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DRYING PROCESS MODELS FOR A MULTI-COMPONENT 
SYSTEM OF CAPILLARY-POROUS STRUCTURE BASED ON 
THERMODYNAMIC RELATIONSHIPS OF MIXTURE THEORY

Abstract

In this Chapter, the main statements are formulated and fundamental thermodynamic relations 
for moisturized capillary-porous deformable systems are obtained when describing them using con-
tinuum representations. Possible methods of choosing the parameters of the local thermodynamic 
state of a solid deformable multi-component system are presented, being consistent with their 
choice of the liquid (gaseous) phase. A complete system of equations is constructed to describe 
the drying process of dense packing of capillary-porous materials, based on the approaches of 
the theory of the mixtures of porous and dense packing of disperse materials of multicomponent 
three-phase media.

There have been analysed the influence of the external heat flow, the initial volumetric moisture 
saturation on changes in temperature, volumetric moisture saturation, and air density in body 
pores in time by the example of conductive drying.

KEYWORDS

Mathematical modeling, continuum thermodynamics, drying, moisture, diffusion, capillary-po-
rous, multi-component system, phase.

Recently, increased interest among scientists and researchers burst out for developing new 
and improving existing mathematical models and analytical-numerical methods for studying heat and 
mass transfer and the stress-strain state of porous materials, taking into account the influence of 
filtration, diffusion, and other physical processes due to the environmental situation on the planet. 
Problems of drying belong to such energy-consuming processes requiring new sustainable solutions.

To most accurately reproduce the physical content of the heat and moisture transfer process-
es in drying and adequately treat input data, such models are predominantly constructed based 
on general approaches and methods of thermodynamics of nonequilibrium processes. Integrating 
principles from thermodynamics, heat and mass transfer, and porous media mechanics, the model 
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offers valuable insights and practical solutions for improving drying efficiency and effectiveness in 
various applications.

The application of heat and mass transfer models covers numerous engineering tasks, from 
agriculture and food processing to pharmaceuticals, construction, chemical engineering, environ-
mental engineering, the energy sector, and the textile industry. These models are valuable for 
improving process efficiency, reducing energy consumption, and achieving sustainable development 
goals, making them reliable tools in modern engineering.

As a particular case of the heat and mass transfer model in an n-component, three-phase, 
deformable porous wet medium with phase transitions and chemical reactions, the mathematical 
model of drying capillary-porous bodies, examines the evolution of temperature, moisture content, 
pressure, kinematic characteristics of the process, and sensitivity to the influence of parameters 
and boundary conditions. 

Mathematical models of drying of capillary-porous bodies are based on the laws of conserva-
tion of mass, momentum and energy, as well as known experimental dependencies, on the basis 
of which the equations of heat-mass-moisture transfer in the body are constructed. The ability 
to quantify the heat passing inside the body due to thermal conductivity is based on the Fourier 
hypothesis. At the same time, diffusion flows are taken into account on the basis of Fick’s laws, 
filtration flows on the basis of Darcy’s law. 

Essential for advancing knowledge in science and engineering was a noticed similarity between 
heat and mass transfer processes and the universality of diffusion equations. By using common 
principles and mathematical descriptions, scientists and engineers develop more efficient and ef-
fective solutions for a wide range of applications.

Consider the results of state-of-the-art investigations in complex systems, which use models 
of heat and mass transfer.

B. Alaa et al. [1, 2] proposed a novel approach for image restoration and contrast enhance-
ment using a nonlinear reaction-diffusion model. This model is based on the similarity of its behavior 
to a heat equation in low-gradient areas, while in high-gradient regions, diffusion is halted to pre-
serve edges. The algorithm utilizes a divide-and-conquer technique coupled with a reaction-diffusion 
system. In [3], a new numerical approach is introduced using a Lattice Boltzmann method for a 
Gray-Scott based reaction-diffusion model aimed at image restoration and contrast enhancement. 
This method, traditionally used in fluid dynamics, effectively handles noisy images by comparing pixel 
motion to fluid motion.

V. Baala et al. [4] propose a new model of spatio-temporal dynamics concerning the tritrophic 
reaction-diffusion system, offering methodologies for managing optimal control of the system.  
G. Bounkaicha et al. [5] investigated spatio-temporal dynamics using a fractional order SEIR mod-
el, relevant for understanding drying processes. D. Gouasnouane et al. [6] developed a nonlin-
ear fractional partial differential equation for image inpainting, applying nonlinear diffusive filters.  
M. Najm et al. [7] surveyed the construction of Lyapunov functions for reaction-diffusion systems 
with delay, providing stability analysis techniques necessary for drying process models. T. Suganya 
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and S. Senthamarai [8] formulated a diffusive phytoplankton – zooplankton – nanoparticle model 
with a density-dependent death rate of predators, constructed it, and analyzed its local stability. 
D. Ben-Loghfyry and N. Hakim [9], based on a time-fractional diffusion equation, performed image 
and signal smoothing, offering an idea of using anomalous diffusion behaviors for modeling different 
phenomena of image processing. 

A statistical description of catalytic hydrogen oxidation applied by Kostrobij [10] pro-
vides a comprehensive understanding of the complex interactions involved in catalytic reactions 
on metal surfaces, incorporating both the diffusion of reactants and the magnetic properties 
of the ions and atoms involved. A generalized Cattaneo-type diffusion equation in time frac-
tional derivatives is obtained in [11] for electrons with a characteristic relaxation time, and a 
generalized model is proposed based on a statistical approach that accounts for the complex-
ity of relaxation electromagnetic diffusion processes for electrons in layered nanostructures.  
T. Aberqi et al. [12] provided a discrete solution for nonlinear parabolic equations with diffusion 
terms. They proved the existence and uniqueness of a weak solution using an approximation ap-
proach combining internal approximation with the backward Euler scheme, and provided a pri-
ori error estimates for temporal semi-discretization. F. Bazirha and S. Azrar [13] developed a 
DDFV scheme for nonlinear parabolic reaction-diffusion problems on general meshes, applicable 
to complex geometries in capillary-porous structures. B. Gayvas et al. [14] addressed solving 
Stefan’s linear problem for drying cylindrical timber, offering solutions for phase change problems  
in drying. 

Important practical problems in medicine are proposed in [15, 16]. D. Baranovsky and  
T. Bomba identified diffusion scattering parameters for a modified model of viral infection [15].  
M. El Hassani et al. examined the dynamics of a diffusive SARS-CoV-2 model using fractional La-
placian operators [16].

Consideration of a broader range of conditions and parameters that affect heat and mass 
transfer processes is realized in [17], where S. Tokarchuk has unified kinetic and hydrodynamic 
approaches in the theory of dense gases and liquids far from equilibrium, under arbitrary Knudsen 
number conditions. The collision integral of this equation includes the diffusion coefficient in velocity 
space. Insights into liquid and gas interactions are provided by L. Belhachmi et al. [18], who dis-
cussed coupled compressible two-phase flow.

E. Pukach and T. Chernukha [19] focused on impurity diffusion processes, essential for accu-
rately describing mass transfer equations. O. Ogunmiloro et al. [20] focused on fractional order 
spatial models, highlighting computational analysis to ensure the existence and uniqueness of solu-
tions, which is critical for the reliability of drying process models.

A. Dmytryshyn et al. [21] modeled the diffusion of money income, providing methodologies 
for solving this problem. D. Laham and H. Ibrahim [22] proposed a penalty approach for pricing 
the American-style Asian option under the Merton model, which is particularly relevant for to-
day’s global financial markets. By including jump-diffusion in the models, Laham’s approach cap-
tures the skewness and kurtosis features of return distributions often observed in several assets.  
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S. Pradhan et al. [23] modeled mixed-traffic in urban areas, where advection equation captures 
the bulk movement of cars, while the advection-diffusion equation includes the effects of diffusion, 
providing a more detailed description of the motorbike flow. In [24], B. Gayvas et al. presented 
an approach to optimizing the convective drying process by leveraging empirical relationships and 
drying technology principles through improved accounting for thermal diffusion.

Models of capillary-porous materials require researchers to carefully study the effects 
on the transfer processes of capillary forces and diffusion processes, so let’s proceed to  
the theory.

The drying process is characterized by changes in temperature, volume, and composition of the 
system. Let’s assume that the change in composition is possible only due to the phase transforma-
tion of liquid into vapor and vapor into liquid, and is determined by the change in the density of the

components �i V

im
V

�
�
�� �

lim ,
0

 i L v a�� �0, , , .  No chemical reactions are involved. Let Si be the partial 

entropy; εij, σ ij
0  are the strain and stress tensors of the solid skeleton; Pi is the pressure tensor 

of the i-th component; Ti is the temperature; ρi is the density; mi is the chemical potential. All the 
functions depend on the parameters εij, Ti, ρi, Pi, with εij = 0, T = T0, ρ = ρi0 in the initial state.

Let’s elaborate on describing the densities of the porous (granular) medium �i
iM

V
� ,  where 

Mi is the mass of the system components, M Mi
i

�� ,  V = V0 + VH, and VH is the volume of 

the carrier (continuous phase) VH = Va + VL+ Vv. � � � �H
a L V

� � �
1 1 1

 is the specific volume of 

the carrier phase. Let � �
�

V
V V

H

H 0

 be the porosity of the medium and V0 the volume of the solid 

phase. Also, let’s introduce the true densities of the components �i
i

i

M
V

0 � .  To derive the main 

equations describing the transfer processes in a thick layer, the method of local volume averaging 
will be employed. According to this method, each point of the porous medium is mapped to the small 
volume V, bounded by the closed surface S. There are two types of parameter averaging in the main 
equations: averaging values of local volume and averaging phase values (true). The averaging volume 

values F for a phase i are defined as follows: � �� �
1
V

dV
Vi

,  and the averaging phase ones are 

defined as � �
i

i VV
dV

i

� �
1

,  where Vi is the volume occupied by the i-th phase. Assuming that the 

carrier phase is a mixture of liquid and gas, with the latter being a homogeneous mixture of an ideal 
gas – air and vapor, the following is obtained:
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Let’s introduce the volume saturation with liquid � �
V
V

L

H

,  1� ��
V

V
g

H

,  and considering that 

Vv = Va = Vg, the expressions for the scaled densities in terms of the true ρi
0  can be obtained in 

the following form [25]:

� � � �0 0
0

1 0
01� �� � �� ,

 � �� � �L L L L� �� 0 0,  
� � � � �v v v v� �� � �� 1 0 0,

 

� � � � �a a a a� �� � �� 1 0 0,
 
� � � � � � � � �g a v a v g a v� � � �� � � � �� 1 0 0 0 0( ) ( ).

During evaporation, the volume saturation α changes. Assuming that drying loss is possible 
during the drying process, the volume of the skeleton decreases, with the positions of the skeleton 
particles in space undergoing change. The drying-up can be characterized by a changing volume con-
centration Π. At constant temperature and volume, the chemical potential mb according to the for-
mulas for internal energy du T dS d P dV a v L� � � � � � �� � �� � � �� �, , ,  du TdS d dij ij0 0 0� � �� � � �

and heat of phase transition, can be given in the form �
�

�

��
�

�
��

�

�
��

�
�T V

u
r, ,�

�

�
�

�

��
�1

2 1
 where ����

is the change in density of a component b due to phase or chemical transformation of the compo-
nent γ, rbγ being the specific heat of phase transition or chemical transformation of the component γ  

in the component b. The derivative 
�

�

u�

��
 determines the change in the specific internal energy

caused by the change in the mass of the component b due to phase and chemical transformations. 
To express the free energy of an elementary volume, let the free energy components be averaged 
by phase. Moving from phase averaging to volume averaging, the ratio f f

V i i
� �  is taken 

into account. Then the brackets denoting volume averaging are omitted. Provided that there is 
no deformation εij and no change in volume V, the free energy function of the i-th phase can be 
expressed as follows:

F
F
T

dT
u

ri
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iT

T

i
i

i
i

i

i

i

�
�
�

�

�
��

�

�
�� �

�
�

�
�

�

�

�
�
�� �

� �
0 0 1

1
2

� �

�
�

��

�

�
,



�
�
��

�

�

�
i

i

d i

0

.  (2.1)
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The free energy function of an elementary volume is of the form:
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Let’s assume a single-phase model for heat transfer (T = Ti, dT = dTi) and introduce the scaled 
heat capacity of wet material. To this end, the entropy dependence on the temperature at constant 

volume and concentration is expressed in the form S C T dT
ij

T

T

ef� ��
�, ( / ) .� � 0

0

 In expressions (2.1), 

the derivatives 
�
�

�

�
�

�

�
�

�

F
T

i

� �, 0

 are defined through the heat capacities of the Ci system components

in the isochoric process � � �

� � � �
i i i

i

i
i

i

i

C T
dS
dT

T
d F
dT

i L v a,

, ,

( , , , ),�
�

�
��

�

�
�� � � �

2

2 0  which follows that

�
�

�

�
�

�

�
� � ��

F
T

C
T

dTi i i

iT

T

i

i

� �

�

,

.
0

 The expression for the effective heat capacity in terms of the heat capa-

cities of the components is of the form:

C C
C C C

C
C C C

ef
L L L v v v a a a L L v v a a� �

� �
� �

� �
0

0 0 0

0
0

0

� � � � � �
�

� � �
�

.

The explicit form of the functions S, σij, mi can be found by expanding the function F F Fi
i

� ��0  

in a Taylor series in powers εij through the first two invariants l1 = ε1 = εkk, l2 = ε2 = εij of this 
tensor (k = i =j = 1, 2, 3) and by retaining terms F0 in the expansion no higher than the second 
order of smallness [26]. As in the previous paragraph, the effective stresses on the elementary 
site � � � � �ij ij

c
ij
H

ijc ijH� �� � � � �1 � � .
The application of surface forces σijH leads to the movement of the load-bearing phase and 

system deformation. The determination of the stress tensor σijH is related to solving the problem 
of the flow of a continuous phase in the system.

The volume-averaged free energy of elastic deformation can be determined by analogy with a 
continuous medium. Then the total free energy is expressed as follows [29]:

F T w K G K T T Gij kk t� � � � � � �� � �, , / / / /� � � �� � � �� � � �� � �1 2 2 3 1 3 2 32
0 0 0 0 �� � ��

�
�

�

�
� �

�
� � �

�
p H

L v a
kkP

0, , ,
 

F T w K G K T T Gij kk t� � � � � � �� � �, , / / / /� � � �� � � �� � � �� � �1 2 2 3 1 3 2 32
0 0 0 0 �� � ��

�
�

�

�
� �

�
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�
p H

L v a
kkP

0, , ,
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where 
�
�

� �
�
�

� �
�� �

�
�

� �� � � �
�� �

F
I

K F
I

G
E F

I
K G

E
kk

1 2

2

1
23 2 1

2 3
1 1

�
�

�
�

�
, , /  

��� �2�
,

with Poisson’s ratio ν; Laham’s ratio λ, Young’s modulus E K G�
�� � �� �

�� �1 1 2
2 3

� �

�
/ ;  

the bulk elasticity modulus K; the shear modulus G; the resultant change in the unit volume of 
the body in the absence of stresses ε; the initial temperature T0; the current temperature T; the 
pore pressure P; the atmospheric pressure P0; PH = P – P0; the linear thermal expansion coeffi- 
cient αTw; the linear shrinkage coefficient bTw. 

The relationship between the average stress tensor, which determines the contribution to 
the macrodeformation of a granular heterogeneous system under drying conditions, is given as 
follows: � � �ij ij

f
H

ijP� �� �,  where σ ij
f  is the effective stress tensor and is expressed by Hooke’s 

law through the solid phase strain tensor as follows:

� � � � � � � � � � � �� � � � � �
ij
f

f mm
ij

f ij f
ij

f tP� � � � � � ��� �� �( ) /1 2 2 30
0 0� 00 0 0 0

0

T T
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�
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� , , ,

.
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ij
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f mm
ij

f ij f
ij
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ij��  � �� �

�
�
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�
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�
	 � � � �� � �

� , , ,

.

Here, � � �� � �
f f f, ,   are the effective coefficients, the volume fraction of the skeleton in the system 

being 1-Π. As regards a capillary-porous elastic-plastic body, 1 1 1�� � �� � � �� � �� � � � ��
f G 

is the effective strain shear modulus, with � � � �� � �, ,T i  as a function of relative 
shear in the plastic strain region determined from measurements of generalized strains

�
�

� � ��
�� � �� � ��

��
�
��

�� �2
2 1

6
2 2

0 5

ij ii ij i j
,

, ν as Poisson’s ratio and generalized stresses for 

simple loading cases; 1�� � �� � ��
f  is the generalized Laham’s constant. As far as a granular medium 

is concerned, 1 1 1
0

1

�� � � �� � �
�

�
��

�

�
��

�

� �� �
�
�

� �
�

�f ;  1 1 1 0
0 0

1

�� � � �� � �
�

�
��

�

�
��

�

�
��

�

�
��

�

� �� �
�
�

�
�

� �
�

�

�

�f , ;

1 1�� � �� �� �� �� �
f f,  are the elastic moduli of the granular skeleton depend on the struc-

ture and bonds between the grains (the greater the porosity, the lower the elastic modu-
li, other parameters being equal). Here, � �� �

0 0, are Laham’s constants of an elastic grain;
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1 2 3 2 3�� � �� � � �� � � � �� �
f f/ / ,  �

�
�

�� �
E

2 1
,  E is the effective Young’s modulus. For a

granular medium, the effective coefficients of thermal expansion and shrinkage, expressed through 
the effective elastic moduli, are as follows:

� � � � �� � �
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/
, ,

 
K � �� � �� �1 2 3� � �� �/ ,

are the elastic deformation coefficients averaged over the elementary volume. For a wet porous 
material, all these values are determined on the basis of experimental studies, and as practice 
shows, they are functions of moisture content and temperature. Based on the above, the expres-
sions of entropy and chemical potential have the following form:

S
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2.1 Entropy balance equation

According to the basic principles of the thermodynamics of irreversible processes, the product 
of absolute temperature and entropy growth rate is equal to the sum of the products of fluxes and 
the corresponding thermodynamic forces. Then, the energy transfer equations can be expressed 
in the form [30]:

�
�

� � � � � �
�

�� � � �
��

�
� � � �� � � � � �� � � � � �� � � �

�
�

S
T Pq t tp t

     

� .  (2.5)

Here, λq, λtb, λtp are the coefficients of heat transfer; Πt  is the part of entropy production

related to the redistribution of heat and mass in the body volume; the quantity of � �
�

�� �
��

�
, 

resulting from the part of entropy production due to evaporation.
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For small changes in temperature, and mass content, at which the characteristics of the 
medium can be considered constant, equations (2.3), (2.4) have the form:
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phase transition. In equations (2.6), it is assumed that ln ln .
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where αi0 are the initial volume concentrations. Here, all the quantities included in equation (2.7) 
are averaged over a variable volume. Considering the formula for differentiating integrals over a 

variable volume 
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 and the expression of the effective heat capacity in 

terms of components, as well as the fact that the first two terms are related to the deformability 
of the skeleton, the following is obtained (nonlinear terms above the second order of smallness 
are discarded):
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with the fluxes J i l v ai i i� �� �� �  , , ;  J De L vL gL� �� �� � ;  DgL is the velocity of the liquid and gas 
phases, provided that at the interface (gL): �a gLD� ;  J De v v gL� �� �� � .

In this case, the nonlinear entropy balance equation takes the form:
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.  (2.9)

Here Qij is the intensity of heat exchange at the interface; r r C C TL pv0 � � �� � .  The densities 
included in the heat transfer equation are scaled, not true.

2.2 Convection-diffusion equation for mass transfer

Equation (2.9) includes the time derivatives of ρ ρ ρv a L, , ,  which follow from the mass balance 
equation of the k-th component [31]:
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where Jk k k� � �


,  


υk  is the velocity of the k-th component of the carrier phase, with ρkl  as the 
production capacity of the k-th component corresponding to the phase transition of the l-th com-
ponent to the k-th. These equations can be written as follows:
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The heating of the material induces the filtration flow of liquid and gas. The liquid flow is caused 
by a gradient of liquid concentration in the pores α, temperature T, and pressure of the vapor-air 
mixture P. The flows of steam and air are caused by the gradients of pressure and mass concen-
tration of steam in the mixture. Assuming that the vapor-air mixture forms a homogeneous phase 
and the liquid is water, the velocity of the components satisfies Darcy’s equation, the fluxes of the 
components of the carrier phase are presented as follows [31, 32]:

� � � � �
J D T K K P P gL L L

L

L
L cap L� � � � �� � � � � ��� � � �

�
�

�0
0

0
0( ),



50

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 2

� � � �
J K K P Dv

v

e
g e g

v

g

� � � � �� � �
�
�

� �
�
�

0
0

0

01
�

�� ,  (2.12)

� � � �
J K K P Da

a

e
g e g

v

g

� � � � �� � �
�
�

� �
�
�

0
0

0

01
�

�� .

Here D D K K K P gL e g l e cap, , , , , , ,� �
 �  are the effective diffusion coefficients of liquid, gas, per-

meability, the relative permeability of gas and liquid, effective viscosity of the gas mixture, capillary 
pressure, acceleration of the earth’s gravity; Ji  are the flows of liquid, steam, and air; δ  is the

thermogradient coefficient; K
r

�
�

2

1 �
,  with r as the characteristic radius of the pores in the 

skeleton. The filtration coefficient K  depends on the pore size in the sample and the character-
istics of the pore space. As a rule, it is assumed that the relative permeability of a substance is 
proportional to the volume fraction of the substance in the pores [33, 34]: K Kg l� � �1 � �, .

When a liquid phase is present in the pores, zones of entrapped air can occur. In those zones 
of the material where the air is entrapped, the velocities of liquid and gas are equal and the flows 

of liquid and vapor are determined by the following relations J Ja
a

L
L2

1
�

� �
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�
�

,  J Jv
a

L
a2 2�
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,  with

the first relation JL  being satisfied [35]. 
Let the transition from the entrapped state to independent phase motion occur when the value 

α decreases in a certain range of the two-phase zone � � �g L� � ,  where α αg L,   depend on the 
structure of the medium and are considered to be given. To describe the movement of phases in 
the entire region of moisture content change, the air and vapor flows are presented in the form 
J f J f Ji i i� � �� �1 21 , i v a�� �; ,  with the continuous function f, along with its derivative, chang-
ing from 1 to 0 for � � �g L� �  and being equal to one for � �� g  and zero for � �� L.  Let it 
be expressed in the form:
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In this case, it is possible to study the behavior of the quantities in question at different ratios 
of flux rates. Summing the first and third equations of system (2.10), the equations of moisture 
and air transfer are obtained:
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� �� 1 00
a aJ .  (2.13)
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If the porosity is considered constant, then the unknowns in these equations are α and ρa.  
Defining the fluxes of the component velocities as functions of the liquid volume fraction α, pres-
sure P, and mass fraction of vapor in the vapor-air mixture, the following equations will be satisfied:
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With this representation of the fluxes, the problem of heat and mass transfer can be solved 
in a one-dimensional formulation. This is possible when the layer thickness is small compared with 
the length and width. With � � 0,  the first equation of system (2.13) becomes the equation for 
determining the density of unsaturated steam ρv

0.  The value of DL  is determined as in [35]:
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where D DL LL0,  are the diffusion coefficients of the liquid in the solid skeleton and in the liquid, 
respectively.

The effective viscosity coefficient of the vapor-air mixture is a function α. Moreover, � �L g� ,  
where µg  is the viscosity of the gas mixture for 0 � �� �g,  after which µef increases from µg  
to µL  for � � �g L� �  and remains constant if � �L � � 1.  The thermogradient coefficient is 
also a function α:

� � � �� � � � �� ��
��

�
��0

2
1 4 0 5, .

In the state of entrapped gas, for � �� L,  µef  and the effective vapor diffusion coef-
ficient Def  are also a function α, with D Def = max  for 0 � �� �g  and decreasing to zero for 
� � �g L� � . In the entrapped state, no vapor diffusion occurs in the material � � �v a2 2 12� � .  

The vapor-air mixture is considered an ideal gas. Pressure P
M M

RTg
v

v

a

a
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.  The density of
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saturated vapor is a function of temperature and for water is approximat-
ed by the Filonenko formula (no hygroscopic state of the material is considered here)

�v
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0 133 18 681

4105
35
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�exp .  when � � 0.  If the deformation of a solid skeleton is 

subject to Hooke’s law, then linear relationships can be assumed for the fluid, which links 
overpressure, density, and temperature. The state equation for a fluid can be expressed as
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pressure in the fluid. Here, βpL, αTL  are the coefficients of volume and temperature expansion, 
respectively. The overpressure in the carrier phase is P P Pg L� �� � �1 � � .  The expression for PL 
may include the capillary pressure, which depends on the surface tension.

2.3 Compatibility equation

If the porosity Π changes during the drying process, it is necessary to have an equation to 
determine it. Thus, the elasticity relations for a solid skeleton are considered. By Hooke’s law for 
a micro-volume of a solid skeleton:
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Let the expression be averaged by convolving it by the indices:
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By Hooke’s law for fictitious stresses:
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Differentiating expression (2.15) by τ and considering relation (2.14):
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By definition, � �0 0
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and by substituting (2.18) into (2.17), the compatibility equation that relates the true densities 
to the porosity is obtained:
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2.4 Momentum balance equation
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To determine the deformations and average displacements in a solid skeleton, the momentum 
balance equation for a saturated porous medium is obtained in the form [27]:
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where 
  

u u u1 2 3, ,  is the displacement vector in the direction of the axes Ox Ox Ox1 2 3, , .  
To solve the system of equations (2.9), (2.13), (2.19), (2.22), it is necessary to set the 

single-valued conditions for heat and mass transfer, as well as the mechanical and initial conditions. 
The mechanical conditions at the boundary are given by the surface force vector f



,  or the displace-
ment vector 



h,  or the ratio between the vectors f


 and 


h.  The condition � ij j in f�  reflects the 
equilibrium of the stresses and forces applied to the boundary distributed over the body volume. 
For the bearing medium at the boundary, the heat and mass flows of moisture and air are specified. 
Initial conditions are set at the initial temperature t = 0,  liquid concentration α, air concentration 

�
�

a
vs

v

P
T

M
RT� �

� �
0

0 ,  and zero initial stresses. Besides, when setting the heat flux in the case of 

contact drying, q T r j C h
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* ,  where ρp pC,  are the specific density and heat
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capacity of the sieve (the thin plate) on which the grain layer lies. In particular, for a multicompo-
nent inhomogeneous linear viscoelastic body, the momentum balance equations are as follows [27]:
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Here, ui is the displacement, a comma marking the differentiation along the i-th coordinate.

2.5 The key system of equations

The obtained relations allow writing a complete system of equations for determining functions 
�, , , , ,N P v a
 � � �  and u ii ij ij, , , , ,� � �� �12 3  namely the heat conduction equation:
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– the equation for the pressure:
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where αTL,  βpL  are the coefficients of temperature and volume expansion of the liquid; 
– the equation for the density of saturated vapor:
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– the equation of mass balance:
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Summing the mass balance equations for vapor and liquid, two equations for determining ρa
0  

and α are obtained:
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Invariants for the averaged values over the volume of the solution � �
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Momentum balance equation:
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The pressure difference between the carrier and solid phases due to strength:

P P P T Tf f f f f1 0 2 1 0 0
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 	 � � �� � �

� �
�

,   (2.47)

where ��f , � �f f,   are the effective moduli of elasticity and expansion. Average velocities  
and strains: 
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where S j0  is the inner surface of the porous body.

2.6 Numerical experiment

Let’s consider a thin plane plate, a surface of which from one side is subjected to the external 
heat flow q te � �  (Fig. 2.1). 

 Fig. 2.1 Schematic representation of the model

z

L

h

l

Conductive contact drying takes place in a steam-air (gas) environment by transferring heat 
to the material when it is in contact with heated surfaces. The plate has an area s, thickness hw, 
its material is characterized by density ρw, specific heat capacity Cw. A layer of capillary-porous 
moisture-saturated material of the thickness I is placed on this plate. The capillary-porous material 
has the porosity Π, density ρ0

0,  specific heat capacity C0, and thermal conductivity coefficient in 
the dry state λ0.

From the open side of the capillary-porous material, the moisture evaporates into the cavity of 
the volume V and the depth L = V/S. There is an outlet in the cavity through which the steam-air  
mixture flows into the environment under pressure Pe. The cavity is thermally insulated. It is possi-
ble to neglect the heat capacity of its walls. Such an installation can serve as an example of a drying 
chamber for conductive drying.
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The system of heat and mass transfer equations is described as follows:

T T
d
d

C T r T r J C TJef v ef v pi
i l v a

i/
, ,

0 0 0
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01
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,  (2.50)
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J J JL v m� � ,
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,  (2.52)
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RT T
0 133 18 681

4105
35

� �
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�
�

�

�
�exp , .  (2.53)

Here Π, α, r0, λef, Ji are the porosity, relative moisture saturation, specific heat of vaporiza-
tion, effective thermal conductivity, and moisture, steam, and air flows, respectively. If the evapo-
ration is not strong, then it can be roughly assumed that the steam pressure in the cavity is equal 
to the saturation pressure. In this system of equations, the temperature T, moisture saturation 
α, and air density ρa

0  are unknown. At the initial moment, there can be moisture, air, steam in the 
pores. It is possible to assume that the steam-air mixture is a mixture of ideal gases and in the wet 
state, when the capillary-porous material is saturated with moisture α > 0, the density of steam-
air mixture is a function of temperature only. The equation does not include the phase transition 
criterion, the dependence of which on the parameters is complex. The equations remain valid in the 
dry zone, where there is no moisture, and α = 0, Iv = 0 in this domain, equation (2.52) serves to 
determine the moisture density.

The boundary conditions are formulated as follows: at the initial moment of time, the pressure 
of the steam-air mixture in the capillary-porous material and in the cavity is equal to the external 
atmospheric pressure Pe: Pg = Pe(0) = P0.

The initial temperature:

T(x,0) = T0. (2.54)

The moisture saturation α(x, 0) = α0 ≤ 1. 

The air density �a
vs

ax
P P

RT
M0 0

0

0, .� � � �
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The boundary conditions on the side of the heated plate are as follows:

q T C h
T

r J r T r C C Te w w w v L pv� � � �
�
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� � � � � �� �� �
�

* *, . 0  (2.55)

The moisture and air flows at the interface from the side of the plate are zero:

J Jm a= =0 0, . 

The boundary conditions on the surface of the capillary-porous material from the side of the 
cavity with the opening for x = l are as follows:
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T,  (2.56)

where the first term ��T  characterizes the heat flow that penetrates inside the body; the 
second term is equal to the product of the specific heat of vaporization multiplied by the density of 
the moisture flow that evaporates; the third term is the power spent on heating the surface; the 
fourth term is the flow of heat transmitted by the movement of the steam-air mixture.

The total flow of vaporized moisture should be equal to the flow rate of the moisture flow-
ing out through the hole, to estimate which let’s use the formula for adiabatic output from the  
cavity [36]. To determine the flow of moisture, the equation of conservation of moisture mass in 
the cavity is used:
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,  (2.57)

the air flow:
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0, .  (2.58)

The vapor density is equal to the saturated vapor density. The movement of gas in the cavity 
into which evaporation occurs is neglected. The gas temperature in the cavity is assumed to be the 
same throughout the volume.

The flow of the steam-air mixture through the drainage hole is determined by the formulae of 
output from the cavity:
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Here Tc, Pc are temperature and pressure in the cavity, Qe is the gas flow through the drainage 
hole [37], γ is the adiabatic index, Rg is a gas constant. The boundary conditions are obtained under 
the assumption that the gradients of temperature, pressure, and concentration across the cavity 
are negligible, and the vapor pressure in the cavity is close to the saturation pressure for the  
cavity temperature.

Let’s write the system of nonlinear differential equations (2.1)–(2.3) in a matrix form:

�
�

� ��� �� �
�
�

�
T

E u
x

J


0,  (2.60)

where u T a� � �, , ;� �0  


E  is a vector, the components of which are the total content of enthalpy, 
moisture, and air in a unit volume of the material; 



J  is a vector composed of heat, moisture, 

and air flows, it is linearly related to the gradients T, α, P; ca a g� � �0 0/ ;  J u A u
F u

x
� � � � � � � � �

�
;

F F T P ca� � �, , , ;�  A(u) is the 3 4×  matrix, and the 3 5×  matrix (if capillary pressure is taken 
into account) [38–40]:

A a i jij� �� �� � �, , , , , 14 13
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a32 0= ;
 
a

K
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a33
01

�
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�
� ;

 
a Def v a34
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Here D C Cef pa pv, ,   are the coefficients of effective diffusion, specific heat capacities of air and 
steam at a constant pressure, respectively; λ is the coefficient of effective thermal conductivity:
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where Kg � �1 �  is a relative gas permeability; r0  is the heat of vaporization for T K= 0 ; K;
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The system of equations has to satisfy the boundary conditions:

J u Q J u Qx x� �� � � � � �0 0 1 1, , 

and the initial conditions: ( , ), , ,0 0 10 0� � � � � � � �x l t T T  � �

�a vs aP P T M RT0
0 0� � � ��� �� / ,  (2.61)

Q

q C h T te p p

0 0
0

�

� � �� /

 is the gas flow from the side of the plate,
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The nonlinear problem is solved by two methods for comparing the results.
Construction of a difference scheme.
Let’s integrate the matrix Eq. (2.60) with respect to x over the interval x

x
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Equation (2.62) after the difference approximation is reduced to the difference scheme.  
A three-point approximation of the spatial variables is used. The system of nonlinear algebraic 
equations is solved by Newton’s method. 

The linearization method.
In order to solve the boundary value problem, in addition, an iterative process is built, at each 

step of which a linear boundary value problem is solved for the next approximation, which uses the 
information of the previous one. A small-time step is used to ensure convergence of iterations.
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 of the problem solution is known, then the exact solution u* can

be presented as follows u u ui i
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Based on the Lagrange formula:
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Using quadrature formulae of the interpolation type according to the 3/8 rule [38], let’s obtain 
the difference scheme:
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by �� ��
�
T a, ,� �  the differentiations with respect to T a, ,  � �  are denoted.

Denote

�
�
� ��

�
�

�

�
� � ��

�
� � ��� �� �

E
t

u t x E J u t x
u t x

in
k

u t x
i k n

i k n

, , , , ,
, ,

, ,

  JJin
k�� ��,  (2.67)

J t x A A
F F

xi
k

n n
k

n
k n

k
n
k

i

, ./� �
�� � � � �� � ��

�
�

�

�
�1 2 1

11
2 �



65

2 DRYING PROCESS MODELS FOR A MULTI-COMPONENT SYSTEM OF CAPILLARY-POROUS STRUCTURE  
BASED ON THERMODYNAMIC RELATIONSHIPS OF MIXTURE THEORY

CH
AP

TE
R 

 2

Taking into account Eqs. (2.63), (2.64) and the boundary conditions:
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arrive at the iterative scheme of linear equations. If the i-th iteration of the solution uin
k  is known, 

then using Lagrange’s formula E E E u ui n
k
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Here Ein
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k
, /+1 2  are values of the vectors 

 

E Ii i,  at the points n k n k, , / , .� � �� �1 2
To verify the result, let’s apply a slightly modified method of linearization, which is less 

time-consuming for the difference scheme. It is possible to proceed from equations (2.60), (2.61), 
(2.65)–(2.68), where Q q q qh m a0 0 0 0� � �, ,  are the flows of enthalpy, moisture, and air through the 
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Based on Lagrange’s formula, let’s present
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1 1 1 2 2 1 2, ,/ /+ +  are matrices formed as follows: 
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By analogy:
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The variables Q Q0 1,  are presented in the form:
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Taking into account these ratios, equations (2.65)–(2.68) are written as follows:
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The transfer coefficients are taken from the Lykov’s work [32]. This model describes mass 
transfer processes under moderate heat loads.

The capillary-porous material for which:
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Calculations are made for an aluminum plate and a capillary-porous material of different po-
rosity (cork tree). The flow of the continuous phase is assumed to be slow. Inertial terms are ne-
glected. Transfer coefficients are considered to be known functions of saturation and temperature.

T0 = 290 K, h = 2∙10-3 m, DLL = 1.5DL0, a0 = 0.2, R = 1.01325∙105 Pa, T0 = 8.31 J/Kmol,  
Mv = 1.8∙10-3 kg/mol, Ma = 2.9∙10-3 kg/mol, cpa = 1.006∙103 J/(kg∙K), cpv = 1.103∙103 J/(kg∙K),  
Cva = 718 J/(kg∙K), Cvv = 862 J/(kg∙K), aL=9.5∙10-1, r0

62 3 10* .� � J/kg,  Pe = 10 Pa,  
I = 5∙10-2 m, L=3∙10-2 m, П=9∙10-1, CL = 4.190∙103 J/(kg∙K), C0 = 103 J/(kg∙K), K m� �10 14 2,  
mL = 5∙10-4 kg/(m∙s), mef = mg = 10-5 kg/(m∙s), Def = 5∙10-5 m2/s, λ0 = 6∙10-2 W/(m∙K),  
λL = 6∙10-1 W/(m∙K), ag = 8.5∙10-1, al = aа = 10-1, ρ0 = 6∙10-2 kg/m3, ρL = 103 kg/m3, 
δ0 = 10-3 1/K, DL0 = 10-3 m2/s, Tc = 327 K, s/S = 10-4, V/S = 3∙10-2 m.

As an example, porous materials with the porosity Π = 0.4, 0.6, and 0.8 heated by heat flows 
q = 3∙103, 5∙103, 104 are considered and the influence of various parameters on drying processes 
is investigated. The results of the calculations are shown in Fig. 2.2–2.7. 

The solutions of the problem are obtained by finite-difference and iterative methods, and the 
comparison of the results of these solutions is used to study their accuracy. Calculations have 
shown that, depending on the magnitude of the heat flux, porosity, and initial saturation of the 
capillary-porous material, evaporation proceeds differently. The temperature (dependent on po-
rosity) under the action of the flow q = 3∙103, 5∙103, 104 W/m2 with the porosity Π = 0.4, 0.6 
during 500 s is monotonically increasing function of time, but for q = 104 W/m2 and Π = 0.8, this 
dependence is no longer monotonous either inside or on the surfaces of the material. With a heat 
flux q = 104 W/m2 and the porosity Π = 0.8, already at the 150th second of drying, a moisture 
of a certain mass is released from the material (condensation caused by oncoming warm and cold 
flows), while the temperature first decreases slightly and then increases with time slower than 
in a material with the same characteristics but with less porosity. In this case, the lower the po-
rosity, the greater the gradient of temperature rise. This property is used in problems of thermal 
protection of materials. With the same porosity and heat flow at the beginning of the evaporation 
process, the temperature increases faster with a lower initial moisture content of the material.
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 Fig. 2.2 Temperature variations in time for Π = 0.9 and α0 = 0.8.  
The curves 1, 2, 3 correspond to the q = 104, 5∙103, 3∙103, respectively

400

390

380

370

360

350

340340

330

320

310

300

290
200 250 300 350 4000 50 100 150

1
2

3T,
 K

t, s

 Fig. 2.3 Change in volumetric saturation in time on the outer surface for α0 = 0.8. 
The curves 1, 2, 3 correspond to the q = 3∙103, 5∙103, 104, respectively
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 Fig. 2.4 Temperature variations in time under the action of the flow q = 5∙103. 
The curves 1, 2, 3 correspond to the porosity Π = 0.4, 0.6, 0.8, respectively
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 Fig. 2.5 Change in volumetric saturation in time on the outer surface for q = 5∙103, 
a0 = 0.8. The curves 1, 2, 3 correspond to the porosity Π = 0.4, 0.6, 0.8, respectively
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 Fig. 2.6 Temperature variations in time on the heating surface (curves 1);  
external surface (curves 2) for q = 104, α0 = 0.8 for different values of porosity 
(dashed curves for Π = 0.4; solid curves for Π = 0.6, dotted curves for Π = 0.8)
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 Fig. 2.7 Change in air density in time on the heating surface (curves 1);  
external surface (curves 2) for q = 104, α0 = 0.8 for different values of porosity 
(dashed curves for Π = 0.4; solid curves for Π = 0.6, dotted curves for Π = 0.8)
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CONCLUSIONS

The basic statements are formulated and fundamental thermodynamic relations for moisturized 
capillary-porous deformable systems are obtained when describing them using continuum repre-
sentations. Possible methods of choosing the parameters of the local thermodynamic state of a 
solid deformable multi-component system are presented, being consistent with their choice of 
the liquid (gaseous) phase. A complete system of equations is constructed to describe the drying 
process of dense packing of capillary-porous materials, based on the approaches of the theory of 
the mixtures of porous and dense packing of disperse materials of multicomponent three-phase 
media. There have been analyzed the influence of the external heat flow, the initial volumetric 
moisture saturation on changes in temperature, volumetric moisture saturation, and air density in 
body pores in time by the example of conductive drying. The magnitude of the heat flows of the ex-
ternal environment and the initial relative moisture saturation during contact drying of the material 
affects the behavior in time of both the temperature and the saturation of the porous solid. These 
characteristics are especially important in the first drying stage when the influence of the initial 
conditions is important. Therefore, the phenomena that occur at the heating stage with a large 
initial moisture content were considered.
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