DYNAMIC PROCESSES IN TECHNOLOGICAL TECHNICAL SYSTEMS

Authors

Ivan Nazarenko, Kyiv National University of Construction and Architecture; Oleg Dedov, Kyiv National University of Construction and Architecture ; Iryna Bernyk, Vinnytsia National Agrarian University; Andrii Bondarenko, Odessa State Academy of Civil Engineering and Architecture; Andrii Zapryvoda, Kyiv National University of Construction and Architecture ; Maxim Nazarenko, Limited Liability Company ACADEMBUDSERVICE; Ivan Pereginets, Kyiv National University of Construction and Architecture ; Yevhen Mishchuk, Kyiv National University of Construction and Architecture; Mykola Kyzminec, National Transport University; Serhii Oryshchenko, Kyiv National University of Construction and Architecture; Oleg Fedorenko, State Agency of Automobile Road of Ukraine; Sergii Tsepelev, State Agency of Automobile Road of Ukraine; Artur Onyshchenko, National Transport University; Liudmyla Titova, National University of Life and Environmental Sciences of Ukraine; Ivan Rogovskii, National University of Life and Environmental Sciences of Ukraine; Mykola Ruchynskyi, Kyiv National University of Construction and Architecture; Anatoly Svidersky, Kyiv National University of Construction and Architecture; Volodymyr Slipetskyi, Corporation "DSK – ZHITLOBUD"; Maksym Delembovskyi, Kyiv National University of Construction and Architecture; Igor Zalisko, Limited Liability Company "Drogobych Truck Crane Plant"; Mykola Nesterenko, National University "Yuri Kondratyuk Poltava Polytechnic"

Synopsis

The monograph is devoted to the study of dynamic processes in technical systems for various technological purposes. A new approach and methodology is proposed for a systemic, synergistic approach, taking into account the influence of energy fields of physical and mechanical effects, transformation and inversion of types of energy action. Models and equations of motion of discrete and continuous dynamic systems, dispersed media in the spectrum of their processing are considered. Changes in the parameters of subsystems are revealed: working mediums, mechanical systems, the processes of their interaction are investigated on the basis of taking into account their stress-strain state. The processes of grinding, sorting, mixing, compaction of materials and media are considered. The intensification of physical and mechanical processes, methods and means of their creation was achieved by the systematization and complexity of approaches due to the joint consideration of the mutual influence of the internal properties of subsystems. The processes of material processing by superresonant, subresonant and multi-mode parameters are investigated. Methods for determining effective parameters and modes of their operation are proposed. The processes of grinding, sorting, mixing, compaction of the processing medium in the field of vibration load are described. As a result of the research carried out, new properties of the behavior of discrete-continuous systems under power load conditions are revealed. For the first time, the stresses and deformations of both working bodies and media were taken into account to create energy-saving vibration systems for various technological processes. The carried out scientific research makes it possible to obtain the laws of change in the state of dispersed media under the action of power loads by technical systems, new technological and design solutions were proposed.

ISBN 978-617-7319-49-7 (on-line)
ISBN 978-617-7319-50-3 (print)

------------------------------------------------------------------------------------------------------------------

How to Cite: Nazarenko, I., Dedov, O., Bernyk, I., Bondarenko, A., Zapryvoda, A., Nazarenko, M. et. al.; Nazarenko, I. (Ed.) (2021). Dynamic processes in technological technical systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 196. doi: http://doi.org/10.15587/978-617-7319-49-7

------------------------------------------------------------------------------------------------------------------

Indexing:

b1.jpg  dimen_(1).png scilit  ouci.jpg Zenodo451.png openaire45.png imgonline-com-ua-resize-etf8w8xuwvh1.jpg arch  imgonline-com-ua-resize-2bgnuvtyy8h.jpg engpaper imgonline-com-ua-Resize-zpY9TwRGwS9w1.png imgonline-com-ua-Resize-8lhbZm409l.jpg publons.png

 

INTRODUCTION
by Ivan Nazarenko
https://doi.org/10.15587/978-617-7319-49-7.introduction

CHAPTER 1 Assessment of the current state of parameters and operating modes of technological technical systems
by Ivan Nazarenko, Oleg Dedov, Iryna Bernyk, Andrii Bondarenko, Andrii Zapryvoda, Maxim Nazarenko, Ivan Pereginets
https://doi.org/10.15587/978-617-7319-49-7.ch1

CHAPTER 2 Research of processes of producing materials by technical power loading systems
by Ivan Nazarenko, Yevhen Mishchuk, Mykola Kyzminec, Serhii Oryshchenko, Oleg Fedorenko, Sergii Tsepelev
https://doi.org/10.15587/978-617-7319-49-7.ch2

CHAPTER 3 Research of technical systems of materials sorting processes
by Ivan Nazarenko, Artur Onyshchenko, Serhii Oryshchenko, Oleg Fedorenko, Sergii Tsepelev, Liudmyla Titova
https://doi.org/10.15587/978-617-7319-49-7.ch3

CHAPTER 4 Research of technical systems of processes of mixing materials
by Ivan Nazarenko, Iryna Bernyk, Oleg Dedov, Ivan Rogovskii, Mykola Ruchynskyi, Ivan Pereginets, Liudmyla Titova
https://doi.org/10.15587/978-617-7319-49-7.ch4

CHAPTER 5 Study of technical systems of materials compaction process
by Ivan Nazarenko, Oleg Dedov, Andrii Bondarenko, Andrii Zapryvoda, Mykola Kyzminec, Maxim Nazarenko, Mykola Ruchynskyi, Anatoly Svidersky, Volodymyr Slipetskyi
https://doi.org/10.15587/978-617-7319-49-7.ch5

CHAPTER 6 Research of the processes of acoustic cavitation technology for processing dispersed media
by Ivan Nazarenko, Iryna Bernyk
https://doi.org/10.15587/978-617-7319-49-7.ch6

CHAPTER 7 Study of reliability of technical systems reliability
by Ivan Nazarenko, Maksym Delembovskyi, Oleg Dedov, Artur Onyshchenko, Ivan Rogovskii, Maxim Nazarenko, Igor Zalisko
https://doi.org/10.15587/978-617-7319-49-7.ch7

CHAPTER 8 Research of stress-strain state of elements of technological technical constructions
by Ivan Nazarenko, Oleg Dedov, Maksym Delembovskyi, Yevhen Mishchuk, Mykola Nesterenko, Igor Zalisko, Volodymyr Slipetskyi
https://doi.org/10.15587/978-617-7319-49-7.ch8

Author Biographies

Ivan Nazarenko, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Head of Department
Department of Machinery and Equipment of Technological Processes
ID ORCIDhttps://orcid.org/0000-0002-1888-3687
Corresponding author:
Mail to ii_nazar@ukr.net

Oleg Dedov, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Associate Professor
Department of Machinery and Equipment of Technological Processes
ID ORCIDhttp://orcid.org/0000-0001-5006-772X

Iryna Bernyk, Vinnytsia National Agrarian University

Doctor of Technical Sciences, Associate Professor
Department of Food Technology and Microbiology
ID ORCIDhttp://orcid.org/0000-0002-1367-3058

Andrii Bondarenko, Odessa State Academy of Civil Engineering and Architecture

PhD, Associate Professor, Head of Department
Department of Mechanical Engineering
ID ORCIDhttp://orcid.org/0000-0002-4594-6399

Andrii Zapryvoda, Kyiv National University of Construction and Architecture

PhD, Associate Professor
Department of Architectural Constructions
ID ORCIDhttp://orcid.org/0000-0001-9171-9325

Maxim Nazarenko, Limited Liability Company ACADEMBUDSERVICE
Ivan Pereginets, Kyiv National University of Construction and Architecture

PhD, Associate Professor
Department of Machines and Equipment of Technological Processes
ID ORCIDhttps://orcid.org/0000-0003-3812-6509

Yevhen Mishchuk, Kyiv National University of Construction and Architecture

PhD, Associate Professor
Department of Machines and Equipment of Technological Processes
ID ORCIDhttps://orcid.org/0000-0002-7850-0975

Mykola Kyzminec, National Transport University

Doctor of Technical Sciences, Professor
Department of Computer, Engineering Graphics and Design
ID ORCIDhttps://orcid.org/0000-0002-9636-919X

Serhii Oryshchenko, Kyiv National University of Construction and Architecture

PhD, Associate Professor
Department of Machines and Equipment of Technological Processes
ID ORCIDhttps://orcid.org/0000-0002-5359-5285

Oleg Fedorenko, State Agency of Automobile Road of Ukraine

Head of Department
Department of Road Maintenance
ID ORCIDhttps://orcid.org/0000-0003-3628-4298

Sergii Tsepelev, State Agency of Automobile Road of Ukraine

Director of Department
Department of Road Network Development
ID ORCIDhttps://orcid.org/0000-0001-7232-4651

Artur Onyshchenko, National Transport University

Doctor of Technical Sciences, Professor
Department of Bridges, Tunnels and Hydraulic Structures
ID ORCIDhttp://orcid.org/0000-0002-1040-4530

Liudmyla Titova, National University of Life and Environmental Sciences of Ukraine

PhD, Associate Professor
Department of Technical Service and Engineering Management named after M. P. Momotenko
ID ORCIDhttp://orcid.org/0000-0001-7313-1253

Ivan Rogovskii, National University of Life and Environmental Sciences of Ukraine

Doctor of Technical Sciences, Senior Researcher
Department of Technical Service and Engineering Management named after M. P. Momotenko
ID ORCIDhttp://orcid.org/0000-0002-6957-1616

Mykola Ruchynskyi, Kyiv National University of Construction and Architecture

PhD, Professor
Department of Machinery and Equipment of Technological Processes
ID ORCIDhttps://orcid.org/0000-0002-9362-292X

Anatoly Svidersky, Kyiv National University of Construction and Architecture

PhD, Professor
Department of Machinery and Equipment of Technological Processes
ID ORCIDhttps://orcid.org/0000-0002-0005-7969

Volodymyr Slipetskyi, Corporation "DSK – ZHITLOBUD"

Deputy Director
Department of Procurement and Contract Policy
ID ORCIDhttps://orcid.org/0000-0002-9539-6022

Maksym Delembovskyi, Kyiv National University of Construction and Architecture

PhD, Associate Professor
Department of Machines and Equipment Processes
ID ORCIDhttps://orcid.org/0000-0002-6543-0701

Igor Zalisko, Limited Liability Company "Drogobych Truck Crane Plant"

PhD, Associate Professor
ID ORCIDhttps://orcid.org/0000-0002-8353-9524

Mykola Nesterenko, National University "Yuri Kondratyuk Poltava Polytechnic"

PhD, Associate Professor
Department of Construction Machinery and Equipment
ID ORCIDhttps://orcid.org/0000-0002-4073-1233

References

Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2017). Investigation of vibration machine movement with a multimode oscillation spectrum. Eastern-European Journal of Enterprise Technologies, 6 (1 (90)), 28–36. doi: http://doi.org/10.15587/1729-4061.2017.118731

Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2018). Determination of stresses and strains in the shaping structure under spatial load. Eastern-European Journal of Enterprise Technologies, 6 (7 (96)), 13–18. doi: http://doi.org/10.15587/1729-4061.2018.147195

Nazarenko, I. I., Harnets, V. M., Sviderskyi, A. T., Pentiuk, B. M. (2009). Systemnyi analiz tekhnichnykh obiektiv. Kyiv: KNUBA, 164.

Mishchuk, Y., Nazarenko, I., Mishchuk, D. (2021). Definition of rational operating modes of a vibratory jaw crusher. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 56–62. doi: http://doi.org/10.33271/nvngu/2021-4/056

Nazarenko, I., Mishchuk, Y., Mishchuk, D., Ruchynskyi, M., Rogovskii, I., Mikhailova, L. et. al. (2021). Determiantion of energy characteristics of material destruction in the crushing chamber of the vibration crusher. Eastern-European Journal of Enterprise Technologies, 4 (7 (112)), 41–49. doi: http://doi.org/10.15587/1729-4061.2021.239292

Nazarenko, I. I., Oryshchenko, S. V. (2009). Modeliuvannia protsesu rukhu materialu po hrokhotu. Tekhnika budivnytstva. Naukovo-tekhnichnyi zhurnal, 22, 81–84.

Ruchynskyi, M. M., Svyrydiuk, D. Ya. (2013). Doslidzhennia kolyvan vibratsiinoho betonozmishuvacha z urakhuvanniam vplyvu peremishchuvanoho materialu. Tekhnika budivnytstva. Naukovo-tekhnichnyi zhurnal, 31, 35–42.

Nazarenko, I., Ruchynskyi, M., Delembovskyi, M. (2018). The Basic Parameters of Vibration Settings for Sealing Horizontal Surfaces. International Journal of Engineering & Technology, 7 (3.2), 255–259. doi: http://doi.org/10.14419/ijet.v7i3.2.14415

Bernyk, I., Luhovskyi, O., Nazarenko, I. (2018). Effect of rheological properties of materials on their treatment with ultrasonic cavitation. Materiali in Tehnologije, 52 (4), 465–468. doi: http://doi.org/10.17222/mit.2017.021

Nesterenko, M., Nazarenko, I., Molchanov, P. (2018). Cassette Installation with Active Working Body in the Separating Partition. International Journal of Engineering & Technology, 7 (3.2), 265–268. doi: http://doi.org/10.14419/ijet.v7i3.2.14417

Nazarenko, I. I., Ruchynskyi, M. M., Sviderskyi, A. T., Kobylanska, I. M., Harasim, D., Kalizhanova, A., Kozbakova, A. (2019). Development of energy-efficient vibration machines for the buiding-and-contruction industry. Przeglad Elektrotechniczny, 95 (4), 53–59. doi: http://doi.org/10.15199/48.2019.04.10

Bernyk, I., Luhovskyi, O., Wojcik, W., Shedreyeva, I., Karnakova, G. (2019). Theoretical Investigations of the Interaction of Acoustic Apparatus with Technological Environment Working Process. Przeglad Elektrotechniczny, 1 (4), 32–37. doi: http://doi.org/10.15199/48.2019.04.06

Luhovskyi, O., Bernyk, I., Gryshko, I., Abdulina, D., Zilinskyi, A.; Stryczek, J., Warzyńska, U. (Eds.) (2021). Mobile Equipment for Ultrasonic Cavitation Inactivation of Microorganisms in the Liquid Environment. NSHP 2020. Lecture Notes in Mechanical Engineering. Cham: Springer, 272–281. doi: http://doi.org/10.1007/978-3-030-59509-8_24

Babič, M., Calì, M., Nazarenko, I., Fragassa, C., Ekinovic, S., Mihaliková, M. et. al. (2018). Surface roughness evaluation in hardened materials by pattern recognition using network theory. International Journal on Interactive Design and Manufacturing, 13 (1), 211–219. doi: http://doi.org/10.1007/s12008-018-0507-3

Nesterenko, M. P., Molchanov, P. O., Savyk, V. M., Nesterenko, M. M. (2019). Vibration platform for forming large-sized reinforced concrete products. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 74–78. doi: http://doi.org/10.29202/nvngu/2019-5/8

Nesterenko, M., Nesterenko, T., Skliarenko, T. (2018). Theoretical Studies of Stresses in a Layer of a Light-Concrete Mixture, Which is Compacted on the Shock-Vibration Machine. International Journal of Engineering & Technology, 7 (3.2), 419–424. doi: http://doi.org/10.14419/ijet.v7i3.2.14564

Dmitrenko, A., Lebedyk, G., Nesterenko, M. (2018). Product Cost Calculation Methods in Construction. International Journal of Engineering & Technology, 7 (3.2), 6–11. doi: http://doi.org/10.14419/ijet.v7i3.2.14367

Nazarenko, I., Dedov, O., Bernyk, I., Rogovskii, I., Bondarenko, A., Zapryvoda, A. et. al. (2020). Determining the regions of stability in the motion regimes and parameters of vibratory machines for different technological purposes. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 71–79. doi: http://doi.org/10.15587/1729-4061.2020.217747

Nazarenko, I., Svidersky, A., Kostenyuk, A., Dedov, O., Kyzminec, N., Slipetskyi, V. (2020). Determination of the workflow of energy-saving vibration unit with polyphase spectrum of vibrations. Eastern-European Journal of Enterprise Technologies, 1 (7 (103)), 43–49. doi: http://doi.org/10.15587/1729-4061.0.184632

Nazarenko, I., Gavryukov, O., Klyon, A., Ruchynsky, N. (2018). Determination of the optimal parameters of a tubular belt conveyor depending on such an economical. Eastern-European Journal of Enterprise Technologies, 3 (1 (93)), 34–42. doi: http://doi.org/10.15587/1729-4061.2018.131552

Baladinskyi, V. L., Nazarenko, I. I., Onyshchenko, O. H. (2002). Budivelna tekhnika. Kyiv – Poltava: KNUBA-PNTU, 463.

Nazarenko, I. I. (2010). Prykladni zadachi teorii vibratsiinykh system. Kyiv: Vydavnychyi Dim «Slovo», 440.

Nazarenko, I., Mishchuk, E., Kuchinsky, V. (2019). Assessment and analysis of basic design the cone crushers. Gіrnichі, budіvelnі, dorozhnі ta melіorativnі mashini, 94, 5–15. Available at: http://gbdmm.knuba.edu.ua/article/view/216440

Lapin, R., Kuzkin, V. (2019). Calculation of the normal and shear compliances of a three-dimensional crack taking into account the contact between the crack surfaces. Letters on Materials, 9 (2), 234–238. doi: http://doi.org/10.22226/2410-3535-2019-2-234-238

Zou, J., Han, J., Yang, W. (2020). Investigating the Influences of Indentation Hardness and Brittleness of Rock-Like Material on Its Mechanical Crushing Behaviors. Mathematical Problems in Engineering, 2020. doi: http://doi.org/10.1155/2020/4713532

Vasiliev, L. M., Vasiliev, D. L., Malich, M. G. (2021). Modeling the process of disintegration of solid materials by asymmetric loading in crushing machines in order to find ways to reduce energy costs. Energy- and resource-saving technologies of developing the raw-material base of mining regions. Petroșani: UNIVERSITAS Publishing, 457–473. doi: http://doi.org/10.31713/m1028

Hong, S. J., Yang, H. J. (2019). A Study on the Impact Load Quantification of the Jaw Crusher. Journal of Drive and Control, 16 (2), 1–7. doi: https://doi.org/10.7839/KSFC.2019.16.2.001

Blokhin, V. S., Bolshakov, V. I., Malich, N. G. (2006). Osnovnye parametry tekhnologicheskikh mashin. Mashiny dlia dezintegratsii tverdykh materialov. Part. І. Dnepropetrovsk: IMA-press, 404.

Vaisberg, L. A., Zarogatskii, L. P., Turkin, V. Ia. (2004). Vibratsionnye drobilki. Osnovy rascheta, proektirovaniia i tekhnologicheskogo primeneniia. Saint Petersburg: Izd-vo VSEGEI, 306.

Blekhman, I. I., Dzhanelidze, G. Iu. (1964). Vibratsionnoe peremeschenie. Moscow: Nauka, 412.

Vaisberg, L. A. (1986). Proektirovanie i raschety vibratsionnykh grokhotov. Moscow: Nedra, 144.

Venttsel, E. S., Ovcharov, L. A. (2000). Teoriia veroiatnosti i ee inzhenernye prilozheniia. Moscow: Vysshaia shkola, 480.

Nadutyi, V. P., Kalinichenko, V. V. (2004). Vibratsionnoe grokhochenie gornoi masy povyshenoi vlazhnosti. Dnepropetrovsk: NGU Ukrainy, 135.

Nazarenko, I. I. (1999). Mashyny dlia vyrobnytstva budivelnykh materialiv. Kyiv: KNUBA, 488.

Oryshchenko, S. V. (2010). Teoretychni doslidzhennia ta vyznachennia osnovnykh etapiv rukhu vibratsiinoho hrokhota. Tekhnika budivnytstva, 24, 44–47.

Oryshchenko, S. V. (2009). Eksperymentalni doslidzhennia robochykh parametriv vibratsiinoho hrokhota. Tekhnika budivnytstva, 23, 88–91.

Nazarenko, I. I., Tumanska, O. V. (2004). Mashyny i ustatkuvannia pidpryiemstv budivelnykh materialiv. Konstruktsii ta osnovy ekspluatatsii. Kyiv: Vyshcha shkola, 590.

Emelianova, I. A., Dobrokhodova, O. V., Anischenko, A. I. (2010). Sovremennye stroitelnye smesi i oborudovanie dlia ikh prigotovleniia. Kharkiv: Timchenko, 146.

Bogomolov, A. A. (2010). Teoreticheskie i tekhnicheskie osnovy sovershenstvovaniia smesitelnykh mashin dlia prigotovleniia stroitelnykh smesei. Belgorod: Iz-vo BGTU, 151.

Maslov, A. G., Ponomar, V. M. (1985). Vibratsionnye mashiny i protsessy v dorozhnom stroitelstve. Kyiv: Budіvelnik, 128.

Nazarenko, I. I. (2007). Vibratsiini mashyny i protsesy budivelnoi industrii. Kyiv: KNUBA, 230.

Klets, D., Gritsuk, I. V., Makovetskyi, A., Bulgakov, N., Podrigalo, M., Kyrychenko, I. et. al. (2018). Information Security Risk Management of Vehicles. SAE Technical Paper Series. doi: http://doi.org/10.4271/2018-01-0015

Dubovenko, Y. I., Kuzminets, M. P. (2017). The experience of integrating of GIS techniques in the construction of digital maps of geophysical fields. 16th International Conference on Geoinformatics – Theoretical and Applied Aspects. doi: http://doi.org/10.3997/2214-4609.201701851

Dubovenko, Y. I., Shumlianska, L. A., Kuzminets, M. P. (2020). Seismic velocity gradient stratification of the mantle at Ukrainian Shield. Geoinformatics: Theoretical and Applied Aspects 2020. doi: http://doi.org/10.3997/2214-4609.2020geo063

Dubovenko, Y. I., Chorna, O. A., Kuzminets, M. P. (2020). Modeling of the potential fields transformants for the ring structure Illinetska. Geoinformatics: Theoretical and Applied Aspects 2020. doi: http://doi.org/10.3997/2214-4609.2020geo062

Nazirova, A. B., Dubovenko, Y. I., Abdoldina, F. N., Kuzminets, M. P. (2021). Optimization of GIS modules for processing data of gravity monitoring of subsoil in the Republic of Kazakhstan. Geoinformatics. doi: http://doi.org/10.3997/2214-4609.20215521136

Onishchenko, A., Koretskyi, A., Bashkevych, I., Ostroverkh, B., Bieliatynskyi, A. (2020). Dam Failure Model and Its Influence on the Bridge Construction. Advances in Intelligent Systems and Computing, 229–237. doi: http://doi.org/10.1007/978-3-030-57450-5_21

Onishchenko, A., Lapchenko, A., Fedorenko, O., Bieliatynskyi, A. (2020). Research of the Properties of Bitumen Modified by Polymer Latex. Advances in Intelligent Systems and Computing, 104–116. doi: http://doi.org/10.1007/978-3-030-57450-5_10

Kovalchuk, V., Kravets, I., Nabochenko, O., Onyshchenko, A., Fedorenko, O., Pentsak, A. et. al. (2021). Devising a procedure for assessing the subgrade compaction degree based on the propagation rate of elastic waves. Eastern-European Journal of Enterprise Technologies, 1 (5 (109)), 6–15. doi: http://doi.org/10.15587/1729-4061.2021.225520

Luchko, J., Kovalchuk, V., Kravets, I., Gajda, O., Onyshchenko, A. (2020). Determining patterns in the stressed­deformed state of the railroad track subgrade reinforced with tubular drains. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 6–13. doi: http://doi.org/10.15587/1729-4061.2020.213525

Lantukh-Lyashchenko, A., Onishchenko, A., Davydenko, O. (2020). Problem of the degradation criteria for transportation construction elements. E3S Web of Conferences, 164, 03014. doi: http://doi.org/10.1051/e3sconf/202016403014

Kaletnik, H., Sevostianov, I., Bulgakov, V., Holovach, I., Melnik, V., Ihnatiev, Ye., Olt, J. (2020). Development and examination of high-performance fluidised-bed vibration drier for processing food production waste. Agronomy Research, 18 (4), 2391–2409. doi: http://doi.org/10.15159/ar.20.234

Bulgakov, V., Sevostianov, I., Kaletnik, G., Babyn, I., Ivanovs, S., Holovach, I., Ihnatiev, Y. (2020). Theoretical Studies of the Vibration Process of the Dryer for Waste of Food. Rural Sustainability Research, 44 (339), 32–45. doi: http://doi.org/10.2478/plua-2020-0015

Kaletnik, G., Tsurkan, O., Rimar, T., Stanislavchuk, O. (2020). Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies, 1 (8 (103)), 50–57. doi: http://doi.org/10.15587/1729-4061.2020.195203

Bernyk, I. M. (2011). Osnovni zasady proektuvannia mashyn i obladnannia pererobnykh vyrobnytstv. Teoriia i praktyka budivnytstva, 8, 6–9.

Vitenko, T. M. (2009). Hidrodynamichna kavitatsiia u masoobminnykh, khimichnykh i biolohichnykh protsesakh. Ternopil: Vydavnytstvo TDTU im. I Puliuia, 224.

Khmelev, V. N., Slivin, A. N., Barsukov, R. V., Tsyganok, S. N., Shalunov, A. V. (2010). Primenenie ultrazvuka vysokoi intensivnosti v promyshlennosti. Biisk: Izd-vo Alt. gos. tekhn. un-ta, 203.

Luhovskyi, O. F., Bernyk, I. M. (2014). Vstanovlennia osnovnykh parametriv vplyvu tekhnolohichnoho seredovyshcha na robochyi protses ultrazvukovoi kavitatsiinoi obrobky. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (75), 121–126.

Bernyk, I. M. (2015). Enerhetyka kavitatsiinoi obrobky tekhnolohichnoho seredovyshcha. Naukovi pratsi ONAKhT, 1 (47), 123–129.

Luhovskaia, E. A., Yakhno, O. M., Bernyk, Y. N. (2012). Model of Technological Process of Ultrasonic Clearing of Elastic Surfaces Management. Naukovi pratsi Don NTU. Seriia: Hirnycho-elektromekhanichna, 23 (196), 154–166.

Luhovskyi, O. F., Gryshko, I. A., Bernyk, I. M. (2018). Enhancing the Efficiency of Ultrasonic Wastewater Disinfection Technology. Journal of Water Chemistry and Technology, 40 (2), 95–101. doi: http://doi.org/10.3103/s1063455x18020078

Bernyk, I., Luhovskyi, O., Nazarenko, I. (2016). Research staff process of interaction and technological environment in developed cavitation. Journal of Mechanical Engineering the National Technical University of Ukraine “Kyiv Polytechnic Institute”, 1 (76), 12–19. doi: http://doi.org/10.20535/2305-9001.2016.76.39735

Bernyk, I. M. (2013). Intensification of technological processes of treatment of food environments. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (71), 109–115.

Bernyk, I. M. (2014). Doslidzhennia parametriv kavitatsiinoho protsesu obrobky tekhnolohichnykh seredovyshch. Naukovo-tekhnichnyi zhurnal Tekhnika budivnytstva, 33, 21–26.

Bernyk, I. M. (2018). Investigation of the viscosity of dispersed media under conditions of their intensive processing. Tekhnika, enerhetyka, transport APK, 1 (100), 62–67.

Ohirko, O. I., Halaiko, N. V. (2017). Teoriia ymovirnostei ta matematychna statystyka. Lviv: LvDUVS, 292.

Sirotiuk, M. G., Gavrilov, L. R. (2008). Akusticheskaia kavitatsiia. Moscow: Nauka, 271.

Goliamina, I. P. (Ed.) (1979). Ultrazvuk. Malenkaia entsiklopediia. Moscow: Sovetskaia entsiklopediia, 400.

Nazarenko, I. I., Sviderskyi, A. T., Delembovskyi, M. M. (2013). Doslidzhennia nadiinosti kardannykh valiv vibromashyn budivelnoi industrii. Vibratsii v tekhnitsi ta tekhnolohiiakh. VNAU, 3 (71), 72–77.

Delembovskyi, M., Klymenko, M., Korniichuk, B. (2020). Doslidzhennia na osnovi nechitkoi lohiky modeli vyiavlennia vidmov vibroploshchadok. Zbirnyk naukovykh prats ΛΌHOΣ, 111–112. doi: https://doi.org/10.36074/25.12.2020.v1.38

Delembovskyi, M., Klymenko, M. (2020). Metody pidvyshchennia nadiinosti ta efektyvnosti vibratsiinykh mashyn budivelnoi industrii. ICSR Conference Proceedings, 48–49. doi: http://doi.org/10.36074/23.10.2020.v1.04

Delembovskyi, M., Klymenko, M. (2020). Zabezpechennia nadiinosti vibratsiinykh maidanchykiv budivelnoi industrii z urakhuvanniam metodiv analizu. Zbirnyk naukovykh prats ΛΌHOΣ, 26–28. doi: http://doi.org/10.36074/09.10.2020.v2.06

Delembovskyi, M., Terentiev, O., Shabala, Ye. (2020). Echnology of implementation of the matlab environment in the investigation model of information security threatS. ΛΌHOΣ mystetstvo naukovoi dumky. doi: http://doi.org/10.36074/2663-4139.15.08

Delembovskyi, M., Klymenko, M., Korniichuk, B. (2020). Rozrobka modeli otsinky nadiinosti vibroploshchadky na osnovi nechitkoi lohiky. Zbirnyk naukovykh prats ΛΌHOΣ, 98–102. doi: http://doi.org/10.36074/11.12.2020.v2.28

Nazarenko, I., Sviderskii, A. T., Delembovskii, M. M. (2015). Issledovanie nadezhnosti vibromashin stroitelnoi industrii. Mekhanizatsiia stroitelstva, 3, 44–49.

Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: http://doi.org/10.1615/jautomatinfscien.v44.i7.40

Domin, D. (2013). Artificial orthogonalization in searching of optimal control of technological processes under uncertainty conditions. Eastern-European Journal of Enterprise Technologies, 5 (9 (65)), 45–53. doi: http://doi.org/10.15587/1729-4061.2013.18452

Rogovskii, I. L., Delembovskyi, M. M., Voinash, S. A., Scherbakov, A. P., Teterina, I. A., Sokolova, V. A. (2021). Reliability indexes of vibrating platforms for compaction of construction mixtures. IOP Conference Series: Materials Science and Engineering, 1047 (1), 012026. doi: http://doi.org/10.1088/1757-899x/1047/1/012026

Kovalchuk, V., Onyshchenko, A., Fedorenko, O., Habrel, M., Parneta, B., Voznyak, O. et. al. (2021). A comprehensive procedure for estimating the stressed-strained state of a reinforced concrete bridge under the action of variable environmental temperatures. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 23–30. doi: http://doi.org/10.15587/1729-4061.2021.228960

Petrov, A. A. (2002). Teoriia i proektirovanie vibratsionnykh mashin impulsnogo i rezonansnogo deistviia. Khmelnitskii: Tekhnologicheskii un-t Podolіia, 182.

Bazhenov, V. A., Dashchenko, A. F., Orobei, V. F., Surianov, N. H. (2004). Chyselnie metodi v mekhanyke. Odessa: Draft, 564.

Bathe, K. J. (1996). Finite Element Procedures. New-York: Prentice Hall, 1037.

Lanets, O., Derevenko, I., Borovets, V., Kovtonyuk, M., Komada, P., Mussabekov, K., Yeraliyeva, B. (2019). Substantiation of consolidated inertial parameters of vibrating bunker feeder. Przeglad Elektrotechniczny, 95 (4), 47–52. doi: http://doi.org/10.15199/48.2019.04.09

Gursky, V., Kuzio, I., Lanets, O., Kisała, P., Tolegenova, A., Syzdykpayeva, A. (2019). Implementation of dual-frequency resonant vibratory machines with pulsed electromagnetic drive. Przegląd Elektrotechniczny, 95 (4), 43–48. doi: http://doi.org/10.15199/48.2019.04.08

Nazarenko, I. I., Nesterenko, T. M., Nesterenko, M. M., Marchenko, I. A. (2020). Kompiuterne modeliuvannia elementiv vibratsiinykh mashyn. Kompiuterna matematyka v nautsi, inzhenerii ta osviti (CMSEE-2020), 36–38.

Nazarenko, I. I., Smirnov, V. M., Fomin, A. V., Sviderskyi, A. T., Kosteniuk, O. O., Diedov, O. P., Zukhba, A. H.; Nazarenko, I. I. (Ed.) (2010). Osnovy teorii vzaiemodii robochykh orhaniv budivelnykh mashyn iz napruzheno-deformovanym seredovyshchem. Kyiv: «MP Lesia», 216.

Nesterenko, M. M., Nesterenko, T. M., Mahas, N. M. (2017). Method of calculation of shock-vibrating machinefor manufacturing products from light concrete for energy efficient reconstruction buildings in Ukraine. Naukovyi visnyk budivnytstva, 88 (2), 178–182.

Nazarenko, I. I., Dedov, O. P., Sviderski, A. T., Ruchinski, N. N. (2017). Research of energy-saving vibration machines with account of the stress-strain state of technological environment. The IX International Conference HEAVY MACHINERY HM 2017, 21–24.

Cover for DYNAMIC PROCESSES IN TECHNOLOGICAL TECHNICAL SYSTEMS
Published
December 29, 2021

Details about the available publication format: PDF

PDF
ISBN-13 (15)
978-617-7319-49-7

Details about the available publication format: Hardcover

Hardcover
ISBN-13 (15)
978-617-7319-50-3