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Abstract

An increase in the effective working process of the crusher is achieved when it operates in the 
vicinity of resonance, i.e. at a high value of the coefficient of resonant amplification of oscillations. 
The optimal values of the amplitude of the oscillations of the masses have the greatest values, 
provided that the coefficient of regulation of elasticity in frequency n is in the range of 0.6 ≤ n ≤ 1. 
Within the frequency range of 14.5 Hz<f<26 Hz, material is effectively crushed. The numerical 
values of the coefficient are established, which determine the rational ratios of vibration masses. 
The studies carried out and their results indicate that the main stresses causing the destruction of 
the material are shear stress. Analytical equations are obtained that reflect the picture of energy 
consumption for the destruction of the material. Such studies are planned as a continuation of the 
topic under consideration through experimental studies and consideration of several members of 
the series and optimization of the parameters of crushing machines. The proposed approach to 
studying the energy characteristics of material destruction in the crusher chamber with a guar-
anteed zone of stability of parameters in the resonance zone can be used for other processes. 
Such processes include the destruction of materials during dynamic cutting of soils, processing of 
materials in mills and sorting of materials, which are widely used in Ukraine abroad. An algorithm 
and method for calculating the main parameters of a vibration crusher have been developed.

KEYWORDS

Vibration crusher, material, grinding, physical, mathematical model, equation, resonance, para-
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2.1 Selection and justification of physical and mathematical models of technical 
systems for materials grinding processes

Vibration jaw crushers are a relatively new direction in the development of crushing techno-
logy, which are highly energy efficient and are used in various industries, including construction. 
The most promising of the known vibration jaw crushers are crushers with two movable jaws and 
crushers with a heavy body and a pendulum. On the other hand, the creation of such machines 
is hindered by the severity of providing a resonant mode of operation in which the efficiency of 
crushers increases significantly.
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Let’s consider a model of a working fluid in terms of interaction with a machine. Let’s consider 
the layout of the elements of the vibration system under study in the following order (Fig. 2.1): 
vibration exciter – machine body – working medium – striker. Let’s take: m – total mass of the ma-
chine; с – coefficient of elasticity of elastic connections; mm – mass of the material; F t0( ) – driving 
force; xn  – movement of individual elements of the crusher structure; D – average diameter of 
the input material.

 Fig. 2.1 Layout of vibration system elements

The equation of motion of our system will be an equation of the form [1]:
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where с – speed of the wave propagating in the medium.
The solution to equation (2.1) will be the dependence [1]:
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Coefficients A and B are determined by the boundary conditions and, by their physical content, 
reflect the vibration amplitudes in the corresponding contact zones.

Forces acting on the contact between the crushing plate and the material:

− = − + − + + − + −F F t m x x c x c m x x c x c c x ccr m. sin0 1 1 1 1 2 1 2 2 2 1 1 1 2 22 2 2ω  

22 3 3x x cf+( ), (2.3)

where Fcr m. .  – reaction force of the material from the action of the crushing jaw (equal to the 
crushing force with the opposite sign);
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– crusher motion equation.
On the other hand, the expression for the reaction of the material to the crushing plate can 

be written as follows:
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Equating expressions (2.3) and (2.4) let’s obtain:
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Let’s find the unknown derivatives ∂ ∂x u  and x x t= ∂ ∂2 2  by differentiating equation (2.2):
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To find the displacements of the first and third masses included in equation (2.5), let’s use the 
solution in the form of the following functions:
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Thus, an equation can be derived to determine the vibration amplitudes of the contact zone:
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As can be seen from equation (2.10), the effect of the material on the dynamics of the mouse 
is determined by a parameter ES c r cω ω( ) ( )tan  that can be turned into the following form [1]:
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where m – the mass of the material.
The ratio tgψ ψ γ( ) =  is called the coefficient of added mass. It takes into account the dif-

ference between the mass mm and its static value mms [1].
When designing any machine, great attention should be paid to the rational selection of kine-

matic parameters. The kinematic parameters mainly include the geometric characteristics of the 
machine as a whole and its individual parts.

One of the features in the design of vibration crushers is the presence of vertical movements 
of the crusher relative to the falling material.

Expanded, the dependency for defining the material path will be as follows:
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,
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 (2.12)

where µ f  – coefficient of friction; mcr  – the mass of the vibration parts of the machine (mass of 
the crusher).

Knowing the total length of the crushing plate, let’s find the number of cycles of application of 
loading to the material during its stay in the crushing chamber h l ni1( ) = .

On the other hand, the required number of load cycles for material destruction is calculated 
by the formula [2]: 

′ = ( )ni d eδ δ ,  (2.13)

where δd  – depth of entry of the crushing plate into the body of the crushed material, at which the 
material is destroyed, m; δe  – depth of entry of the crushing plate into the body of the material at 
a given energy of a single impact.

The value δe  depends on the dependence [2]:

δe i w d cv c k S= ( ) ( )2 , (2.14)

where E mvi = 2 2  – impact energy, J; v – speed of application of the load to the material, m/s;  
cw – wave propagation speed, m/s; kd  – dynamic factor; Sc  – contact area, m2.

2.2 Investigation of the stress-strain state of the material

Study of the stress-strain state of a solid material.
The stresses arising on the platforms of the selected element are shown in Fig. 2.2.
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 Fig. 2.2 Working body model

A complete description of the stress-strain state in the linear theory of elasticity (spherical 
coordinates) includes the following dependences [3]:

– static equations:
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– deformation equations:
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– stress equations:
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where ρ θ ϕ, ,   – suitable coordinates for the placement of the stressed body element; u v w, ,  – move-
ment in the direction of the corresponding coordinate axes; σ σ σρρ θθ ϕϕ, ,  – normal stresses at the 
respective sites; τ τ τρθ ρϕ θϕ, ,  – shear stresses at the respective sites; M N L, ,   – volumetric for-
ces; G E= +2 1( )ν  – shear modulus; ν λ λ= +2( )G  – Poisson’s ratio; λ ν ν ν= + −E (( )( ))1 1 2  –  
Lame constant; e u w v= ∂ ∂ + ∂ ∂ + ∂ ∂1 12 2ρ ρ ρ ρ ϕ ϕ ϕ θ( ) ( sin( ))(( ( sin( )) ) ) – volumetric relative 
deformation; ε ε ερρ θθ, ,  ff – linear deformations; γ γ γρθ ρ θ, ,  f f – shear deformation.

To solve the problem, let’s use the displacement method.
Combining equations (2.15)–(2.17) by alternate substitution, and performing some mathema-

tical transformations, let’s obtain the equation of elastic balance of the body in displacements [4]:
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where ξ ξ ξρ θ, , f  – components of rotation, determined by the following formulas:
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Therefore, to solve this problem, it is necessary to find the displacement functions. These 
functions must satisfy three main conditions [4]:

1) be harmonious or biharmonic functions;
2) transform equation (2.18) into an identity;
3) stresses, expressed in terms of displacement functions, must satisfy the compatibility equa-

tions on the surface, which are written as follows [5]:
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where l m n, ,   – direction cosines.
In expanded form, the displacement functions for a spherical coordinate system are written 

as follows [6]:
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where M = + +( ) + χ ρ χ θ χ θ ϕ χ ϕ0 1 2 3cos sin sin cos .
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In this problem, the body forces are insignificant, so they can be neglected.
Therefore, from the above, it is possible to conclude that the solution of equations (2.21) is 

reduced to finding three harmonic functions χ χ χ1 2 3, , .  
Such functions are volumetric spherical functions, which, in general, can be written as follows:

χ ρ ρ θ θ µ µ= + + +− −( )( os( ) sin( ))( ( ) ( ))cA B C m D m L P F Qn
n

n
n

m m nm nm nm nm
1∑∑ ,  (2.22)

where µ ϕ= cos[ ] – module; Pnm( )µ  – Legendre function of the first kind, degree n and order m; 
Qnm( )µ  – Legendre function of the second kind, degree n and order m; Qn( )µ  – Legendre function of 
the second kind; Pn( )µ  – Legendre function of the first kind; A B C D L Fn n m m n m n m, , , , ,, ,      – constants.

Now, knowing the displacement by formulas (2.16), (2.17), it is possible to find deformations 
and stresses. Let’s consider the most atypical condition under which n1–n3, m1–m3 are diffe-
rent integers, for this − < <1 1µ . For subsequent calculations, let’s take: n1 = 4, m1 = 1; n2 = 5, 
m2 = 2; n3 = 6, m3 = 3. Then equations (2.22) can be written as follows:
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Study of the stress-strain state taking into account the rupture zone in the body 
of destruction.

The realistic crack shape is an elliptical shape. In this form, by changing the ellipticity, it is 
possible to realize different degrees of curvature of the crack boundary.

The solution to this problem is complex and very voluminous, due to the use of biharmonic 
functions. Therefore, for further research, let’s use the technique proposed for solving the stress-
strain state of a body near the rupture zone, which has the shape of an ellipse [3, 4].
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In general, the problem is divided into two separate ones: 
1) an elliptical crack under internal pressure; 
2) an elliptical crack under shear conditions.
For a better understanding of the problem statement, let’s present a diagram of the location 

of a plane crack in a three-dimensional body (Fig. 2.3).
The limiting conditions for solving the problem of an elliptical crack under the action of loading 

are as follows:

σ ξz F w= − = = =, , , .0 0 0  (2.24)

To solve the problem, the gravitational potential outside a homogeneous elliptical plate of the 
following form was used [4]:
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where V a b∫ ∫ ∫ ∫( ) = +( ) +( ) 
2 2

1 2/
 – function of ∫; ∫  – continuous integration; а, b – respectively 

large and having semi-axes of an ellipse.
Constant A is found by the following formula [4]:
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ϕ ϕsin d  – complete elliptic integral of the second kind; ϕ  – ampli-

tude of the integral; m = sin[ ]α  – modulus of the integral; α  – modular angle.

 Fig. 2.3 Scheme for determining the stress-strain state  
in the presence of a rupture in the crushing material
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After some transformations and calculations, the displacements from the action of normal 
forces through the elliptical coordinates will have the following form [4]:
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where ξ ϑ, ,  – elliptical coordinates; ξ = const  – family of ellipsoids;   – hyperboloid with one 

cavity; ϑ  – hyperboloids with two cavities; E u dnf

uf

  = ∫
0

2β βd  – function; uf  – variable; ′m  – argu-

ment of elliptic functions (modulus of the integral), ( ) ( ) ;′ + =m m2 2 1  snu cnu dnuf f f, ,   – elliptic 
functions of С. Jacobi.

Now let’s return to solving the general problem of a body with a crack. Using the principle 
of superposition of the stress states of two problems, namely, the stress-strain state of a body 
without a crack and in the vicinity of a crack, it is possible to write the following equations:

u u utot i ni tot i ni= + = +; ,σ σ σ  (2.28)

where ui i, σ  – displacement and stress, respectively, calculated for a body without a crack; uni ni, σ  – cor-
responding displacements and stresses calculated for bodies with a rupture zone.

Since the displacements indicated in formulas (2.27) were determined for elliptical coordi-
nates, and preliminary calculations were performed for a spherical system, therefore, when per-
forming further calculations, it is necessary to switch to a single coordinate system. Let’s accept 
the spherical coordinate system as more convenient for further operation.

After simple transformations of the system of equations (2.27), let’s obtain the value of the 
displacements in spherical coordinates:
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It should be noted that these equations were obtained on the basis of the expansion of formu-
las (2.27) in power series. The calculations took into account the condition – ξ ρ ϑ≈ ≈ ≈2 0; . �

To obtain the stress components, it is necessary to substitute formulas (2.29) into the equa-
tion for determining the stresses.

Finally, the stresses in the body in the presence of a rupture zone will be equal:
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Thus, knowing all the components of stresses and displacements for two stress-strain states, 
it is possible to determine the total energy of destruction.

Based on the superposition of equations for determining displacements without a crack and 
equations for determining the displacements of a body with a crack, the corresponding graphs were 
constructed [4]. The graphs of the dependence of the principal stresses on the size of the major 
semiaxis of the crack ellipse are shown in Fig. 2.4. The graph of stress versus zenith angle j is 
shown in Fig. 2.5. The change in stress σρ depending on the radius r is shown in Fig. 2.6.

 Fig. 2.4 Graph of stress dependence on the size of the major semiaxis of the ellipse:  
a – σρ–a; b – σθ–a; с – τρj–a

a b

c

 Fig. 2.5 Graph of stress changes depending on the angle of application of the force j:  
а – σρ–j; b – τρj–j

a b
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 Fig. 2.6 Graph of changes in normal stresses σρ depending on the radius r

As follows from the graphs (Fig. 2.4), the dependences of stresses on the size of the major 
semiaxis of the ellipse have a linear characteristic within the framework of the calculations, the 
numerical values of which were used to determine the parameters of the crusher.

The significant influence of the angle of application of the force on the change in stresses is 
noted in the range of 0.3–0.5 (Fig. 2.5).

A more complex law of variation of normal stresses depending on the radius r is noted in the 
range of 9–12 mm (Fig. 2.6).

2.3 Research and analysis of material grinding machine parameters

A mathematical model of an experimental jaw crusher. The physical model of a vibration jaw cru-
sher is shown in Fig. 2.7. When considering the physical model, the structural elements of the machine 
take an elementary form, the gravity forces of individual links are applied at certain points, the forces 
of resistance to destruction are presented in the form of a total force applied to the jaw center [7, 8].

 Fig. 2.7 Physical model of a three-mass vibration crusher
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When compiling the equations of motion of the vibration system of a jaw crusher, let’s use 
Hamilton’s variational principle. It establishes that the variation in kinetic and potential energy 
plus variation in the work of non-conservative forces during any time interval should be equal  
to zero [9–11].

To compose the equations of motion, let’s consider the structural diagram of a vibration 
jaw crusher. The investigated jaw crusher is made in the form of a three-mass resonance sys-
tem (Fig. 2.7), in which rectilinear vibrations are realized and the dynamics of which occurs ac-
cording to a three-mass scheme.

The vibration exciter 1 with the base plate is the first or active mass, the movable body 3 
is the second mass, the middle plate with inner armor 5 is the third mass. Each mass performs 
horizontal oscillations along the x-axis along the generalized coordinates, respectively, and has its 
own inertial parameter.

The active mass is set in motion by the centrifugal force arising from the rotation of the unba-
lanced masses of the vibration exciter. The crusher is adjusted in such a way that during operation 
the first and third masses oscillate in phase, and the second in antiphase, that is, when one cham-
ber approaches in another, the jaw diverge.

All masses of the crusher are connected in pairs by elastic systems 2 and 5 (Fig. 2.7) with 
stiffnesses and. The vibration machine is isolated from the foundation by vibration dampers with 
stiffness on which the second mass rests. Resistance forces act in the system, but these forces 
can be neglected to simplify calculations.

The system of equations of motion for the model using the Lagrange equation of the second 
kind will take the form [5]:
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 (2.31)

where F0  – centrifugal force ( );F m r0 0 0
2= ω  r0  – eccentricity, distance from the center of gravity of 

the mass m0  to the center of the axis of rotation, m; ω  – angular speed of unbalance rotation, s−1;  
m m m1 2 3, ,  – the first, second and third mass of the crusher, kg; c c1 2,  – stiffness of the springs 
connecting the masses of the crusher; x x x1 2 3, and  – corresponding displacement of the masses 
of the crusher, mm; cf  – stiffness of the connections of the system connecting the machine to the 
foundation; Fcr  – crushing force formula, N; ξ  – relative compression of the material; Dmax – the 
maximum size of the crushed material, mm.
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The solution to the system of equations (2.30) and (2.31) is obtained in the form:
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where X X X1 2 3, ,  – amplitudes of mass displacement.
Substituting (2.32) into (2.18) and carrying out the appropriate transformations, let’s obtain 

the dependences for determining the values of the amplitudes of the displacement of the mas-
ses X X X1 2 3, , .  

The energy consumed by the electric motor is spent on the work on crushing the material, on 
the potential energy of deformation of the elastic system, on overcoming friction forces, on heat 
losses, on the deformation of the crusher parts and other losses. The greatest energy consumption 
during the operation of the crusher is spent on crushing the material, the kinetic energy of the 
crushing plates and the potential energy of deformation of the springs.
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Thus, the total energy consumed by the crusher for crushing the material will look like this:

E C Ptot = + ,  (2.34)

where С – kinetic energy of the system; P – potential energy of the system.
Part of the potential energy is spent on the destruction of the material. Knowing the general 

displacements arising in the material during its destruction and applying the condition of the mini-
mum potential energy of deformation, it is possible to write the following:
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Knowing the energy consumption for the destruction of the material, one can proceed to 
determining the energy consumption for the process as a whole.

Let’s consider two vibration-driven crushing systems shown in Fig. 2.8.
The vibration jaw crusher (Fig. 2.8, a) is made in the form of a three-mass resonance system, 

in which rectilinear vibrations are realized and the dynamics of which occurs according to a three-
mass scheme. The vibration exciter 1 with the base plate is the first or active mass, the movable 
body 5 is the second mass, the middle plate with the inner armor 4 is the third mass. All masses 
of the crusher are connected in pairs by elastic systems 2 and 3.

 Fig. 2.8 Design diagram of vibration crushers: a – vibration jaw crusher with  
three vibration masses; b – cone crusher with vibrators on the body

a b

Vibration cone crusher (Fig. 2.8, b) consists of vibration exciters 1 installed on a stationary 
cone 7 of the crusher. The fixed cone 7 is connected to the crusher body 4 through the adjusting  
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ring 6 and the elastic system 2. The crusher body 4 is installed on the foundation through the 
elastic system 3. The movable crusher cone is driven through the drive 5.

The energy consumed by the electric motors of the crushers (Fig. 2.8, a, b) is spent on the 
work on crushing the material. Additionally, energy costs are spent on deformation of the elastic 
system, overcoming friction forces, heat losses, deformation of crusher parts and other losses. 
However, the greatest energy consumption during the operation of crushers is spent on the kinetic 
energy of crushing plates and the potential energy of deformation of the springs [2].

Based on the general equation of energy consumption for a vibration jaw crusher with three 
vibration masses (2.32), the following equation was derived:
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where mn – respectively n-mass of the crusher, kg; с1, с2 – stiffness of the springs connecting the 
masses of the crusher; x1, x2 and x3 – corresponding displacements of the masses of the crusher, mm;  
сf – the stiffness of the connections of the system connecting the machine to the foundation.

When determining the total energy of a vibration cone crusher (Fig. 2.8, b), let’s assume that 
the movable cone is an absolutely rigid cylinder rolling on a solid undeformed body in the shape of 
an ellipse. In turn, let’s assume that the crusher body with vibrators is a solid body with mass mtot  
and moment of inertia I, which is fixed on a fixed base by springs with stiffness сis [1]:
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where T m v v Imc x y mc1
2 2 21 2 2= × + + ×( ) ( )ϕ  – kinetic energy of rolling a movable cone [4]; 

T m vsc sc2
21 2=  – kinetic energy of vibrations of a stationary cone; msc – the mass of the mov-

able cone; Іmc – central moment of inertia of the cone; х1, y1 – Cartesian coordinates of the center 
of the cone; j – angle of rotation of the movable cone around its own axis; msc – total mass  
of the statio nary cone; vsc – speed of vertical displacements of a fixed cone; сcr – material stiff-
ness coefficient; с1 – the stiffness coefficient of the elastic system connecting the stationary cone 
and the crusher body.

Sandstone with a strength limit of up to 20 MPa was taken as the model of the material of 
destruction. Based on the equations of motion of a vibration jaw crusher (2.31), the speeds of 
movement of the vibration masses of the crusher shown in Fig. 2.9.

Regarding Fig. 2.9, it should be noted that these speeds of mass fluctuations are valid at the 
frequency of the disturbing force f = 19 Hz and the total mass of the laboratory unit mtot = 334 kg.

Using the first part of equation (4) and the equations of motion of the masses of the vibration 
jaw crusher (2.31), graphs of the consumption of kinetic energy were built, which is spent on 
moving the vibration masses of the vibration crusher Fig. 2.10.
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 Fig. 2.9 Speeds of movement of masses of vibration jaw crusher:  
1 – first mass; 2 – second mass; 3 – third mass

 Fig. 2.10 Graph of changes in the kinetic energy of vibration masses of a vibration  
jaw crusher: a – first mass; b – second mass; c – third mass

a b

c

From the graphs in Fig. 2.10, it is clear that the total kinetic energy of the motion of the 
masses is within 120 J. However, equations (2.36) used to plot the graphs in Fig. 2.10 do not 
take into account the loss of dry and viscous friction force.

To construct graphs of potential energy consumption for the crushing process, let’s use equa-
tion (2.31).

The movement of vibration masses of the crusher, determined numerically based on the equa-
tion of motion, is shown in Fig. 2.11.
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 Fig. 2.11 Change in the amplitude of vibration masses of a vibration  
jaw crusher: 1 – first mass; 2 – second mass; 3 – third mass

From the graph in Fig. 2.11 it can be seen that the system setting is correct, that is, the sec-
ond and third masses oscillate in antiphase. The total amplitude of displacement of the second and 
third vibration masses is in the range of 8–10 mm. The minimum required value of the amplitude of 
vibration of the crushing plates of a vibration crusher, at which destruction occurs, is within 3–5 mm.

The graph of the total costs of potential energy for the destruction process in the crushing 
chamber of a vibration jaw crusher is shown in Fig. 2.11. This graph was constructed by numerous 
methods using equations (2.31) and (2.36).

The graphs in Fig. 2.10 and Fig. 2.12 indicate an insignificant expenditure of energy for the de-
struction process. It should be noted here that the system is tuned for resonant operation. That is, in 
the graphs in Fig. 2.10 and Fig. 2.12 does not reflect the energy consumption for the system to en-
ter the resonance mode and maintain its operation in this mode. In addition, it should be borne in mind 
that, in order to simplify, the equation of motion (2.31) does not take into account energy dissipation.

To assess the energy of destruction of a body containing a crack, graphs of the instantaneous 
force arising when the crushing plates of the second and third masses of the vibration crusher col-
lide with the material in Fig. 2.13. To construct this graph, equations (2.31) and (2.36) were used.

The given graph (Fig. 2.13) testifies to the adequacy of the calculation scheme to the accepted 
premises. So, the first mass moves in antiphase with the second mass. The third mass, accumulat-
ing energy, is an auxiliary source of energy transfer to the material crushing process.

 Fig. 2.12 Vibration jaw crusher potential energy graph
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 Fig. 2.13 The value of the instantaneous force when the vibration  
masses of the vibration jaw crusher move: 1 – first mass;  
2 – second mass; 3 – third mass

In equation (2.36), to determine the energy consumption of a vibration jaw crusher, the frac-
ture resistance of the material is considered as the added mass. That is, the indicator of the stiff-
ness of the material is the parameter that includes energy consumption at the micro level. In equa-
tion (2.37) for a vibration cone crusher, this parameter is directly the stiffness coefficient of the 
material. Thus, the obtained analytical dependences (2.36), (2.37) reveal the physical essence of 
the grinding process, take into account the conditions of interaction between the crusher and the 
material to be crushed. The practical application of the obtained dependences requires the nume-
rical values of the characteristics of a particular material, which is the subject of further research.

2.4 Determining the optimal characteristics of material grinding processes

Study of the influence of the stiffness index on the amplitude. When designing vibration ma-
chines, two modes are recognized as expedient: resonant (near resonance), with a frequency 
ratio ω ω0 0 85 0 95= …. . ; overresonant (only for centrifugal vibration exciters) with a significant 
distance from resonance, when ω ω0 7>  [12, 13].

The advantage of the resonant mode is to achieve a given amplitude with less forced force. 
The resonant mode is characterized by the stability of the amplitude in case of random changes in 
resistance and frequencies of natural and forced oscillations.

The operation of a vibration crusher in one of the listed modes is achieved by choosing elas-
tic links that provide a vibration frequency, which may differ from the frequency of the forcing 
vibrations. The stiffness of the system depends on two main parameters of mass and vibration 
frequency. By manipulating these parameters, it is possible to determine the optimal stiffness value 
for the corresponding mode.

To begin with, for given values of the masses of the system, let’s change the value of the 
frequency. It should be noted that the stiffness of the system should help to ensure an effective  



2 Research of processes of producing materials by technical power loading systems

33

grinding regime for the material. To determine the stiffness of the system, let’s use the following 
relationship [5]:

c n
m m

m mij
i j

i j

= ( )
+

ω0

2
, (2.38)

where ω  – natural angular frequency of oscillations (resonant frequency); n – coefficient of stiff-
ness regulation in frequency. Substituting the corresponding values of the stiffness calculated by 
the formula (2.38) into the equation of the amplitudes of the displacement of masses (2.37), 
let’s obtain the graphs of the dependence of the amplitude on the coefficient n (Fig. 2.14) for the 
corresponding frequency modes [6, 8].

 Fig. 2.14 Graph of the dependence of the amplitude on the coefficient n  
at the following frequency modes: a – ω0 = 104.67 rad/s; b – ω⋅ω0 = 314 rad/s

a

b

The following conclusion can be drawn from the graphs in Fig. 2.14. The rational value of the 
coefficient n is within 0 6 1. .≤ ≤n  With an increase in the value of the coefficient ( . ),1 2 5≤ <n  the 
effective range of the crusher narrows and shifts towards higher frequencies. Graphs Fig. 2.14 
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show that the stiffness of the elastic bonds of the crusher ensures its efficient operation in the 
resonance and near-resonance modes, namely, between the second and third resonances. With 
the value of the coefficient 0 6 1. ,≤ ≤n  the amplitudes of the masses have the greatest values and 
decrease as n approaches 1.4. With an increase in n>1, the change in the amplitude of the second 
mass is insignificant, and for n>1.4, the change in the amplitudes of the first and third masses 
is insignificant. The amplitude of the first mass reaches zero in the vicinity of the point n = 2.52.

Study of the effect of mass on the amplitude. Rationally selected ratios of vibration masses 
provide the required operating mode of the crusher (in-phase, anti-phase) and provide the required 
vibration amplitudes of these masses [13].

When choosing the ratio of mass m2 and m2, the value of the mass m1 is taken constructively, 
the value of the stiffness of the systems с1, с2 is taken taking into account formulas (2.31), (2.38). 
To introduce the mass ratio coefficient depending on the equations of motion (2.37), let’s use the 
following logical transformations [7]:

N m m k m m23 2 3 23 2 3= + =; .  (2.39)

Based on this:

m N k k m N k2 3= ( ) ( ) = ( )23 23 23 23 231+ 1+; .  (2.40)

On the basis of the above material, the graphs of the dependence of the amplitude on the 
mass ratio for different frequency spectra were plotted in Fig. 2.15. Analyzing the graphs in 
Fig. 2.15 the following can be noted. The effective value of the coefficient k23  for the resonant 
angular frequency ω0 104 667= . rad s is within the limits 0 2 523< ≤k . ,  for ω0 314= rad s – 
1 5 2 4523. .< ≤k  [14–18].

Analyzing each graph separately, Fig. 2.15, the following conclusions were made. At the re-
sonant frequency ω0 104 667= . ,rad s  the maximum value of the amplitude of the third mass is 
reached in the vicinity of the point k23 = 1 3. . And the maximum values of the amplitudes of the 
first and second masses are in the vicinity of the point k23 = 0 75. .  For the resonant frequency 
ω0 314= rad s, the maximum values of the amplitudes of all three masses are achieved under the 
condition of the point k23 lying in the vicinity k23 = 1 5. .

Let’s use the same approach to find the optimal ratio of masses m2  and m k1 21− .
Construction of the amplitude-frequency characteristics of the vibration jaw crusher. Knowing 

all the unknown parameters of the equations of motion, graphs of the dependence of the amplitude 
of displacement of the crushing plates on the frequency of change in the disturbing force were  
built (Fig. 2.16, 2.17) [3, 5].

Based on the graphs (Fig. 2.16, 2.17), the following conclusions were made:
– the effective mode of operation of the crusher is realized in the zone of the second resonance 

and in the range between the second and third resonances;
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– with an increase in the calculated value of the resonant frequency of wheel vibrations ω0  
(2.38), the range of effective operation of a three-mass vibration jaw crusher shifts towards  
an increase in frequency;

– the effective ranges of the crusher operation at the system stiffness values calculated at the 
corresponding resonant frequencies of natural vibrations ω0  (2.38) will be as follows:

100 <rad s rad sω < 180 ; ω0 104 667= . ;rad s

97 <rad s rad sω < 121 ;  186 <rad s rad sω < 234 ; 

ω0 314= rad s;  291 < rad s rad sω < 322 ; 365 <rad s rad sω < 400 .

 Fig. 2.15 Graphs of the dependences of the amplitude change on the mass  
ratio k23 at different frequency ranges: а – ω0 = 104.67 rad/s; b – ω0 = 314 rad/s

a

b

To ensure the operation of the crusher at the values of the stiffness of the system, calculated 
from the resonant frequency of natural vibrations of the ω0 104 67= .  rad/s (2.38), in the lower 
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frequency ranges, it is necessary to increase the masses of the vibration parts of the machine. 
The increased masses should not exceed the permissible limits, exceeding which will lead to the 
economic inexpediency of this machine design [3, 5].

 Fig. 2.16 Amplitude-frequency characteristic of a vibration jaw crusher  
at ω0 = 104.67 rad/s: a – crusher operation without material;  
b – crusher operation with material

a

b

The study of the effect of frequency on the operation of the crusher with changing parameters 
of the disturbing force and stiffness is presented in the form of vibrograms in Fig. 2.18, 2.19.

The range at which the experimental studies of the operation of the three-mass vibration jaw 
crusher were carried out covers three modes: pre-resonant, near-resonant and over-resonant.  
As the work of the crusher approaches resonance, the difference between the values of the theo-
retically calculated and experimentally determined amplitudes slightly increases, which is explained 
by not taking into account the theoretical calculations of dissipative resistances. When the crusher 
is operating at low frequencies up to f = 7 Hz, that is, before the first resonance, there is a fluctu-
ation of the masses in one phase. It follows from this that this mode is not effective.
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 Fig. 2.17 Amplitude-frequency characteristic of a vibration jaw crusher  
at ω0 = 314 rad/s: a – crusher operation without material;  
b – crusher operation with material

a

b

When the crusher is operating in the vicinity of a frequency of 12 Hz, there is almost no crush-
ing of the material. This can be explained by the fact that the vibrator does not create forces at  
a given frequency that could effectively destroy the material.

In the frequency range 14.5 Hz<f<26 Hz, the material is efficiently comminuted. The efficien-
cy of crushing is somewhat reduced when the crusher is operating in the vicinity of a frequency  
of 22 Hz. This can be explained by a decrease in the amplitude of oscillation of the second and third 
masses and a decrease in vertical oscillations of the crusher body, which increases the residence 
time of the material in the crushed chamber.

When studying the influence of the stiffness of the elastic systems of the crusher on the 
crushing process, the following features were established. As the stiffness of the system increa-
ses, the effective range of the crusher shifts towards an increase in the angular frequency. This is 
due to the shift of the resonance point towards an increase in the angular frequency of the crusher 
vibrations. This property can be used to create a crusher control system.
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 Fig. 2.18 Vibrograms of vibrations of the masses of the crusher  
when working with material (F = 4 111 N, c2 = 219 052 N/m):  
a – displacement of the second mass; b – displacement of the third mass

a

b

 Fig. 2.19 Vibrograms of vibrations of the crusher masses when  
working with material (F = 4 111 N, c2 = 234 438 N/m): a – displacement  
of the second mass; b – displacement of the third mass

a

b

However, too much increase or decrease in stiffness adversely affects the performance of 
the machine. So, with a stiffness N/m, in the frequency range, the second and third masses move 
in phase, and the first in antiphase. Thus, the operation of the crusher at low frequencies is not 
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efficient at a given stiffness. At very low stiffness, the efficiency of energy transfer from the vibrator 
to the third mass deteriorates, as evidenced by experimental data. The vibration amplitudes of the third 
mass, provided that N/m are insignificant. The features of the impact of stiffness are as follows. As 
stiffness increases, the crusher’s effective operating range shifts towards zero. If the stiffness is in-
creased too much, the three-mass system turns into a two-mass one. With a decrease in stiffness, the 
range of effective operation of the crusher narrows, and in conditions of too large a decrease in stiff-
ness, the system leaves the state of equilibrium, which has a negative effect on the crushing process.

2.5 Discussion of research results

An efficient crusher operation can be achieved by operating it in the vicinity of resonance,  
i.e. at a high value of the coefficient of resonant amplification of oscillations. However, this mode 
is sensitive to changes in external influences on the workflow. It is possible to reduce external 
influences by automatically adjusting the operating mode of the machine.

The control of the vibration machine is to ensure the optimal operating mode, in which the 
specified displacements, speeds and accelerations are achieved [6–8]. The set values of displace-
ments, speeds and accelerations of a vibration jaw crusher can be achieved both in pre-resonant 
and over-resonant operating modes.

The creation of a control system for the amplitude-frequency characteristic and taking into ac-
count the dependences of the moment of resistance on the frequency of the driving force underlies 
the method of regulating the working process of the crusher. This task can be achieved by correctly 
calculating the parameters of the three-mass vibration jaw crusher.

The second way to regulate the operating mode of a three-mass vibration crusher is to adap-
tively change the stiffness of the system. The third way to regulate the operating modes of the 
crusher is to change the vibration frequency.

On the basis of the above studies, algorithms were formulated for calculating the main para-
meters and controlling the working process of a vibration three-mass jaw crusher (Fig. 2.20, 2.21), 
respectively.

A physical model and a mathematical model of a vibration jaw crusher have been developed, 
taking into account the elastic – inertial properties, power and geometric characteristics of the 
«jaw – fractional material» system.

One of the main research tools were the amplitude – frequency characteristics of the system 
movement. The studies have established the regularities of the change in the elasticity coefficients de-
pending on the frequency, the coefficients that determine the rational ratios of the vibration masses.

The optimal values of the amplitude of the oscillations of the masses have the greatest values, 
provided that the coefficient of regulation of elasticity in frequency n is in the range of 0.6 ≤ n ≤ 1. 
Within the frequency range of 14.5 Hz<f<26 Hz, material is effectively crushed. The numerical 
values of the coefficient k23 are established, which determine the rational ratios of vibration masses.
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The studies carried out and their results indicate that the main stresses causing the destruction 
of the material are shear stress. With an increase in the size of the major semiaxis of the crack 
ellipse, the total stresses decrease, which indicates the destruction of the brittle body. However, 
the stresses σρ acting along the radius slightly increase. The graphs (Fig. 2.4) reflect the picture 
of the stress distribution in a spherical body relative to the point of application of the force along 
the angle j. The graph (Fig. 2.5) shows the change in normal stresses depending on the distance r. 
Analysis of the graph (Fig. 2.6) makes it possible to conclude that at r –> 0, the stresses increase 
indefinitely. As a result of this, the stresses and strains in the cracked body must be determined in 
the vicinity of the center of the body. In addition, it was found that the complete elliptical integral of 
the second kind has an insignificant effect on the change in the stress pattern in the body. It should be 
noted that when solving the problem using the Legendre functions, 15 constants appear in the stress 
equations, which together have a significant effect on the stress pattern in the body. These con-
stants were a numerous method based on the equations of the potential energy of a deformed body.

Equations (2.21), (2.23) and (2.30) fully reflect the picture of energy consumption for mate rial 
destruction. Such studies are planned as a continuation of the topic under consideration through 
experimental studies and consideration of several members of the series and optimization of the 
parameters of crushing machines. The proposed approach to studying the energy characteristics 
of material destruction in the crusher chamber with a guaranteed zone of stability of parameters 
in the resonance zone can be used for other processes. Such processes include the destruction of 
materials during dynamic cutting of soils, processing of materials in mills and sorting of materials, 
which are gaining widespread use in various European countries.

Conclusions to Section 2

1. A physical model and a mathematical model of a vibration jaw crusher have been developed.
2. The stress-strain state of the material in the process of its destruction for a continuous 

medium and surrounded by an existing crack has been investigated.
3. The efficiency of the crusher’s working process is proved by the practical achievement of its work 

in the vicinity of resonance. That is, at a high value of the resonant amplification factor of the oscillations.
4. It has been determined that the optimal values of the amplitude of the oscillations of the mas-

ses have the greatest values, provided that the coefficient of regulation of elasticity in frequency n is 
within 0.6 ≤ n ≤ 1. Within the frequency range of 14.5 Hz<f<26 Hz, material is effectively crushed.

5. The proposed approach to study the energy characteristics of material destruction in the cru-
sher chamber with the provision of a guaranteed zone of stability of parameters in the resonance zone.

6. The studies carried out and their results indicate that the main stresses that lead to the 
destruction of the material are shear stress.

7. Algorithms for calculating the parameters of a vibration three-mass crusher have been 
formulated.
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