses, then in a plate of thickness 2L, the moisture content gradient between the central and 

surface layers, given by 
L

u uc p3
�� �,  where uc is the moisture content at the central surface and 

up is the moisture content at the outer surface, can serve as a criterion for determining moisture 
content based on critical normal stresses.

However, in the work of Voronov, it is noted that the calculated stresses exceed experimental 
values by a factor of 5 to 10 [35]. The author attributes this discrepancy to the inapplicability of 
Hooke’s law, as local failure occurs in an elastoplastic region. It is also indicated that the cause of 
crack formation is shear stress, and the failure conditions reduce to ensuring that the intensity of 
shear stresses at a given point in the specimen reaches critical values, whereas tensile stresses 
alone cannot be the cause of local rupture. In real materials, local ruptures occur due to defects, 
weak points, and pre-existing cracks.

The process of material failure consists of two stages: local failure and complete failure. Crack 
formation occurs in the elastoplastic region under the influence of plastic deformations, which arise 
before the appearance of cracks and, at the moment of their formation, account for 60–80 % 
of the total deformation, depending on the moisture content of the material. The values of frac-
ture-inducing stresses and ultimate failure stresses depend on the loading rate, increasing with the 
intensity of stresses by a factor of 2 or more. At high moisture content, the ultimate shear stress 
and the crack-inducing stress are approximately the same. As the moisture content decreases, the 
ultimate failure stress increases more than the crack-inducing stress [5].

The optimal drying regimes for capillary-porous materials are influenced by the material’s 
shrinkage due to moisture changes. The shrinkage process varies across different materials. For 
example, in cement stone, shrinkage increases only when the moisture content drops below 30 %. 
Some materials, such as clay, begin to shrink immediately upon moisture reduction. Let’s consider 
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this effect in the case of wood. If the moisture content in a certain section falls below the hy-
groscopic limit, the fibers attempt to contract in size, but this is hindered by the fibers that still 
have a higher moisture content. As a result, internal stresses arise. The shrinking fibers, unable 
to contract, experience tensile stress, while adjacent fibers, influenced by the shrinking ones,  
are compressed.

As hygroscopic moisture is removed from the material, the shrinkage process gradually slows 
down. If a microscopic crack forms within the material, shrinkage may decelerate. If the internal 
cracking does not progress, shrinkage may resume at its previous rate and eventually stop after 
some time. This cessation occurs when the material reaches an average moisture content close 
to the equilibrium value corresponding to the given temperature and relative humidity of the drying 
agent. The shrinkage development law may follow various dependencies, such as an exponential 
decay. At the same time, it should be noted that wood is an anisotropic material, and shrinkage 
occurs below the fiber saturation point.

The dependence of the modulus of elasticity on moisture content is inversely proportional to 
moisture up to the fiber saturation point and can be approximated by straight lines with different 
slopes before and after this point. By maintaining the required surface moisture level, the desired 
values of permissible stresses can be ensured. The surface moisture is regulated by adjusting the 
moisture content of the drying agent.

According to [35], the moisture content distribution across the thickness of the material 

satisfies the expression 
u u

u u
y
L

c y

c p

n�

�
�
�

�
�

�

�
� ,  where u u uc p y, ,  are the moisture content values at

the center, on the surface, and at a distance y from the center, respectively, and n is an exponent 
characterizing the steepness of the relative moisture distribution across the thickness. At the be-
ginning of the drying process, n ��,  while at the end, n → 0.  Shrinkage follows an exponential 
dependence on time � � �� �� ��

k
Te1 / ,  where ε is the current shrinkage value, εk is the shrinkage 

at the end of the process, and T is the time constant.
At the beginning of the falling drying rate period, the moisture distribution across the thickness 

is parabolic n �� �2 .
For internal stresses in the layer at y, there is �y y c p y

A
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3
2 3 .  Further deep

ening of the evaporation zone is accounted for using a cosine-like distribution at n = 1.5: 

�y y c p y

A
u u u u� � �� �

2 5
15 2 5

,
, , .

At later stages, the distribution is assumed to follow a linear law n �� �1 :  �y y c p y
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The coefficient A is determined by the material properties and the control system settings:

A k e uk
T

p� �� � ��
�

�
�

�� �1 / .

Maintaining the desired surface moisture content ensures that the allowable stress limits are 
not exceeded. Thus, for a safe drying process, it is necessary to determine the optimal air velocity, 
relative humidity, drying agent temperature, and the timing of regulation phase transitions.

The change in moisture content with temperature variations inside the material over time 
depends on the interrelationship between internal moisture and heat transfer processes, as well 
as the heat and mass exchange at the material surface with the environment.

At low temperatures, thermodiffusion is minimal, and the resulting moisture flux coincides with 
the convective-diffusive vapor flux. During drying, moisture from the inner layers moves toward 
the surface, leading to a decrease in moisture not only at the surface but also in deeper regions. 
Evaporation occurs within the body at a specific zone or throughout the entire volume, depending on 
the pore size distribution density and the dispersion of pore sizes. In this case, moisture transport 
inside the material takes place in both liquid and vapor forms. The rate of moisture migration inside 
the material depends on the type of moisture binding.

Different approaches exist for optimizing the drying process. If the primary requirement is 
preventing cracks, the drying regime should be adjusted according to changes in the structural and 
mechanical properties of the material. If cracking occurs in the first drying period, the cracking 
criterion can be expressed as the relative moisture content gradient between the average mois-
ture content u  and the local moisture content u  with respect to the initial moisture content u0 :

K
u u

u
�

�

0

.

If cracking occurs on the surface in the first drying period, then u up= . For a parabolic mois-

ture distribution: K
u u

u
c p�
�2

3 0

( )
,  where u uc p−  is the difference in moisture content between

the central and surface layers. The primary moisture transport criterion in the drying process is 
the Kirpichev criterion Ki′,  defined as the ratio of the surface moisture gradient ∇up  to the initial 
moisture content u0,  multiplied by the characteristic size of the material R. The obtained values of 
Ki′  correspond to specific values of surface moisture content up and temperature tp.

For the constant drying rate period with a parabolic moisture and temperature distribution, 
A. Lykov established that:
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where

Ki
q R

a u
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�
��0 0

 is the Kirpichev criterion for moisture transfer, 

and

Pn
t

u
c�
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0

 is the Postnov criterion. 

Here, ′q  represents the evaporation rate, ′a  is the mass transfer potential conductivity 

coefficient � �
�
�

a
c
�
�0

,  where γ0  is the skeleton density, R is half of the material thickness for a 

plate, and � �� , c  are the moisture conductivity and moisture capacity, respectively.
Drying modes. 
Under mild drying conditions, the temperature gradient in the first period is absent, and the 

relative moisture content gradient is directly proportional to the Kirpichev criterion. The criterion 
Ki′  can be determined in various ways: by evaporation intensity ′q ,  by the moisture content differ-
ence u uc n− ,  by the surface moisture gradient, or by the decrease in moisture content over time:
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where u  is the average moisture content corresponding to the Fourier criterion:

Fo
a
R
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in the constant drying rate period. The maximum allowable Kirpichev criterion depends on the 
material’s moisture content; as the moisture content decreases, the criterion increases. This 
criterion is directly proportional to the drying intensity ′q  and inversely proportional to the po-
tential conductivity coefficient ′a .  Other parameters included in the criterion are the dry material  
density γ0 , initial moisture content u0,  and characteristic size R.

At low drying intensities ′q ,  it can be assumed to be equal to the evaporation rate of the liquid 

from a free surface. The evaporation rate is uniquely determined by the formula � � �
�

q Nu
l

pi

�
� ,

where ��  is the moisture conductivity coefficient. Heat and mass transfer coefficients under 
natural convection conditions are determined using Nesterov’s formulas, which are provided later. 
Using these formulas, drying intensity is calculated at different air temperatures and humidity 
levels. During the constant drying rate period, the body temperature can be assumed equal to 
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the wet-bulb temperature. Thus, given the parameters Ts and φ, the material’s temperature and 
coefficient ′a  are uniquely determined.

With a graph of coefficient ′a  variations with temperature, a family of curves Ki f Ts� � � �  
can be constructed for different values of φ at a constant air velocity and characteristic body 
size. If the maximum allowable Kirpichev criterion is known, and the dependence of Ki′ on different 
moisture contents is plotted, an entire region of permissible drying modes is obtained, from which 
the mode with the highest drying intensity is selected. The drying apparatus should have minimal 
heat and electricity consumption. As the moisture content decreases, the maximum permissible 
criterion Ki′max  increases, and the range of allowable drying regimes expands. Therefore, optimal 
drying regimes should be stepwise, with drying intensity increasing as drying progresses.

Increasing air velocity reduces the range of permissible process parameters Ts and φ (the 
family of curves Ki f Ts� � � �  shifts upward), so at the beginning of the drying process, air velocities 
should be low. The air velocity is chosen based on a joint analysis of the allowable drying regime area 
with the calculated energy consumption, temperature, and humidity gradients for selected regimes 
in the given drying chamber.

At high air humidity levels (low drying intensity), heat transfer coefficients are close to those 
of heat exchange without mass transfer. The greater the sample length along the airflow direction, 
the lower the drying intensity. 

During gentle drying modes, in the constant-rate period, the partial pressure of vapor near 
the surface of the material equals the saturated vapor pressure at the wet-bulb temperature. This 
value remains constant, even though the moisture content at the surface of the material gradually 
decreases to the maximum hygroscopic moisture content. The decrease in moisture content fol-
lows a complex curve that asymptotically approaches the equilibrium moisture level. At this stage, 
the material temperature is equal to the wet-bulb temperature.

In intensive drying modes, the heat and mass transfer patterns change. The temperature at 
any given point in the material, starting from the surface, gradually increases, while the decrease 
in moisture content at any point follows a linear law. This means that the drying rate remains con-
stant, while the temperature increases, including at the surface layer. A temperature gradient is 
observed. The temperature near the surface of the material initially equals the wet-bulb tempera-
ture, but then continuously rises. By the end of the process, the air temperature and the material 
temperature equalize. Near the surface, the temperature distribution follows a linear law, which 
then transitions into a curve, asymptotically approaching the ambient temperature.

At the very surface, heat transfer occurs via molecular mechanisms (vapor diffusion in an 
inert gas). As the distance from the surface increases, molecular heat transfer transitions into 
molar (convective) transfer, which gradually intensifies. The thickness of the conditional boundary 
layer remains constant in the first period of drying but then increases approximately according to 
a linear law.

In the temperature range of 0–150 °C, when heating a product (e.g., bricks), hygroscopic 
moisture is removed, accompanied by a significant release of water vapor. The vapor pressure 
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inside the product reaches high values even at 70 °C, increasing progressively as the temperature 
rises. If the rate of vapor generation inside the material exceeds the rate of vapor filtration through 
its thickness, the resulting internal pressure may lead to cracks and delamination. Furthermore, 
the surface of the material, having dried rapidly, continues to heat up significantly. Inside the ma-
terial, the temperature quickly rises to 100 °C and remains at this level until complete moisture 
removal, creating significant temperature differences between the surface and the inner part of 
the product, leading to high stresses and crack formation.

Experiments show that if the final drying phase is carried out by increasing the gas flow rate 
with a moderate increase in temperature (50–80 °C per hour), the process occurs with high in-
tensity, minimal temperature gradients across the material’s thickness, and no damage to product 
quality. The temperature range of the drying process is critical: if it is narrow, a slow temperature 
rise and prolonged holding time are preferable. Holding the material at the maximum temperature 
ensures uniform temperature distribution throughout its thickness.

Cooling of the product after maximum temperature holding. 
The cooling phase after holding the product at maximum temperature is just as critical in the 

drying process as the heating phase. In the initial stage of cooling, as the temperature decreases, 
materials undergo shrinkage and plastic deformations under minimal loads. During this phase, material 
cracking may occur. In each temperature range, the cooling intensity should be adjusted accordingly.

Let’s consider, as an example, the intensification of chamber drying of lumber. The drying 
process is conducted under atmospheric pressure.

Evaporation occurs at any given temperature, but the higher the temperature, the more in-
tense the evaporation. During evaporation, the molecules of liquid near the surface have higher 
velocity than others, and overcoming molecular cohesion forces, they escape into the surrounding 
environment. The process of evaporation is explained by the fact that the surface layer is heated 
slightly above the readings of the wet-bulb thermometer of a psychrometer placed in the sur-
rounding environment. As a result, the vapor pressure of the liquid on the surface is higher than 
that in the drying agent. Boiling, on the other hand, occurs only at the saturation temperature. 
The vapor formed from boiling water is called wet saturated vapor. During boiling, the amount of 
water decreases until the last drop turns into vapor. Once the droplets have evaporated, the vapor 
becomes dry saturated. If the temperature of the dry saturated vapor increases without changing 
the pressure, it is referred to as superheated vapor.

Removing heat from superheated vapor leads to a decrease in its temperature and specific 
volume. Condensation of vapor occurs only when its temperature drops below the saturation tem-
perature. These properties of vapor are widely used in drying technology.

Superheated steam, while expending part of its heat, can heat the material and evaporate 
moisture from it. As moisture evaporates from the material, the amount of vapor increases. To 
prevent a drop in pressure at the lower part of the chamber, a vapor outlet to the atmosphere or 
a heat exchanger must be installed. The saturation temperature of vapor depends only on pres-
sure. Each specific vapor pressure corresponds to a saturation temperature. Knowing the water 
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vapor pressure, it is easy to determine the temperature and vice versa. When saturated vapor is 
cooled, it condenses into water. During condensation, the saturated vapor releases all of its latent 
heat of vaporization. This heat is used in dryers for heating heat exchangers. The heat exchangers 
then transfer this energy to the drying agent, which, through convection, heats the material and 
facilitates moisture evaporation.

Methods of lumber drying using superheated steam. 
Lumber drying using superheated steam can be achieved through the following methods:
1. Direct superheated steam supply: superheated steam from a boiler is introduced into a 

sealed drying chamber, where it is forcibly circulated through the stack of lumber. The used su-
perheated steam, after mixing with the vaporized moisture from the wood, is expelled from the 
chamber. Closed-cycle drying with a vapor outlet pipe: A hermetically sealed chamber with a vapor 
outlet pipe is created. Inside the chamber, a heat exchanger with high thermal power and devices 
for circulating the drying agent are installed.

At the initial stage of drying, saturated steam is introduced into the chamber, which heats the 
wood and displaces air from the chamber. Simultaneously, the steam is circulated by fans through 
heat exchangers, where it becomes superheated. Once the introduced steam in the chamber 
turns superheated, it starts evaporating moisture from the wood, mixing with the vapor from the 
extracted moisture.

At this point, the steam supply to the chamber is stopped, as sufficient steam is generated 
from the moisture evaporated from the wood. The steam mixture is circulated by a fan through 
heat exchangers, increasing its degree of superheating, then passing through the lumber stack, and 
so on. Excess steam is removed through a vapor outlet pipe or directed to heat exchange systems.

2. The second method is more efficient than the first one because in hermetic chambers with 
vapor outlet pipes, heat losses associated with the intake of superheated steam from the boiler 
and its release into the atmosphere are eliminated.

At the beginning of the drying process, when the material has not yet heated up, the surface 
layers of the material, which are in contact with the hot chamber environment, have a higher tem-
perature than the core. This creates a temperature gradient, which causes moisture movement 
toward lower temperatures, i.e., from the surface to the center. This phenomenon is known as 
thermo-hydroconductivity. 

If wood is dried in an environment where the temperature exceeds 100 °C, an excess va-
por-air mixture pressure may develop and persist inside the material for an extended period (com-
pared to atmospheric pressure). This pressure induces a steady movement of water vapor (along 
with liquid water) from the center to the surface of the material, a process known as molar  
moisture transfer.

During drying, all driving forces act simultaneously, and their effects combine.
Drying concludes with the removal of moisture from the surface into the surrounding environ-

ment. The intensity of moisture removal depends on the difference in partial vapor pressures in the 
air layer above the wood surface and in the surrounding air, as well as on the velocity of the air 
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flowing around the wood. The greater the difference in partial pressures and the air velocity, the 
more intense the moisture evaporation from the material’s surface.

The heat and mass transfer criteria are expressed through the Nusselt criteria:

Nu
l ql

tg g

� �
�
� � �

;  Nu
l q l

pg g

� �
�
�
�

�
�

�
� � �

,  (5.1)

where I is the characteristic linear dimension.
If the complex transfer mechanism is replaced by an equivalent molecular transfer, a condi-

tional boundary layer of thickness δ  is obtained. From experimental curves, the heat and mass 
transfer coefficients, as well as the Nusselt numbers, are determined using the following formulas:

�
�
�

�
�
� � �

� � �
�

� � �
t p t p

Nu
l

Nu
l

, , , .  (5.2)

By extending the moisture distribution lines of the air to the horizontal axis, the conditional 
depth of the evaporation surface ξ  can be determined [5].

In the first drying period, the drying intensity remains constant despite the continuous deep-
ening of the evaporation surface. This phenomenon is explained by the increase in the mass trans-
fer coefficient ��  due to the displacement of the diffusion transfer mechanism of vapor in the 
boundary layer by the effusion mechanism in the surface layer of the material (evaporation zone). 

The drying intensity in the first period is given by � �
�

�
�� �q c

�

� �
� ��

�

.

In the first approximation, �� is constant and greater than ξ. The increase in the denominator 
due to the growth of ξ is compensated by an increase in �� , thus maintaining a constant density 
of the drying flux. In the second drying period, �� increases, leading to a reduction in drying inten-
sity [36–40].

In the transition region from mild to intensive drying modes, the rate of evaporation front pen-
etration remains constant during the first period, and evaporation occurs at a certain fixed depth, 
while the temperature distribution curves at different moments of the first period coincide with 
each other. The same applies to the humidity distribution curves of the air. In mild drying modes, 
during the first period, the evaporation front is close to the surface of the material. The Nusselt 
criteria, which characterize external heat and mass transfer, are inversely proportional to the 
thickness of the conditional boundary layer; therefore, they remain constant during the constant 
drying rate period and decrease over time during the falling drying rate period.

In intensive drying modes, the heat flux density can be determined as q r q c
V
F

dt
dk� � � �
�0 , 
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where 
V
F

 is the volume-to-surface ratio of the material, and rk is the specific heat of evaporation. 

Due to auxiliary expenditures when calculating heat flux density, the Nusselt criterion is determined 
by the conditional boundary layer thickness. Experimental studies have shown that in the first peri-
od, the Nusselt number remains constant, while in the second period, it decreases with decreasing

moisture content. P. Lebedev obtained the empirical relationship 
Nu
Nu

u
un kr

n

�
�

�
��

�

�
�� ,  where ukr  is the 

critical moisture content, and Nun  is the Nusselt number in the constant drying rate period, given 

by Nu A
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. .  For wood, A = 0 5. ,  n = 0 3. .  Similar relationships hold for mass 

transfer: 
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,  where the exponent ′n  is close to n. Thus, changes in heat and mass

transfer follow the same pattern.
Calculating the Nusselt number Nu′  using formulas (5.1) and the conditional boundary layer 

thickness shows that the Nusselt number Nu′  calculated using formulas (5.1) in the first period 
is significantly higher than Nu′  calculated based on the boundary layer thickness. The difference 
between them decreases as the moisture content decreases [5].

This difference is greater at higher drying intensities. This is explained by the vapor transfer 
mechanism through the evaporation zone. During evaporation, the evaporation front penetrates 
deeper into the material. Transfer within the evaporation zone occurs not only through diffusion but 
also effusion (molecular flow) if the capillary radius of the material is smaller than 10-5 cm and the 
pressure equals atmospheric pressure. 

A distinguishing feature of molecular flow is the movement of gas from less heated regions of 
the capillary to more heated ones under the same pressure p. During drying, the surface of the ma-
terial has a higher temperature compared to the evaporation zone surface. Thus, this temperature 

gradient accelerates molecular flow, as the driving potential of effusion flow is 
p

T
.  In the case 

of diffusion transfer, the presence of a temperature gradient in the evaporation zone reduces 
transfer speed. If the material contains capillaries with radii greater than 10-5 cm, then a combined 
diffusion-effusion transport mechanism takes place. 

In the presence of macroscopic capillaries, diffusion vapor transfer is complicated by thermal 
creep, which works as follows: if a temperature gradient exists along the walls of a macroscopic 
capillary, then circulation currents of moist gas arise. Gas near the capillary wall moves against the 
heat flow, while along the capillary axis, it moves with the heat flow. Since the capillaries near the 
evaporation surface have a lower temperature compared to the capillaries in the surface layer of 
the material, thermal creep facilitates vapor transfer through the evaporation zone. 
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From the surface of the material to the surrounding environment, vapor transfer occurs pri-
marily by molar transport. The mass conductivity coefficient ��  in the evaporation zone – bound-
ary layer near the material surface underline{is significantly greater than the molecular mass 
conductivity coefficient}. Therefore, the Nusselt numbers calculated using standard formulas are 
overestimated compared to those determined by the boundary layer thickness, which provides 
more accurate results. This new mass transfer mechanism affects both heat transfer and the 
hydrodynamics of heat exchange. The increase in the Nusselt number during the drying process is 
explained as follows:

– as the evaporation front penetrates deeper, vapor passes through this zone via a diffu-
sion-effusion mechanism, complicated by thermal creep and the presence of a general pressure 
gradient. Upon exiting the surface layer of the material, the overall pressure gradient immediately 
relaxes, acting as a turbulence-inducing factor for the laminar flow of the surface layer of the 
vapor-gas mixture. As a result, heat exchange intensifies, leading to an increase in Nu. As moisture 
is removed, drying intensity decreases, and the heat transfer coefficient decreases, approach-
ing the coefficient of pure heat transfer. The relationship between the criteria Ki′ and Nu′ is

given by Ki Nu
R
l a u

p pg
nm c� � � �

�
�� ��

�0 0

.  The criterion Ki′  is an analogue of the Biot criterion 

Bi R Nu
R
l

g� �
�
�

�

�
 for heat transfer, where λ is the thermal conductivity coefficient of the 

material, and R is the characteristic size of the material (for an infinite plate – half its thickness) or 

the hydraulic radius R
V
Sv = ,  which is the volume-to-surface ratio of the material.

Regulation of temperature and humidity in drying chambers is carried out by adjusting the 
temperature according to the dry-bulb Tc and wet-bulb Tm thermometers of the drying agent. 
The dry-bulb temperature takes different values at different stages of the drying process. 
During the heating stage of the material, the temperature changes at the maximum rate. In the 
stage of isothermal heating throughout the cross-section, the temperature increases slightly. 
Temperature equalization of individual layers across the material thickness occurs. At the final 
stage, changes in the dry-bulb temperature lead to intensive moisture removal and a shift in  
drying potential.

Evaporation of moisture from the wet-bulb thermometer surface occurs more intensively when 
the humidity of the drying agent is lower. Measuring humidity based on different readings of the 
dry and wet thermometers is reliable under the condition of hydrodynamic equilibrium, i.e., when 
S T T CS P P rc m m v� �� � � �� � ,  where S is the evaporation surface of the wet-bulb thermometer, 
α is the heat transfer coefficient, C is the evaporation intensity coefficient of moisture from the 
wet-bulb thermometer surface, P = 475 mmHg is the total barometric pressure, Pv is the vapor 
pressure in the air, and r = 595 cal/kg is the latent heat of evaporation. From this relationship:
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P P A T Tv m c m� � �� � ,  where A
Cr

�
�

.  By determining the partial pressure of vapor, the relative 

humidity of the drying agent can be found: � �
P
P

v

m

.

The coefficient A is determined by the empirical formula:

A � �
�

�
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�

�
�0 00001 65
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.

.
,

�

where υ  is the velocity of the vapor-air mixture in the chamber. Thus, the readings of the dry and 
wet thermometers determine the humidity and temperature of the drying agent, and information 
about its state is a necessary condition for high-quality drying. For the heating period, it is assumed 
that the wet-bulb temperature uniquely determines the humidity of the drying agent and, at con-
stant Tc, does not depend on its temperature.

Drying with heated gas. 
In many cases, drying of wet materials is carried out using heated gas. The drying process also 

takes place in drying chambers. In these devices, the drying mode changes over time. The drying 
mode is characterized by three parameters: the gas temperature tc, humidity φ, and gas velocity υ.  
These parameters affect both the drying time and the quality of the material. Therefore, it is 
necessary to find such a mode that, with minimal drying time and the lowest heat consumption, 
provides the best technological properties of the material. To understand the impact of the drying 
mode on duration, it is necessary to obtain drying kinetics curves depending on the parameters 
characterizing the mode. From practice, it is known that increasing the drying agent tempera-
ture increases the drying intensity and critical moisture content. Increasing the temperature from  
15 to 45 degrees results in a 2.5-fold increase in drying intensity in the first period. Increasing 
air humidity sharply reduces drying intensity and critical moisture content. For example, increasing 
air humidity from 0.177 to 0.758 decreases the intensity by approximately 4.5 times. Increasing 
air velocity increases intensity in the first period and has significantly less effect at the end of the 
process. The ratio between capillary moisture and adsorptively bound moisture significantly affects 
drying intensity in the second period and the critical moisture content, while it has little effect on 
intensity in the first period [5]. As the amount of capillary water increases, the critical moisture 
content decreases. Therefore, the greater the amount of bound water, the higher the critical 
moisture content. The critical moisture content characterizes the end of the period with a constant 
drying rate, after which the drying intensity decreases.

At high gas temperatures, in the first period, the drying rate is constant, and the surface 
temperature of the material continuously increases and significantly exceeds the wet-bulb tem-
perature. The drying intensity equals the mass transfer intensity:

q t t Nu
l

tc p m
g� �� � ��

�
. ,�
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q p p Nu
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where q and ′q  are the heat and mass flux densities, respectively, �t t tc p m� �( ).  is the tem-
perature difference between the gas and the body surface, �p p pp m c� �( ).  is the partial pressure 
difference of vapor at the body surface and in the surrounding environment. 

In the humidity range of 50–70 %, the following formulas are proposed for water evaporation 
from a free surface:

Nu = 0 46 0 53, Re ,,  Nu� � 0 63 0 52, Re ,  at 3 10 3 103 4� � � �Re .

The Reynolds number is defined as:

Re
l

�
�
�

.

Through the analysis of multiple heat and mass transfer experiments under forced convection 
of moist gas, the following relationships were established:

Nu A Gun m� � � � �2 0 33Pr Re ,,

where constants are provided in Table 5.1.

 Table 5.1 Constants for relationships heat and mass transfer

Re А n m A’ n’ m’

1–2∙102 1.07 0.48 0.175 0.83 0.53 0.135

3.15∙103–2.2∙104 0.51 0.61 0.175 0.49 0.61 0.135

2.2∙104–3.15∙105 0.027 0.90 0.175 0.0248 0.90 0.135

For Re > 200, the term 2 is omitted, and the formula simplifies to:

Nu A Pr Re Gu Pr
a a
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�

�
�

�

�
�

0 33. , .
� �

�

Similarly, for mass transfer:

Nu A Pr Re Gu Pr
D
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� �2 0 33( ) , .. �
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Here υ is the viscosity coefficient, and D is the diffusion coefficient. For an ideal gas, Pr ,� � �Pr 1 
for dry air Pr . ,= 0 73  and for vapor transport in an inert gas Pr� � 0 75. .

Under conditions of natural convection:

Nu Ar Ar� � � � � � �4 3 10 2 100 108 6 8(Pr ) , (Pr ) ,. for 

Nu Pr Ar Pr Ar� � � � � � � � � �4 1 10 3 100 248 4 8( ) , ( ) .. for 

When calculating these criteria, the characteristic size is taken as the side of a square equiva-

lent to the liquid surface area Ar
l g
v p

�
3

2

��
�

.

Here, I is the length of the surface in the direction of the flow, g is the acceleration due to 
gravity (m/s2), and �� � �� �p c  is the difference in density between the moist gas at the liquid 
surface and the bulk gas flow. In heat transfer, this density difference is replaced by the tempera-
ture difference and is known as the Grashof number criterion.

In all these equations, the thermal conductivity of the humid gas is calculated using 
� � �� �0 0 0041. ,  where λ0  is the thermal conductivity of the dry gas. The mass trans-
fer coefficient (diffusion coefficient relative to partial pressure differences) is calculated as 
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�

�
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�

�
��� a
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RT
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p

v
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0

0
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0 ,  where ′a0  is the diffusion coefficient under normal conditions. For water vapor, 

� �a0 0 079.  m2/h, Mv = 0.018 kg/mol is the molecular weight of vapor, P0 = 760 mmHg is the 
total barometric pressure, and T0 = 273.2 K is the absolute temperature under normal conditions. 
The universal gas constant is R = 0.06237 m3 mmHg/K mol, and the average absolute boundary 
layer temperature is T t tc p� � �273

1
2

( ),  where pb is the partial pressure of dry vapor in mmHg.
Wood drying process. 
Initially, drying proceeds rapidly and slows down towards the end. The first stage involves 

heating the wood in the chamber. The moisture in the wood does not decrease; instead, it slightly 
increases due to condensation of atmospheric moisture on the cold wood surface.

The second stage involves drying from high initial moisture content w0 to the critical moisture 
content wkr ,  which is slightly higher than the hygroscopic boundary (which is 30 %). During this 
stage, free moisture is removed from the wood, making this phase the most intense.

The third stage involves drying from critical moisture to the desired final moisture content. 
Here, bound moisture is removed, and the process is slower than in the second stage.

Stresses developing in wood. 
During drying, moisture is initially removed from the surface, leading to an uneven distribution 

of moisture throughout the volume. When the moisture content falls below the hygroscopic limit, 
shrinkage begins. (The property of wood to reduce its linear dimensions and volume when bound 



193

5 ON THE ISSUES OF OPTIMIZATION AND REGULATION OF THE CONVECTIVE DRYING PROCESS OF  
MATERIALS IN DRYING UNITS

CH
AP

TE
R 

 5

water is removed (at a moisture content below 30 %) is called shrinkage.) This leads to the 
formation of tensile moisture stresses in the surface layers, which can result in external cracks.  
To prevent this, drying should be slowed down by creating a highly saturated steam environment in 
the chamber (this is known as moisture-heat treatment).

As the moisture gradient across the thickness decreases, the stresses also decrease. When 
the moisture content of the inner layers of the wood falls below the hygroscopic limit, the inner 
part begins to shrink, while the outer, being dry and in tension, resists the shrinkage of the inner 
layer. This leads to the development of tensile stresses in the inner layer. If these tensile stresses 
continue to develop, internal cracks will form. Internal stresses can be reduced through ther-
mal-humidity treatment of the wood.

Low-temperature and high-temperature drying processes.
Depending on the temperature level, the drying process can be classified as low-temperature 

or high-temperature.
Low-temperature drying occurs when the wood temperature remains below the boiling point of 

water at the given pressure (< 100 °C).
High-temperature drying occurs when the temperature in the central zones exceeds 100 °C. 

In this case, vaporization characteristics differ at different temperature levels.
For the high-temperature process, it is necessary not only for the surrounding medium to 

exceed 100 °C but also for the material itself to reach this temperature while still containing free 
water capable of boiling. An example of such a process is the drying of wood with an initial moisture 
content higher than the hygroscopic limit in a superheated steam environment under atmospheric 
pressure. A key feature of high-temperature drying is the intense transfer of moisture in the form 
of steam from the central zones to the peripheral ones. There is also an intermediate transition 
process between high- and low-temperature drying.

Drying chamber air circulation and types of chambers.
The circulation of the drying agent can be natural or forced, one-way or reversible. It is achieved  

using fans inside the chamber or through ejector nozzles, in which case the chambers are called 
ejection chambers.

Drying chambers are classified based on the drying agent:
– air chambers (where drying is done with heated air);
– superheated gas chambers;
– gas chambers, where the drying agents are combustion gases or natural gases mixed with 

humid air.
Based on operational principles, drying chambers can be:
– batch (periodic) operation: the material is loaded into the chamber in a full batch. If the 

chamber operates cyclically, the process consists of loading, drying, and unloading;
– continuous operation: the drying process does not stop for loading and unloading. The ma-

terial moves continuously from the loading end to the unloading end of the chamber. With each 
unloading cycle, the stacks of material shift forward by the length of one stack [3].



194

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 5

Conclusions

To calculate the optimal drying regime, which is determined by technological changes during 
the drying process, it is crucial to study the laws of moisture transfer to effectively control it. 
One possible way to manage the moisture transfer mechanism is by influencing the processes of 
diffusion and thermodiffusion.

When drying with heated air, the total moisture flux equals the difference in moisture gra-
dients, which are determined by the gradients of moisture content and temperature q a

u
x

a
t
xm m m� �

�
�

�
�

� .

q a
u
x

a
t
xm m m� �

�
�

�
�

� .  Under the influence of a temperature gradient, moisture moves inside the 

material. The moisture flux directed toward the material surface decreases due to the thermo-
diffusion-induced moisture flux. The temperature gradient acts as a barrier to the movement of 
liquid from the central layers to the surface. At a constant drying intensity, conditions are created 
that facilitate the evaporation of liquid within the material. Thermodiffusion reduces the moisture 
gradient, slows down the movement of liquid moisture, and decreases the amount of water-soluble 
substances on the material surface. Changes in the magnitude and direction of the temperature 
gradient alter the conditions for moisture movement and the transfer of dissolved substances, 
leading to changes in the physicochemical properties of the material.

In the case of drying with heated air, the temperature gradient in the material leads to a signif-
icant moisture content gradient, generating high stresses that can cause cracking. By accelerating 
heating and cooling from the surface, it is possible to achieve values of the Postnov criterion 

Pn
t

u
�
��
�

,  where δ  is the thermogradient coefficient, Δt  is the temperature difference, and 

Δu  is the moisture content difference, at which the moisture content distribution will be close  
to uniform. 

Under these conditions, moisture and temperature stresses in the material do not develop, 
allowing for fast drying without cracks.

The method of heat transfer to the material affects the substance and heat transfer mech-
anisms during thermal processing. In the steam-thermal method, saturated steam is used as the 
heat carrier. Heat is transferred to the material via convection from the steam-air environment. 
This creates a significant temperature gradient in the material, resulting in internal stresses. Since 
the material temperature is lower than that of the steam-air environment, a condensate film forms 
on the surface. According to the law of moisture-thermal conductivity, moisture migrates from 
the surface layers to the central ones, leading to moisture absorption by the material. Over time, 
developed reaction hydration contributes to the material’s temperature exceeding that of the sur-
rounding medium. Consequently, intense moisture evaporation occurs with a significant moisture 
content gradient, forming directed porosity within the material.
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An important heat transfer method involves the interaction of an alternating magnetic field with 
ferromagnetic elements. The wet material, along with ferromagnetic heat-generating elements, is 
placed in an electromagnetic coil field powered by industrial-frequency current. The ferromagnetic 
materials heat up and transfer heat to the wet material. Depending on the material properties, 
the heat transfer method is selected, and it can be adjusted based on the technological scheme 
for placing ferromagnetic elements (in volume, in a layer, stack, or mass). This method prevents 
high stresses and deformations in the material, ensuring drying without warping or internal cracks.

During thermal treatment in an electromagnetic field, heat is conducted to the material from 
the formwork and reinforcement. This creates a minimal temperature gradient in the material. 
In this case, the surface temperature is higher than that of the environment, and evaporation 
occurs with a slight moisture content gradient. Such a thermal treatment method increases the 
number of closed pores compared to steaming, improving material quality. Using the principles of 
diffusion and thermodiffusion, the substance transfer mechanism can be controlled. Since diffusion 
is determined by the diffusion coefficient and thermodiffusion by the thermodiffusion coefficient, 
establishing the dependence of these coefficients on moisture content and temperature is crucial 
for regulating the transfer coefficient.
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