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Intelligent methods for evaluating the state of 
hierarchical systems

abstract

This section of the study proposes intelligent methods for assessing the state of hierarchi-
cal systems. 

During the research, the authors:
– conducted an analysis of knowledge representation models, substantiating the advantages 

of using production knowledge representation in expert systems. The study outlines key concepts 
of fuzzy expert systems and formulates a formal task for accelerating decision-making in the rule 
base of a fuzzy expert system;

– developed a methodology for assessment and prediction using fuzzy cognitive maps.
The novelty of the proposed methodology lies in:
– considering a corrective coefficient for the degree of uncertainty regarding the state of the object;
– adding a corrective coefficient for data noise resulting from distortions in object state information;
– reducing computational costs when evaluating object states;
– creating a multilevel and interconnected description of hierarchical objects;
– adjusting the object description due to changes in its current state using a genetic algorithm;
– enabling calculations with input data of different natures and measurement units. 
The research includes the development of a visualization method for hierarchical system states. 

The novelty of this method lies in:
– creating a visual, multilevel, and interconnected description of the hierarchical system;
– enhancing decision-making efficiency in assessing the hierarchical system's state;
– addressing the issue of global and local extrema when evaluating the state of hierarchical systems;
– combining graphical and numerical representations of the monitored parameters of the hierar-

chical system's state;
– avoiding loop formation during real-time visualization of hierarchical system states. 
The study also develops a method for evaluating complex hierarchical systems based on an 

improved particle swarm optimization (PSO). This evaluation method combines PSO with coordinate 
averaging and its modification by employing multiple particle swarms and integrating the Hooke-
Jeeves procedure and appropriate corrective coefficients. 
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The novelty of this method lies in:
– creating a multilevel and interconnected description of real-time complex hierarchical systems;
– enhancing decision-making efficiency for real-time hierarchical systems assessment;
– resolving global and local extrema issues during real-time hierarchical system state evaluation;
– enabling directed searches by multiple swarm particles in a specific direction;
– considering the degree of uncertainty;
– allowing for repeated analysis of complex real-time hierarchical systems.

KEYWORDS

Artificial intelligence, heterogeneous data processing, hierarchical systems, reliability, efficiency.

Optimization is a complex process of determining a set of solutions for various functions. Many 
computational tasks today belong to the domain of optimization problems [1–3]. When solving 
optimization problems, decision variables are defined to ensure that a hierarchical system operates 
at its optimal point (or mode) based on a specific optimization criterion. 

Optimization problems in hierarchical systems are often discontinuous, non-differentiable, and 
multimodal. Therefore, classical gradient-based deterministic algorithms [4–6] are not suitable for 
addressing the optimization tasks of organizational and technical systems.

To overcome the limitations of classical optimization algorithms in solving hierarchical system 
optimization problems, a significant number of stochastic optimization algorithms, known as meta-
heuristic algorithms, have been developed [7–11]. 

One type of stochastic optimization algorithm for hierarchical systems is swarm intelligence 
algorithms (swarm-based algorithms). These algorithms are based on the movement of a swarm 
and simulate its interaction with the environment to improve knowledge about the surroundings, 
such as discovering new food sources. The most well-known swarm algorithms include Particle 
Swarm Optimization (PSO), Artificial Bee Colony Optimization, Ant Colony Optimization, Wolf Pack 
Optimization, and Sparrow Search Algorithm [12–18]. 

Unfortunately, most of the aforementioned basic metaheuristic algorithms fail to balance ex-
ploration and exploitation, leading to unsatisfactory performance in solving real-world complex 
optimization problems [19–38]. 

This has motivated the development of various strategies to enhance the convergence speed 
and accuracy of basic metaheuristic algorithms [39–69]. One approach to improving the efficiency 
of decision-making with metaheuristic algorithms is their hybridization, where fundamental proce-
dures of one algorithm are incorporated into another [70–86]. 

Given the above, the development of intelligent methods for assessing the state of hierarchical 
systems using artificial intelligence is a pressing scientific challenge. Such methods would signifi-
cantly improve the efficiency of decision-making processes.
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6.1 Analysis of advantages and disadvantages of knowledge representation 
methods in intelligent decision support systems

This section analyzes the advantages and disadvantages of knowledge representation methods 
in intelligent decision support systems. 

The logical model is used for knowledge representation in first-order predicate logic systems 
and for deriving conclusions through syllogisms. 

The main advantage of using predicate logic for knowledge representation lies in its po-
werful inference mechanism, which possesses well-understood mathematical properties and can 
be directly programmed. With these programs, new knowledge can be derived from previously  
known facts. 

Distinctive features of logical models include the unambiguity of theoretical justification and the 
possibility of implementing a system of formally accurate definitions and conclusions. 

The main idea behind constructing logical knowledge models is as follows: all information neces-
sary for solving applied tasks is considered as a set of facts and statements presented as formulas 
in a certain logic. Knowledge is represented as a set of such formulas, and obtaining new knowledge 
is reduced to implementing logical inference procedures. 

Main advantages of logical knowledge models:
1. The foundation of logical models is the classical apparatus of mathematical logic, which 

methods are well-studied and formally justified.
2. Efficient inference procedures are available, including those implemented using logical pro-

gramming languages.
3. Knowledge bases can store only sets of axioms, while other knowledge is derived from them 

using inference rules.
Frame model. The frame model, or knowledge representation model, is a systematic represen-

tation of human memory and cognition.
Frames take the form of structured components of situations, called slots. A slot may refer to 

another frame, thereby establishing a connection between two frames. General relationships, such 
as communication links, can also be established. Each frame is associated with diverse information 
(including procedures), such as expected procedures for a situation, ways of obtaining information 
about slots, default values, and inference rules. 

Advantages of the frame model – representation is largely based on including assumptions and 
expectations. This is achieved by assigning default values to slots in standard situations. During 
the search for solutions, these values can be replaced with more reliable ones. Some variables are 
designed in such a way that the system must ask the user about their values.

Frame models ensure structural organization and connectivity. This is achieved through inheri-
tance and nesting properties of frames, meaning that a slot may represent a system of lower-level 
slot names, and slots may be used as calls for executing procedures. Slot values may be refined 
during the processing of knowledge represented in this model. Some variables may be defined as 
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embedded procedures. As values are assigned to the variables, other procedures are triggered. 
This type of representation combines declarative and procedural knowledge. 

For many subject areas, frame models are the primary method of formalizing knowledge.
Semantic networks. A semantic network is a directed graph structure where nodes represent 

concepts (objects, processes, situations) and edges correspond to relationships such as "is a", "belongs 
to", "is caused by", "is part of", "is composed of", "is like", and similar connections between pairs of 
concepts. Reasoning procedures used in semantic networks include network augmentation, property 
inheritance, and pattern matching. Distinctive features of semantic networks include class-element 
relationships (part-whole, class-subclass, element-set), property-value relationships (having a pro-
perty, having a value), and examples of class elements (element above, element below, earlier, later).

The advantages of semantic networks include the clarity of knowledge representation, which 
makes it convenient to depict causal relationships between elements (subsystems) and even the 
structure of complex systems. The disadvantage of such networks is the complexity of reasoning 
and searching for subgraphs that match a specific query.

Production model. Rule-based systems are the most widely used type of expert systems today. 
In rule-based systems, knowledge is not represented in a declarative, static manner (as a series 
of true statements) but rather in the form of numerous rules that specify conclusions to be drawn 
or not drawn in various situations. A rule-based system consists of "IF-THEN" rules, facts, and an 
interpreter that manages which rule should be invoked based on the facts in the working memory. 

A classical expert system embodies informal knowledge obtained from an expert. 
This process of creating an expert system is called knowledge engineering and is performed by 

a knowledge engineer. 
Rule-based systems are categorized into two main types: forward-chaining systems and back-

ward-chaining systems. Forward-chaining systems start with known initial facts and proceed by 
using rules to infer new conclusions or perform specific actions. Backward-chaining systems start 
with a hypothesis or goal that the user aims to prove and work backward by finding rules that 
can confirm the truth of the hypothesis. To break down a large task into smaller, manageable 
fragments, new subgoals are created. Forward-chaining systems are primarily data-driven, while 
backward-chaining systems are goal-driven.

The working memory can contain facts about the current state of the object. A rule whose 
conditions are all satisfied is called activated or fired. The working list of rules may contain several 
activated rules. In such cases, the inference engine must choose one of the rules to execute.

The THEN part of a rule contains a list of actions to be performed once the rule is executed.
The inference engine operates in a cycle of checking and executing rules. During each cycle, 

multiple rules may be activated and added to the working list of rules. 
Conflicts arise in the rule list when different activated rules have the same priority, requiring 

the inference engine to decide which rule to execute. Once all rules are executed, control is re-
turned to the command interpreter so that the user can issue additional instructions to the expert 
system's command interpreter. 
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A notable feature of an expert system is its explanation mechanism, which allows the user to 
ask questions about how the system reached a specific conclusion and why certain information 
is needed. Rule-based systems can easily answer questions about how a conclusion was derived 
because the rule activation chronology and the content of the working memory can be stored  
in a stack.

The widespread use of rule-based systems is due to the following reasons: modular organi-
zation simplifies knowledge representation and allows for incremental deve lopment of the expert 
system. Explanation capabilities enable the easy creation of explanation tools through rules, as 
the antecedents of rules specify what is required for rule activation. The explanation tool allows 
tracking which rules were executed, enabling the reconstruction of the reasoning process that led 
to a specific conclusion. 

Analogy with human cognitive processes: according to findings by Newell and Simon, rules 
naturally align with the way humans solve problems. When extracting knowledge from experts,  
it is easier to explain the structure of knowledge representation to experts because rules provide 
a simple and intuitive framework.

Fuzzy expert systems. The foundation of the functioning of expert systems lies in the know-
ledge model [9]. It contains a set of principles that describe the state and behavior of the object 
under study. The most widely used knowledge model of expert systems is the production model, as 
it is quite simple to process and understandable to the end user. 

However, recently fuzzy expert systems have become widespread [11]. This type of expert 
system is based on a set of rules in which linguistic variables and fuzzy relationships are used to 
describe the state and behavior of the object under study [12]. Rules presented in this form are 
closest to natural language, so there is no need to use a separate knowledge engineer to create 
and edit the rules. They can be edited by the expert themselves almost without special training. 
Also, the results of such systems are presented in a limited natural language, which increases 
their degree of adaptation to the end user. Let's consider the organization of fuzzy expert systems  
in more detail. 

A fuzzy expert system uses knowledge representation in the form of fuzzy productions and 
linguistic variables [13]. Each linguistic variable is defined using its term set, which consists of 
fuzzy variables [14].

Fuzzy variable. The concept of a fuzzy variable is used to describe objects and phenomena 
through fuzzy sets, where the membership of a specific element is defined by a membership func-
tion μz(u), this function determines the degree to which the value u belongs to the set z [15, 17, 18].  
Every fuzzy variable is characterized by a triplet <z, U, Z>, where z – the name of the variable, 
U – the universal set, Z – the fuzzy subset of U, which represents the fuzzy constraint on the value 
u ∈U, as defined by z [19].

Linguistic variable. The operation of fuzzy expert systems is based on the concept of a lin-
guistic variable [15]. Each linguistic variable has a set of values, which are fuzzy variables forming 
its term set [6, 14].
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Linguistic Variable L is characterized by the following set of properties: 

L = (X, T(X), U, G, M), (6.1)

where X – the name of the variable; T(X) – the term set of variable X, which is a set of linguistic 
values for X, each value is a fuzzy variable (x ′) with values from the universal set U associated with 
a base variable u; G – the syntactic rule that generates the names of the values of variable X;  
M – the semantic rule that assigns each fuzzy variable x′ its meaning M(x ′), which is a fuzzy sub-
set M(x′) of the universal set U.

Fuzzy rule base of an expert system. The behavior of the studied system is described in 
a limited natural language using linguistic variables [17, 18]. The input and output parameters of the 
system are treated as linguistic variables, and the process is described by a set of rules [9, 10]. The 
formal model of the rule base for the developed expert system is represented as follows [11, 12]: 

R A A A B Bm k1 11 12 1 1 11 1 1: ... ..., , , , , and or and or and or and or and or→ ,,

: ... ..., , , , ,R A A A B Bm2 2 1 2 2 2 2 2 1 2 and or and or and or and or and or→ kk

n n n n mn nR A A A B B
2

1 2 1

,

: ... ..., , , , and or and or and or and or and or→ nn kn, ,  (6.2)

where A i n j mi j i, , , , , , , , ,= … = …12 12  – fuzzy statements defined on the values of input linguistic 
variables; B i n q ki q i, , , , , , , , ,= … = …12 12  – fuzzy statements defined on the values of output linguis-
tic variables.

In general, fuzzy reasoning is carried out in four stages [13–15]: 
1. Fuzzification stage: conversion of precise input data into fuzzy values of linguistic variables 

using membership functions. 
2. Fuzzy inference stage: based on the set of rules in the fuzzy knowledge base, the truth va-

lues for the conditions of each rule are calculated using T-norm, T-conorm, and negation operations. 
3. Composition stage: values of output linguistic variables are formed for each rule that has 

been triggered. 
4. Defuzzification stage: conversion of fuzzy values of output linguistic variables into precise values.
Fuzzy logical inference. Let examine the stages of fuzzy decision-making in detail [19]:
1. Fuzzification Stage. Using the membership functions of all terms for input linguistic variables 

and based on precise input values from the universes of input linguistic variables, the degrees of 
confidence are determined. These represent the likelihood that the output linguistic variable as-
sumes specific values [11, 12]. 

2. Fuzzy Inference Stage. From the set of rules (fuzzy knowledge base), the truth value for 
each rule is calculated based on specific fuzzy operations corresponding to the conjunction or dis-
junction of terms in the left-hand side of the rules. Typically, the maximum or minimum of the con-
fidence degrees of terms, determined during fuzzification, is applied to the conclusion of each rule.  
Using one of the methods for constructing fuzzy implication, a fuzzy variable is generated that 
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corresponds to the computed confidence degree in the left-hand side of the rule and the fuzzy set 
in the right-hand side [13, 14]. 

3. Composition (Aggregation or Accumulation) Stage. All fuzzy sets assigned to each term of each 
output linguistic variable are combined into a single fuzzy set, representing the value of each output 
linguistic variable derived. This is typically achieved using maximum or summation functions [15, 16].

4. Defuzzification Stage. Defuzzification is applied when it is necessary to transform a fuzzy 
set of derived linguistic variable values into precise ones. There are numerous methods for this 
transition, with the most commonly used being the full interpretation method and the maximum 
interpretation method. 

Full Interpretation Method: the precise value of the output variable is computed as the "center 
of gravity" of the membership function for the fuzzy value. 

Maximum Interpretation Method: the precise value of the output variable is determined as the 
maximum value of the membership function [17–19]. 

The highest computational costs are incurred during the fuzzy inference stage. To address 
this, the study examines a proposed method for accelerating the decision-making process at this 
stage [10, 11].

Task of accelerating decision-making in fuzzy expert systems. To formulate the task of ac-
celerating decision-making, the concept of a single iteration of fuzzy inference is introduced [12, 13]. 
It is proposed to represent it as a function F, which transforms a set of conditions into a set of 
consequences, as follows:

F A A A A A A A A Am i i i mi n n n mn: , , , , , , , , , , ,{ }, , , , , , , , ,11 12 1 1 1 2 1 2… … … →→

→ … … …B B B B B B B B Bk i i i ki n n n kn11 12 1 1 1 2 1 2, , , , , , , , ,, , , , , , , , , , ,  {{ }.  (6.3)

The task of accelerating decision-making is to minimize the computations performed during 
the processing of the condition matrix А for fuzzy rules, this involves constructing a reduced set 
of fuzzy conditions A*, that A A* < , ensuring that the result remains consistent. Specifically,  
if F A B( ) → , then F A B*( ) → .

Acceleration of decision-making can be achieved in two ways [14–16]:
1. Exclusion of certain rules from processing.
Suppose certain rules are excluded i i is1 2, , ,… . In this case: 

A A mit
t

S
∗

=

= − ( )∑
1

. (6.4)

2. Identifying identical conditions and eliminating their redundant computation: assume that 
p matches of conditions of the form A Ai j v w, ,= , where i n= …12, , , , j mn= …12, , , , v n= …12, , , , 
w mn= …12, , , . Where:

A A p∗ = − . (6.5)
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The input data for the proposed method are the rules from the fuzzy rule base. 
The following has been established:
– the methods (models, approaches) for knowledge representation in intelligent decision sup-

port systems presented in the study, in their canonical form, are not feasible for use due to a 
number of objective reasons outlined in Section 3 of the study;

– it is necessary to develop new (or improve existing) methods of knowledge representation 
in intelligent decision support systems that combine the advantages of these approaches without 
their disadvantages. 

Future research should focus on further refinement of these approaches to reduce the number 
of drawbacks and limitations in their application.

6.2 Development of an evaluation and prediction methodology using 
fuzzy cognitive maps

The methodology for evaluation and prediction using fuzzy cognitive maps includes the following 
interrelated procedures: 

1. Input of Initial Data on the Object's State: collecting the primary data about the object's 
condition. 

2. Initialization of the Object's Initial State Model: setting up the base model to reflect the 
initial state of the object.

3. Introduction of Corrective Coefficients for Noise and A Priori Uncertainty: adjusting for noise 
and uncertainty using specific expressions [2].

Due to the absence of prior information about coefficients and the order of the differential 
equation, binary representation of optimization variables becomes challenging and inefficient for 
finding solutions. However, when information about data noise and uncertainty levels regarding 
the object's state is available, it becomes possible to improve the accuracy of constructing fuzzy 
cognitive maps. 

4. Construction of a fuzzy cognitive map of the object's state.
The transition from a vector (individual) to a differential equation must consider the order, 

structure, and coefficients of the equation, as these influence the optimization algorithm's perfor-
mance [11–15].

To construct a cognitive map reflecting the dynamic properties of the situation, scales for 
factor values and their increments must be defined.

The scale of a factor is determined by structuring the set of its linguistic values. Absolute 
values of factors, rather than subjective assessments like "large", "medium", or "small" are used 
to define linguistic values. An objective reference value (benchmark) for the factor is established 
as the standard for its value. This reference simplifies the expert's work in assessing the impact 
strength of factors and reduces errors. 
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The prediction involves the max-triangulation composition of the weight matrix and the vector 
of initial factor increments.

This algorithm is designed for positive-definite matrices. However, in this case, elements of the 
adjacency matrix and increment vectors may take both negative and positive values. 

The following rule is used for transforming the adjacency matrix: W w sl n nij= ×  with positive 
and negative elements into a positively defined double matrix W w sl n nij= ′ ×2 2 :

if w slij( ) > 0, then ′ = ′ =( ) ( )−( ) −( )w s w sl w s l w sli j l ij i j ij2 1 2 1 2 2, ; (6.6)

if w slij( ) < 0, then ′ = − ′ − = −( ) ( )( ) ( )w s w sl w s l w sli j l ij i j ij2 2 2 2 1, . (6.7)

Initial increment vector P(t) and the vector of predicted feature values P(t + 1) in this case 
must have a dimensionality of 2n. The rule for obtaining the initial increment vector P′(t) of dimen-
sionality 2n from the initial vector P(t) of dimensionality n is as follows:

if p tij ( ) > 0, then ′ − = ′ =( )( ) ( ) ( )( )p t p t p ti j ij i j2 1 2 0, ; (6.8)

if p ti j ( ) < 0, then ′ = ′ −( )( ) ( ) ( )( ) =p t p t p ti j ij i j2 2 1 0, . (6.9)

In the vector ′ = − + … − +( ) ( )P t p p p pnm nm11 11, , , ,  the value of the feature fij characterizes 
two elements: the element with index 2j characterizes the positive pij +, and the element with 
index 2 1j −  – negative pij  – the increment of the feature fij . Then the double increment vector 

′ +( )P t 1  for the positively defined matrix W ′ is determined using the following equation:

′ + = ′ ° ′( ) ( )P t P t W1  , (6.10)

where to calculate the element of the vector ′ +( )P t 1  the following rule is used:

′ +( ) = ′ ( ) ⋅ ′( )p t p sl t w slij sl ij1 max . (6.11)

The elements of the increment vectors of feature values, obtained at successive moments  
in time ′ + ′ +( ) ( )P t P t n1 ,..., , after transposition, are represented as a block matrix:

P P t P t nT Tt = ′ + ′ +( ) ( )1 ,..., . (6.12)

The rows of this matrix represent the increments of a single feature over successive moments 
in time, while the columns represent the increments of all features at the moment corresponding 
to the selected column. The matrix Pt  is called the increment matrix and is used in the operation of 
algorithms for explaining the predictions of situation development [16–18].
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5. Forecasting the dynamics of an object's state.
A set of situation factors F f j mj= = …{ }, , , ;1  Z zj jk= { } – given as an ordered set of linguistic 

values for the i-th factor, k – denotes the index of the linguistic value, and the scales for all factors 
are defined Xi. 

The cognitive map is determined by experts (F, W), where F – a set of vertices representing 
the situation factors, W wij=  – an adjacency matrix, the initial state of the situation is repre-
sented as a vector containing the values of all situation factors X x xm0 10 0( ) ( )= …, , . The initial 
increment vector of the situation factors is P t p pm( ) ( )= …1, , .

It is necessary to find the state vectors of the situation X t X t X t n( ) ( ) ( )+ … +, , ,1  and the 
increment vectors of the situation's state P t P t P t n( ) ( ) ( )+ … +, , ,1  at successive discrete mo-
ments in time t t t n, , ,+ … +1 , where t – the step number (iteration) of the modeling process.

The forecast of situation development is determined using the matrix equation:

P t P t W+ = °( ) ( )1 ,

where (°) – rule max-product: p t p t wi j j ij+ = ( )( )( )1 max .

An element of the forecast vector for situation development p t P ti + +( ) ∈ ( )1 1  is represen-
ted as a pair: p t c ti i+ +( ) ( )1 1, , where p ti +( )1  is the increment value of the factor; c ti +( )1  is  
the consonance of the factor value. Cognitive consonance characterizes the subject's confidence 
in the modeling results. When c ti ( ) ≈ 1 the subject's confidence in the increment of factor p ti ( ) is 
maximal, and when c ti ( ) ≈ 0 is minimal.

The state of the situation at successive time points is represented as a pair: X t C t+ +( ) ( )1 1, ,  
where X t X t P t+ = + +( ) ( ) ( )1 1  is the state vector of the situation (with element x t x t p ti i i+ = + +( ) ( ) ( )1 1 

x t x t p ti i i+ = + +( ) ( ) ( )1 1 ), the cognitive consonance of the factor values c t C ti + +( ) ∈ ( )1 1 .
A plausible forecast of situation development in this case is defined as a pair X m C m( ) ( ), ,  

where X m x m x mm( ) ( ) ( )( )= …1 , ,  is the vector of situation factor values at time t m= ; C m c m cm m( ) ( ) ( )( )= …1 , , 
C m c m cm m( ) ( ) ( )( )= …1 , ,  is the vector of consonance values for the situation factors at time t = m.

6. Training a fuzzy cognitive map using a genetic algorithm.
Suppose there is a set of 3N rows of historical data (referred to as the training material) 

describing the state of concepts in the system. From the perspective of forecasting based on con-
cept increments, the increments of concepts from the i-th iteration to k(i + 1) iteration form the 
output increment vector. In this case, the fuzzy cognitive map should indicate that, given a similar 
output increment vector, the concept values will change in such a way that their increments result 
in values at the (i + 2) iteration.

Let Ai(t) represents the value of a concept at time t. Based on the specification of the training 
material described above, let's consider triples of rows: Ai(t), Ai(t + 1), Ai(t + 2).

Define x
A t A t

A t
y

A t A t
A ti

i i

i
i

i i

i

=
+( ) − ( )

( ) =
+( ) − ( )

( )
1 2

, , x – the output increment vectors, y – the  

resulting increment vectors.



170

Decision support systems: mathematical support
CH

AP
TE

R 
 6

To solve the training task, a genetic algorithm is proposed. A chromosome is represented as 
a one-dimensional array of values corresponding to the two-dimensional weight matrix of the fuzzy 
cognitive map. Each value in this array is called a gene. The main steps of the algorithm are:

1. For all non-zero weights of the initial map, a new non-zero weight value is assigned as a small 
random value. The initial non-zero weights are determined by the expert (any non-zero value can 
be assigned; its sole purpose is to indicate that, in the expert's opinion, a causal relationship exists 
between the two selected concepts).

2. Step 1 is repeated Population Size times. Thus, an initial population of Random solutions 
are formed.

3. The fitness function is calculated for each chromosome (the type of fitness function will be 
discussed later). 

4. A pool of parents is determined using the "roulette wheel" selection method. 
5. "Elite individuals" are added to the parent pool. In genetic algorithms, elite individuals are 

those that have shown the best fitness values over the last few generations (one elite individual 
from each generation). 

6. Crossover occurs among chromosomes in the parent pool. The crossover between chromo-
somes A and B is performed as follows. The crossover point is determined randomly. Let's denote 
it as Al+ a segment of the chromosome A, consisting of genes located starting from l, and Al– – the 
segment of the chromosome located before l. Then the result of the crossover will be two chromo-
somes: Al–Bl+ and Bl– Al+. The probability of crossover is predefined. If crossover does not occur, 
both parent chromosomes are transferred unchanged to the offspring population.

7. A new population is formed from the offspring obtained in Step 6. The size of this population 
is identical to the size of the population in the previous stage of the algorithm. 

8. Mutations occur in the offspring population. During mutation, a random gene is selected and 
replaced with a new random value. The probability of mutation is predefined. If no mutation occurs, 
the chromosome proceeds to the next iteration of the algorithm unchanged. 

9. The following parameters for the generation are determined: elite individual (the individual 
with the highest fitness value) retained to preserve its genetic makeup; average fitness value (this 
is calculated for the population and is used only to evaluate the convergence of the algorithm); 
fitness value of the elite individual. 

10. If the fitness value of the elite individual exceeds a predefined maximum fitness value, the 
algorithm stops, and the selected chromosome is decomposed into the adjacency matrix of the 
fuzzy cognitive map (training is considered complete). Otherwise, the algorithm returns to Step 3. 

End.
A methodology for evaluation and prediction using fuzzy cognitive maps has been developed. 

The concept of elite individuals was introduced into the algorithm to accelerate its convergence. 
The number of elite individuals was set to 60, while the population size was 100. Thus, after the 
60th generation, only 40 chromosomes from the current population have a chance to undergo 
crossover, while the rest populate the elite gene pool inherited from previous populations. 
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This high mutation probability, which is typically uncharacteristic of genetic algorithms, is jus-
tified in this case as it introduces genetic diversity into the population. Furthermore, the use of an 
elite gene pool mitigates the risk of irrevocably losing beneficial genes from previous generations.

The transient processes of different systems may converge over a specific interval. Therefore, 
increasing the observation interval for the system's output and the measurement frequency can 
improve the effectiveness of finding a solution. On the other hand, this may be attributed to the 
presence of numerous local optima and a relatively strong attraction zone. 

The proposed methodology, unlike existing ones:
– accounts for the degree of uncertainty in information about the state of a dynamic object and 

the noise in the output data regarding its state;
– creates a multilevel and interconnected description of hierarchical objects; 
– enhances decision-making speed in assessing object states by searching for solutions using 

population individuals;
– addresses the issue of reaching a global optimum. 
Advantages of this research include:
– consideration of the degree of uncertainty about the object's state during calculations;
– accounting for data noise resulting from distortion in the information about the object's state;
– reduction in computational costs when evaluating object states;
– the ability to perform calculations with input data of different natures and units of measurement.
Disadvantages of this research include: the need for significant computational resources and 

time to perform calculations. 
The proposed methodology is advisable for implementation in specialized software used for 

analyzing the states of complex technical systems and making management decisions.
Future research should focus on further improving this methodology to account for a larger 

number of factors during state analysis.

6.3 Development of a method for cognitive representation of the state of complex 
hierarchical systems

Currently, there are no unified principles for constructing cognitive representations that con-
vey sufficient information in a concise and user-accessible form to make appropriate management 
decisions [1–3]. 

Typically, representations are created individually, considering the specific applied domain and 
interpreted by an expert (or a group of experts) based on accumulated knowledge. Multidimensio nal 
data can be transformed into cognitive graphical representations using computational tools in the 
form of integral functional profiles, which reflect the states of complex hierarchical systems [3–6]. 

Existing mathematical methods for analyzing and visualizing multidimensional data are poorly suited 
to real-time dynamic systems and lack sufficient versatility, hindering their widespread adoption. 
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The aim of the study is to develop a method for cognitive representation of the states of com-
plex hierarchical systems with the following features [4–9]:

– the systems operate in real-time;
– various scales and ranges of controlled parameter changes are applied;
– data stream interruptions and system failures may occur [2]. 
To visualize the current state in such systems, a cognitive graphical representation is required 

that meets the following requirements [3, 4]:
1. A mathematical framework for transforming feature space into image space: 
– expressiveness of images to accelerate experts' understanding of the current situation; 
– unambiguous and accurate representation of situation classes: "normal", "anomaly", "critical", 

"no info" (absence of information);
– capability to represent the state of complex hierarchical systems as a whole and the states 

of their individual subsystems at all hierarchy levels.
2. Ability to display parameters with an indication of the deviation level from the average within 

an acceptable operating range.
3. A unified formalism for describing relationships important for decision-making in high-dimen-

sional symbolic space. 
Considering the methods for constructing cognitive representations, multilevel approaches 

to presenting situations are the most effective for monitoring hierarchical systems. In practical 
applications, the number of levels typically does not exceed three, as increasing them complicates 
perception and reduces the efficiency of state analysis. The results of the review of methods for 
representing the states of complex hierarchical objects are summarized in Table 6.1 [10–19].

Analysis of Table 6.1 shows that the cognitive representation of information using fractals 
best meets the formulated requirements. However, it has several disadvantages that reduce its 
ergonomic qualities, namely: a large number of small details, a low permissible embedding depth, 
and the absence of numerical information on the cognitive image slide. 

As a basis for transforming the parameter space into the space of graphical representations, 
the method of integral contour representation of a standard epicycloid is adopted:

x R d d m
y R d d m

= +( ) − +( )
= +( ) − +( )







cos cos ;
sin sin ,

ϕ ϕ
ϕ ϕ

1
1

 (6.13)

and standard hypocycloids:

x R d d m
y R d d m

= −( ) + −( )
= −( ) − −( )







cos cos ;
sin sin ,

ϕ ϕ
ϕ ϕ

1
1

 (6.14)

where R is the radius of the stationary circle; r is the radius of the rolling circle; d = r is the 
distance of point M from the center C of the rolling circle; ϕ is the parameter describing the  
angle between the line segment connecting the circle centers and the OX; m is an integer de-
fined a, m = R/r.
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 Table 6.1 Overview of methods for representing the state of complex hierarchical objects

No. Name Purpose
Types of systems

Deviation 
level

Univer-
salityDy-

namic 
Complex 
Hierarchies

1. n-Simplex Pattern recognition – + + +

2. Meta Pattern recognition – + + –

3. Star Graphical representation of 
multidimensional data

+ – – +

4. Botanical tree Visualization of complex 
hierarchies

– + – –

5. Novosyolov fractal Diagnostics and visualization for 
complex technical objects

+ + – +

6. Image for nuclear 
power plant 
operators 

Display of anomalies and 
current situations in complex 
systems

+ + + –

7. Color coding based 
on evaluation 
function

Assessment of object state 
compliance at a given time

+ – + –

8. Large-scale electri-
cal network image

Diagnostics and visualization for 
complex technical objects

+ + + –

9. Drum-separator 
image

Decision support for nuclear 
power plant operators

+ – + –

10. Shoke integral Selection of constraints on 
parameters of fuzzy aggrega-
tion operators for interrelated 
criteria

– – + –

11. Fuzzy cognitive maps Analyst decision support – – + –

When the rolling circle rotates around the stationary circle 0 0 0x y,( ), by an angle multiple of 
2πr R, the epicycloid (or hypocycloid) overlaps with itself. Both the epicycloid and hypocycloid consist 
of m congruent branches. Let j – the branch number, and if j m= 1,..., , then the parametric equations 
for the j-th congruent branch of the epicycloid are derived from expressions (6.13) and (6.14): 

x x R d d m
y y R d d m

= + +( ) − +( )
= + +( ) − +( )






0

0

1
1

cos cos ;
sin sin ,

ψ ψ
ψ ψ

 (6.15)

and for the hypocycloid:

x x R d d m
y y R d d m

= + −( ) + −( )
= + −( ) − −( )






0

0

1
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cos cos ;
sin sin ,

ψ ψ
ψ ψ

 (6.16)
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where x0 and y0 – the coordinates of the center of the stationary circle, and ψ α α∈ +( ) j j, ,1  
α π= 2 m. From equations (6.15) and (6.16), let's obtain the generalized formula for the branches 
of the epicycloid and hypocycloid:

x x R d d m
y y R d d m

= + +( ) − +( )
= + +( ) − +( )

 0

0

1
1

ξ ψ ξ ξ ψ
ξ ψ ξ ψ

cos cos ;
sin sin ,




 (6.17)

where ξ = 1 for the epicycloid and ξ = −1 for the hypocycloid.
Let the hierarchical system be characterized by a set of parameters Z z z z zj m= { }1 2, ,..., ,..., .  

It is proposed to use formula (6.17) as the basis for integral contour representation to ad-
dress the problem of detecting parameter values z j  that exceed the permissible range z zj jmin max

, .  
Let d equal the value of parameter z j , normalized to the interval − δ δ, . For normalization, let's 
use the formula: 

z
z z

z zj
j j

j j

=
−
−









 −











δ 2 1min

max min

, (6.18)

where δ = R 2 2Φ , Φ is the golden ratio coefficient. 
If the parameter z j  equals the mean value within the permissible range, then d zj= = 0 

and the curve described by (6.17) becomes a part of a circle. If z j < 0, the curve (6.17) forms  
a con gruent branch of a hypocycloid. If z j > 0, the curve (6.5) forms a congruent branch of  
an epicycloid.

Substituting in formula (6.17) ξd  on z j , d on z j , the type of the curve (6.17) will be de-
termined by the deviation of the controlled parameter from the mean value within the permis-
sible range: 

x x R z z m

y y R z z m

j j

j j
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where η =

>

− <

=











1 0

1 0
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, ;

, ;

, .

if

if

if

z

z

z

j

j

j

In cases where z q z qj j= >1 1 1
min

,  or when z q z qj j= >2 2 1
max

, , q q R1 2,{ } ∈ , the d, the corre-
sponding z j , will exceed r, and the curve (6.18) will form a branch of an elongated epicycloid or 
hypocycloid, resulting in "loops". To eliminate loops, replace the epicycloid branches with elliptical 
arcs if z rj > , replace the hypocycloid branches with hyperbolic branches if z rj < − . The for-
mula (6.18) is adjusted based on these refinements: 
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where τ α α= +j 2 is the angle of rotation of the ellipse or hyperbola around the point O x y0 0, ;( )  
x x Re

0 0 2= + cos cos ,α τ  y y Re
0 0 2= + cos cos ,α τ  a z R Re

j= + −2 2cosα  is the major semi- 
axis of the ellipse; b Re = sinα 2 is the minor semi-axis of the ellipse; a R zh

j= + 2  is the real 

semi-axis of the hyperbola; b
a R

R a

h

h

h

=






− ( )

sin

cos

α

α
2

2

2
2

 is the imaginary semi-axis of the hyperbola, 

θ π π∈ − 2 2, , β π π∈ − 2 2, .
The proposed method, unlike existing ones:
– creates a visual, multilevel, and interconnected description of a hierarchical system;
– improves the efficiency of decision-making in assessing the state of a hierarchical system;
– resolves the issue of global and local extrema when evaluating the state of a hierarchical system;
– combines graphical and numerical representations of controlled parameters for the state of 

the national security system;
– enables real-time visualization of the state of a hierarchical system;
– avoids the issue of loop formation during the real-time visualization of the state of a hierar-

chical system;
– ensures the accuracy of the hierarchical system state visualization, regardless of the number 

of individual components comprising the system. 
Advantages of this study include:
– the ability to perform calculations with input data of different natures and measurement units;
– the ability to avoid loop formation during the visualization of the hierarchical system state; 
– the creation of a visual, numerical, multilevel, and interconnected description of the hierar-

chical system. 
Disadvantages of this study include the need for appropriate computational resources and time 

to perform calculations. 
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The proposed method is recommended for implementation in specialized software used for 
analyzing the state of hierarchical systems and making managerial decisions.

6.4 Development of a method for evaluating complex hierarchical systems based 
on an enhanced particle swarm optimization

This study proposes a method for evaluating complex hierarchical systems using an enhanced 
particle swarm optimization (PSO) combined with the coordinate averaging method. 

This approach allows the coordinate averaging method to shift from the random selection 
of trial points to utilizing the current coordinates of the particle swarm, whose collective move-
ment is adaptive, adjusting to the characteristics of the objective function's changes. During 
the movement of the particle swarm, their displacement is adjusted toward the determined 
averaged center based on the coordinate averaging method. An additional mechanism that 
accelerates the convergence of the hybrid algorithm is the inclusion of several steps of the 
Hooke-Jeeves procedure. These steps refine the current coordinates of the best and/or worst 
particle in the swarm. 

This study focuses primarily on "zero-order" methods, in which the values of the objective 
function are determined only at trial points through a computational algorithm. This approach 
is oriented towards solving tasks for determining the objective function of a complex dynamic 
process with minimal requirements for the continuity and boundedness of the objective function. 
For approximate estimates of the variability of the objective function, the method utilizes the 
maximum values obtained as the ratio of the difference in the objective function values to the 
distance between all pairs of trial points (a lower bound for the Lipschitz constant).

A bounded continuous function is considered f x( ) Ω →: , where x x x xn
n= ∈Ω ⊂( )1 2, ,...,  .  

The set Ω represents the domain of allowable variable values and, in the simplest case, is an  
n-dimensional parallelepiped with given sides, x d x d i ni i i i

[ ] [ ], , , ,..., .0 0 12− +  =
The task is to find an approximate value of the global minimum f* and at least one point x*, 

where this value is achieved, with a specified permissible εf for the objective function values:

f f x

x f f f f f xf

min

min

min ,

, , .

=

∈ − ≤ ≤ =

( )
( )∗ ∗ ∗ ∗

 

Ω ε  (6.20)

The computational procedure for finding the approximate coordinates of the point x* in the 
coordinate averaging method is based on an iterative process, which in its continuous form is 
expressed as [5]: 

x x p x x i ni
k

i s
k
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∫1 12d ι, , ,..., . (6.21)
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∫ d

, (6.22)

where k is the step number of the computational process; ι is the degree of uncertainty in the 
state of a complex real-time dynamic system (values range from 0 to 1); Ω k[ ] is the coordinate ave-
raging region at step k. A sequence of continuous functions Ps(y), s = 1,2,3,…, such that ∀ ∈y  
and value Ps(y) ≥ 0 and for the sequence Ps(y)/Pz(y) the condition of monotonic unbounded growth 
holds with increasing selectivity parameter s for any fixed values y, z with the condition y < z. 
Examples of such functions include Ps(y), in particular, are functions exp(–sy), s–y, y–s, as well as 
a class of functions of the form (1 – yr)s for y ∈[0,1], r = 1,2,3,…. For the numerical minimization 
examples below, the function is used (1 – y 2)s.

As increases s the steepness of the kernels ps
k[ ] grows, which in turn increases the weights 

of the coordinates corresponding to better values of the objective function (OF). In the final case, 
the sequence of averaged coordinates converges to the global minimum (the corresponding con-
vergence theorem is proven in [5]).

For the numerical implementation of the coordinate averaging method, one effective way 
to improve the accuracy of integral computations is to sequentially increase the number of trial 
points x j Mj k k( )[ ] [ ]=, , ,...,12 , at the k-th stage of the iterative process, i.e. M Mk k[ ] [ ]−≥ 1 . To avoid 
accidentally excluding the global minimum point, the averaging region Ω[ ]k  in this case can be con-
sidered either adaptively variable or fixed [5].

In the proposed modification of the iterative coordinate averaging algorithm, adaptive displace-
ment of trial points is introduced. This is implemented as the movement of particles in the PSO 
method with an FDR (fitness-distance ratio-based PSO) modification [22]. Additionally, particles in 
the swarm are shifted toward the determined center of averaged coordinates, introducing a new 
factor of information exchange between particles and adding extra stabilization to the collective 
swarm search for the global minimum of the objective function (OF). 

When calculating integrals in formulas (6.21) and (6.22), the summation of the values of the 
integrand expressions is performed over the set of trial points, taking into account the volumes of 
the subregions discretizing the integration domain Ω k[ ].

In the proposed hybrid algorithm, the coordinates of the trial points are identified with the 
coor dinates of the particle swarm, which change during the collective search for the global mini-
mum. At the beginning of the computational process, these coordinates are initialized either at the 
nodes of a computational grid or generated using a random number generator with a uniform distri-
bution over the intervals x d x d i ni i i i

[ ] [ ], , , ,...,0 0 12− +  = . In discrete form, the relationships (6.21) 
and (6.22) are expressed as follows:

x x p x V i ni
k

i
j k

s
k j k j k

j

M k

+

=

[ ] ( )[ ] [ ] ( )[ ] ( )[ ]= ( ) =
[ ]
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where V j k( )[ ] corresponds to the n-dimensional volume obtained by dividing the domain Ω[ ]k  into 
subdomains associated with the family of integration points x j Mj k k( )[ ] [ ]=, , ,..., . 12

Here g xk[ ] ( ) are auxiliary functions that scale the objective function f x j k( )[ ]( ) to the range [0, 1], 
defined as:
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Assuming that for the trial points (current coordinates of the particle swarm) in formu-
las (6.24) and (6.25), during approximate integration, the subdomains can be chosen such that 
their sizes V j Mj k k( )[ ] [ ]=, , ,...,12 , are approximately equal, the computational formulas simplify to 
the following form: 
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It should be noted that for the coordinate averaging computational algorithm [5], the specific 
type of subdomains discretizing the integration domain Ω[ ]k  is not critical, thus, using the simpler 
relationships (6.26) and (6.27) instead of (6.24) and (6.25) for numerical implementation is en-
tirely justified.

The adaptive adjustment of particle swarm coordinates at the (k + 1)-th step follows the PSO 
scheme [10–18], with an additional component introduced for movement toward the averaged 
coordinate center x k[ ] for each j-th particle in the swarm, expressed as:

x x Y D U x xj k j k j k j k k j k( )[ ] ( )[ ] ( )[ ] ( )[ ] [ ] ( )[ ]+  = + + + ⊗ −1 0 0α β, (( ), (6.28)
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where Y j k( )[ ] – the inertia component of the movement of the j-th particle; D j k( )[ ] – the adaptive 
displacement vector of the j-th particle, which is determined by three components of the random 
displacement of this particle [18]:

D d d dj k j k j k j k( )[ ] ( )[ ] ( )[ ] ( )[ ]= + +1 2 3 , (6.29)

where

d
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In formulas (6.28)–(6.30), the following notations are used:
– xb

j k( )[ ] – the best coordinates of the j-th particle over iterations, determined based on the 
objective function value (d j k

1
( )[ ] – represents the cognitive component of the particle displacement); 

– xg
j k( )[ ] – the coordinates of the best particle in the swarm with the minimum objective function 

value over k iterations (d j k
2
( )[ ] – represents the social component of the particle displacement); 

– x q j k( ) [ ]( )  – coordinates of the particle with index q(j), in the direction of which the objective 
function's rate of decrease is the greatest (d j k

3
( )[ ] – a component of the objective function's variabi-

lity based on the local Lipschitz constant estimate); 
– U 0,β  – a vector with components uniformly distributed random numbers in the inter-

val 0,β ; ⊗ – element-wise multiplication of vectors; coefficients α β, , , , ,m m = 0 12 3 that are 
tunable parameters of the hybrid computational algorithm.

Thus, the relationships (6.24)–(6.30), after specifying the type of kernels P ys
k[ ] ( ) with an in-

creasing selectivity parameter and assigning specific values to the coefficients α β, , , , ,m m = 0 12 3,  
fully define the hybrid computational algorithm for global optimization based on the coordinate 
averaging and particle swarm methods. The selection of coefficients for the numerical global opti-
mization algorithm can be performed through meta-optimization [19], which is beyond the scope 
of this research.

The algorithm was run 100 times, and acceptable accuracy (on the order of 10–2) in the 
coordinates of the best particle was achieved within 10–15 iterations, followed by the sequential 
concentration of particles near the global minimum. It should be noted that the method is statis-
tical, and obtaining an "acceptable result with a certain probability" requires multiple runs of the 
software application with different random vector values U 0, β .

Transitioning to higher dimensions of variables necessitates an exponential increase in the 
number of trial points or particles in the swarm. The possibility of parallel computations supports 
the feasibility of using multiple families of particle swarms in the algorithm.
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Computational experiments minimizing function (6.29) with n = 100 showed that if the total 
number of particles is not increased, the hybrid algorithm converges to one of the local minima. 
This occurs because the local minimum has the largest attraction basin (as reflected in the last 
term of formula (6.29)), which increases the likelihood that at least one particle enters this region, 
exerting the maximum influence on the swarm's subsequent behavior. 

It is worth noting that the use of multiple families of particle swarms enables simultaneous 
identification of both the global minimum and local minima of the objective function in certain cases. 
This feature can be valuable for solving applied problems.

The proposed method, unlike existing ones:
– creates a multilevel and interconnected description of complex hierarchical real-time systems;
– improves decision-making efficiency in evaluating the state of complex hierarchical real- 

time systems;
– resolves the issue of reaching global and local extrema when evaluating the state of complex 

hierarchical real-time systems;
– enables directed search by multiple particles in a given direction, considering the degree of 

uncertainty;
– allows for repeated analysis of the state of complex hierarchical real-time systems.
Advantages of this study include:
– the ability to perform calculations with input data of different natures and units of measurement;
– the ability to conduct directed search by multiple particles in a given direction, considering 

the degree of uncertainty;
– the capability for repeated analysis of the state of complex hierarchical real-time systems.
Disadvantages of this study include the requirement for substantial computational resources 

and time to perform calculations. 
This method is recommended for implementation in specialized software used for analyzing the 

state of complex hierarchical real-time systems.

Conclusions

1. An analysis of knowledge representation models was performed, and the advantages of 
applying production-based knowledge representation in expert systems were substantiated.  
The main concepts of fuzzy expert systems were outlined, based on which a formal problem state-
ment for accelerating decision-making in the rule base of a fuzzy expert system was proposed.  
The stages of fuzzy logical inference were analyzed. 

2. A methodology for evaluation and prediction using fuzzy cognitive maps was developed. The 
novelty of the proposed methodology lies in: 

– accounting for a correction coefficient for the degree of uncertainty about the object's state 
in calculations;
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– adding a correction coefficient for data noise resulting from distorted information about the 
object's state;

– reducing computational costs when evaluating object states;
– creating a multilevel and interconnected description of hierarchical objects; 
– adjusting the object description due to changes in its current state using a genetic algorithm;
– enabling calculations with input data of different natures and measurement units. 
This methodology is recommended for implementation in specialized software used for analyzing 

the states of complex technical systems and making management decisions. 
3. A method for visualizing the states of hierarchical systems was developed. The novelty of 

the proposed method lies in:
– creating a visual, multilevel, and interconnected description of the hierarchical system;
– improving decision-making efficiency when evaluating the state of the hierarchical system;
– resolving the issue of reaching global and local extrema when evaluating the state of the 

hierarchical system;
– combining graphical and numerical representations of the controlled parameters of the 

hierarchical system's state;
– avoiding loop formation issues during real-time visualization of the hierarchical system's state. 
4. A method for evaluating complex hierarchical systems based on enhanced particle swarm 

optimization (PSO) was developed. The proposed method is based on combining particle swarm 
optimization and coordinate averaging methods, along with modifications using multiple particle 
swarms and incorporating the Hooke-Jeeves procedure with corresponding correction coefficients. 
The novelty of the proposed method lies in:

– creating a multilevel and interconnected description of complex real-time hierarchi- 
cal systems;

– improving decision-making efficiency when evaluating the states of complex real-time hier-
archical systems;

– resolving the issue of reaching global and local extrema when evaluating the states of com-
plex real-time hierarchical systems;

– enabling directed search by multiple swarm particles in a given direction, considering the 
degree of uncertainty; 

– allowing repeated analysis of the states of complex real-time hierarchical systems.
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