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CONVECTIVE DRYING OF WOOD OF CYLINDRICAL SHAPE

Abstract

In this Chapter, the mathematical nonstationary and quasi-stationary models of the heat and 
moisture transfer in convective drying of a long wooden beam with a circular cross-section of the 
radius R (0 ≤ r ≤ R) are constructed, taking into account the moving boundary of the moisture 
evaporation zone under the action of the convective-thermal unsteady flow of the drying agent, 
as well as the calculation schemes for the implementation of these models into practice. Numer-
ical experiments are carried out. The regularities of distribution of temperature and moisture in 
a capillary-porous body of a cylindrical shape at an arbitrary moment of drying depending on the 
coordinate of the phase transition, thermophysical characteristics of the material, and parameters 
of the drying agent have been established.
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Drying is the process of removing moisture from the body, which changes the structural-me-
chanical, technological and biological properties of the material, caused by the change in bonding 
forms of moisture with the material [1, 2]. When moisture is removed, capillary-porous bodies 
become brittle, slightly compressible and can be turned into powder; colloidal bodies significantly  
change their size with changing moisture content, but retain plasticity or elastic properties; capil-
lary-porous colloidal bodies have a capillary-porous structure, with capillary walls having the prop-
erties of limitedly swollen colloidal bodies (skin, tissue, wood) [3–5].

Convective-heat drying is classified into subtypes: steam-air, gas, steam, moisture and others [6]. 
The uniformity of drying materials in drying plants is achieved by the drying agent circulation. The 
drying agent circulation with velocity υ can be natural and forced, unilateral and reversible. It is 
carried out by fans in a chamber or through ejector nozzles [6]. The drying agent is characterized
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additionally by humidity �
�
�

� v

n

 and temperature t. Here, γv is the density of vapor,  and γn is the

density of saturated vapor. Parameters t, ϕ, υ define the drying mode [6].
The change of local moisture content U and local temperature t in a capillary-porous body with 

time depends on the relationship between the mechanism of moisture and heat transfer inside the 
wet material as well as the mass and heat exchange of the body surface with the drying agent [7–9].

In drying plants, the regime changes with time. A rigorous analysis of drying kinetics is complex. 
Increasing temperature intensifies the drying process [10, 11]. Increasing the moisture content 
of the drying agent reduces the intensity and critical moisture content [12, 13]. Increasing the 
velocity of the drying agent leads to higher drying intensity at the beginning of the process and has 
much less effect at the end [14].

The whole process of drying porous materials can be divided into three stages [6]:
1. Disordered irregular regime at the beginning of the process. The initial distribution of tem-

perature and moisture in the body is important here.
2. From some time on, the body enters a regular heating regime, when the initial distribution 

no longer has an effect. Body heating is described by a simple exponent.
3. The final stage of heating corresponds to the stationary state, at which the temperature is 

equal to the ambient temperature at all points of the body.
During the drying process, three characteristic zones can be formed in the body: the outer 

gas zone, where all the pores are dried; the middle two-phase zone, where the dried pores and 
the pores filled with moisture; and the inner moisture zone, where all the pores are filled with 
moisture. The two-phase zone emerges due to the release of moisture through evaporation, and on 
the other hand, through the flow of moisture by the action of capillary forces from wide moisture 
pores into narrow dried pores and recondensation of moisture. In the elementary physical volume 
of the two-phase zone, the moisture phase may exist in the form of a connected network of wet 
pores and in the form of unconnected inclusions, blocked by gas from all sides. Their fates depend 
on the specific moisture content. In the process of evaporation with a decrease in specific moisture 
content, redistribution and fragmentation of the cohesive system occur. Upon reaching a critical 
moisture content, the bonds are completely broken. The capillary inflow is possible only through the 
connected moisture network. For moisture contents less than critical, the transfer through the 
moisture phase is impossible. The cohesive system of moisture pores is also heterogeneous due 
to one-side open pores [4]. The dimension of these zones depends on the pore radius distribution 
function, which characterizes the structure of the porous body. During evaporation, the boundaries 
of the zones move into the middle of the body.

Forms of moisture bonding with the material. The velocity of moisture movement inside 
the material depends on the form of its connection with the material. The main forms of moisture 
connection with the body are adsorption and capillary bonds [15]. The amount of adsorption-bound 
and microcapillary moisture depends on the temperature and pressure in the environment. This 
moisture is called hygroscopic moisture. Changes in material dimensions (shrinkage-soaking) are 
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linked to the change in the amount of hygroscopic moisture. Bound moisture is uniform and depends 
on the structure of the surface interacting with it. There arises a density gradient in the layer 
thickness of the water bound to the body surface. Capillary forces and gravity do not occur in this 
bound water. The evaporation heat of bound water is higher than the one of free water by the 
energy amount of adsorption water bounding with the surface of E ≈ 280 cal/g [15].

In the macrocapillaries of a capillary-porous body, the laminar flow satisfies Poiseuille’s equa-

tion j
P P

l
�

��
�

2
1 2

8
, with P1, P2 as the pressure at the ends of the capillary of length I. Poiseuille’e qua-

tion and Fick’s law of diffusion are not satisfied in microcapillaries, with j
RT l

P
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being the flow [16], where µ is the dynamic viscosity, ε is a constant for a capillary-porous body, 
it is called the coefficient of the molecular gas flow. The heat conduction coefficient for gas in 

microcapillaries is defined as � �
�
��� 2

3
c

RT
, where cυ is the specific heat capacity of gas for 

the constant volume and ρ is the capillary radius [16].
The forms of moisture bonding with the material play a major role in the mechanism of heat and 

moisture transfer inside the body.
The main mechanisms of moisture transfer in the porous medium are [17]:
– diffusion of vapor-air mixture in the gas zone by the action of density difference in the direc-

tion opposite to the gradient and recondensation by the action of partial pressure gradient of vapor 
over menisci of different curvature;

– thermal diffusion of vapor in the direction of heat flow from areas with higher temperature 
to areas with lower temperature; 

– convective transfer of vapor and moisture by the action of external pressure drop;
– capillary movement of moisture in the pores that depends on the structure of the porous medi-

um, i.e. the capillary inleakage from wide to narrow pores due to the difference in capillary pressure; 
– moisture film transfer by the action of gradients of the wedge and capillary pressures.
Experimental studies of these transfer mechanisms carried out on real and model systems 

indicate the decisive effect of capillary and surface forces on the mass transfer process and drying 
intensity. These forces regulate the mutual distribution of phases in the pore space and determine 
the conditions of transfer, causing the mechanisms of transfer.

The amount of adsorption-bound and microcapillary moisture depends on the temperature and 
vapor pressure in the environment. The relationship between moisture and the body is character-
ized by the differential and integral curves of pore radius distribution.

The area under the differential curve on its arbitrary part provides the moisture volume (sat-
uration) within the range of capillary radii change. The curves of pore distribution by radii show a 
wide variation in the size of voids in the body pores.
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To determine the rational drying regime, the choice of which depends on technological changes 
in the drying process, it is important to study the regularities of moisture transfer for the purpose 
of its control. One of the possible ways to control the moisture transfer mechanism is by affecting 
the processes of diffusion and thermal diffusion.

The moisture movement by the action of temperature (heat and moisture conduction) includes 
the following phenomena [1, 3–5, 10, 17]:

1. Molecular diffusion of moisture in the form of molecular vapor flow, which occurs due to 
different velocities of molecules of heated and cold material layers.

2. Capillary conduction caused by the change in capillary potential, which depends on the sur-
face tension, decreasing with rising temperature. Since the capillary pressure over the concave 
meniscus is negative, the decrease in pressure increases the suction force, resulting in moisture 
leaving the heated body to colder layers in the form of liquid.

3. The movement of fluid in a porous body in the direction of heat flow is caused by trapped air. 
When the material is heated, the pressure of the trapped air increases, and the air bubbles expand. 
As a result, the liquid in the capillary pore is pushed in the direction of heat flow. 

Heat moisture conduction is the reason for the movement of moisture in the direction of 
heat flow. During convective drying, a temperature gradient opposite to the moisture gradient is 
created, which prevents the movement of moisture from the bulk to the surface of the material. 
The flow of moisture directed to the surface of the material is reduced by the value of the flow of 
moisture due to thermal diffusion. The temperature gradient is an obstacle to the movement of 
moisture from the central layers to the surface. With a constant intensity of drying, conditions 
are created that help the evaporation of moisture inside the material. Thermal diffusion reduces 
the moisture gradient and reduces the speed of movement of liquid moisture and the amount of 
water-soluble substances on the surface of the material. With a change in the value and direction of 
the temperature gradient, the conditions for the movement of moisture and substances dissolved 
in it change. This leads to a change in the physical and chemical properties of the material [3–5].

1.1 Convective drying of wood of cylindrical shape: nonstationary case

One of the important areas of modern mathematical modeling is the construction of adequate 
mathematical models for the description of the technological processes of drying capillary-porous 
materials. Such models, as a rule, are based on the thermodynamics of irreversible processes and 
must take into account the peculiarities of the kinetics of internal transformations, in particular, 
phase transitions. The problems of mathematical physics based on them also require the develop-
ment of appropriate analytical and numerical methods for their solution.

Drying of wood includes taking into account the heat-mass exchange between the wood sur-
face and wet air and the internal heat and moisture exchange in the material [18]. The relationship 
between the distribution of moisture content and temperature fields depends on the geometric  
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dimensions of the material to be dried. In this chapter, the mathematical nonlinear and linear 
models of the moisture transfer in drying of a long wooden beam with a circular cross-section of 
the radius R (0 ≤ r ≤ R) is constructed, taking into account the moving boundary of the moisture 
evaporation zone under the action of the convective-thermal unsteady flow of the drying agent as 
well as the calculation schemes for the implementation of these models into practice. Numerical 
experiments are carried out. The regularities of distribution of temperature and moisture in a 
capillary-porous body of a cylindrical shape at an arbitrary moment of drying depending on the 
coordinate of the phase transition, thermophysical characteristics of the material, and parameters 
of the drying agent have been established.

When developing the models, it was taken into account that wood shrinkage along the fibers is 
negligibly small (0.1–0.3 %). The cross-section shrinkage is from 2 to 10 % [6].

Since the length of the considered cylindrical beam is much greater than the dimensions of its 
cross-section, and the coefficient of moisture conductivity along the fibers is much larger than that 
coefficient across the fibers, and due to the great complexity of the structure of the wood mate-
rial, a plane averaged thermal conductivity problem is considered. As a tool for describing thermal 
conductivity, differential equations were used to model non-stationary processes [19]. The method 
of integral transformations was used to find solutions [20].

To simplify the models, it is assumed that the gas phase is water vapor, which is an ideal gas.
The aim of this work is the determination of optimal wood drying parameters, at which energy 

consumption will be minimal.
Problem formulation. Let’s consider a cylinder with a radius R (0 ≤ r ≤ R) shown in Fig. 1.1. 

Given the symmetry of the boundary conditions of this problem, it is possible to introduce a polar 
coordinate system (r, ϕ), the polar axis of which is directed along the axis of the cylinder. The cyl-
inder is under the action of convective-thermal non-stationary flow of the drying steam-air agent of 
the velocity υ. It is possible to assume that the drying agent regime is three-stage, non-stationary, 
and includes heating, keeping, and cooling.

 Fig. 1.1 Schematic representation of the wooden cylindrical beam

R

ϕ

The control parameter in this process is the temperature of the drying agent Ta. In convective 
drying, the heat supplied by the gas is used to evaporate the liquid, heat the material, and overcome 
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the energy of moisture bonds with the material. It is possible to assume that the moisture in the 
dried area is removed and in the rest of the volume it is preserved, known and its density is ρL.  
The moisture content W retained in the body is calculated by the formula:

W
V V

VL
m�

��

�
�

�

�
�� ,

where V is the body volume; Vm is the volume of the dried area. Note that when hot air contacts 
with moisture particles, the latter break down into steam and smaller liquid particles.

The process of heat conduction in the body is described by the equation:

� �C C C
T

T

r
d T
dr

r
dT
d r

v v a a s s� � �
�

�

� �

�� � � �� ��� ��
�
�

� �

� � �� �

1

2 1

1
2

2
2

2 �� �� ��

�
�

�

�
� � � �� � �2 2 2 2 1 0r T , .  (1.1)

where τ is time; r is the radius of running point (0 ≤ r ≤ R); γ1
2  is the particle decomposi- 

tion coefficient.
Equation (1.1), using the Bessel differential operator, takes the form:

B T r
d T
dr

r
dT
d r

r T� � � ��� �� � � �� � � �� ��

�
�

�

�
�

2
2

2
2 2 22 1 ,

for the given volumetric heat capacity cρ and averaged thermal conductivity λ in the quasi-homo-
geneous approximation, which can be used in wood drying problems with acceptable temperature 
gradients, has the form [20]:

�
�

� � �� �� � �
T

T a B T r
c�

� �
�

��
�

2 2 2 1
2

0, , , ,   (1.2)

where a
C C Cv v a a s s

2

1
�

� � �� ��� ��

�

� � �� �( )
 is the averaged thermal diffusivity coefficient.

Let’s construct the solution of Equation (1.2) under the following boundary conditions:

T r g r r R� �, , , ,� � � � � �� ��0 0  (1.3)

lim , ,r r R ar
r T

r
T T� �

�
�

� � � �
�

�
�

�
�

�

�
� � � �0 11

1
11
10� � � �  (1.4)
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where Ta is the temperature of the drying agent; γ2 is responsible for the multiplication of particles 
of the steam-air mixture (averaged coefficient of decomposition) in the porous material under the 
action of the drying agent; indices v, a, s indicate the components of steam, air, and skeleton, 
respectively; Π, Cv, Ca, Cs, ρv, ρa, ρs are porosity, heat capacity, and density of steam, air, and skel-
eton, respectively; λ is the averaged coefficient of thermal conductivity; � �11

1
11
1,  are coefficients 

of thermal conductivity and heat transfer on the outer surface of the cylinder.
The temperature of the drying agent Ta(τ) is as follows:

T

T
T T

T

T T
a �

�
� � �

� � �

� �
� �
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�
�

� �

� �

�
�

0
0

1
1

1 2

3 1 2

3 2

0max

max

max

, ;

, ;

 

 

��
�
�

� �

�

�

�
��

�

�
�
�

T Tmax , .1

3 2
2 3� �
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 (1.5)

The scheme of Ta(τ) behavior is shown in Fig. 1.2.

 Fig. 1.2 Control function Ta(τ)

T, K

Tmax

T0

T1

τ1

ϕ1

τ2

ϕ2

0 τ3

Here T0 is the initial temperature of the drying agent; cooling is carried out to some equilibrium 
temperature.

It is possible to expand this function into a trigonometric Fourier series with respect to cosines:

T
n n

a n
n
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Let T*(p,r) be the image of the Laplace transform of the temperature T(τ,r):

L T r T r e d T p rp� � ��, , * , .� ��� �� � � � � � ��
�

�
0

Then, in accordance with the problem (1.1)–(1.4), it is possible to obtain the following bound-
ary value problem with respect to the function T*(p,r):

B T
d T
dr r

dT
dr r

T g r� � �
�

�
� �

, �� � � � �
�

� �
� �

��

�
��

�

�
�� � � � � �2

2

2
2

2 2

2

2 1
 ,,  (1.6)

lim * , , ,
*

r r R ar
r T p r

d
dr

T T p�
�

�

�
�
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�

�
�

�

�
� � � � �0 1 1

0 1
1

1
1� � � �  (1.7)

g r a r g r a p p i i� � � � � � �� � � � � �� � �2 2 2 2 2 2 1, , , .   � � � �

Let’s fix Re Re .
/

� �� �� ��
��

�
��
��a p1 2 1 2

0  Construct a Cauchy function for equation (1.6) to 

satisfy homogeneous boundary conditions. A fundamental function εα
*(p,r,ρ) satisfying the homo-

geneous equation corresponding to equation (1.6) and the homogeneous conditions corresponding 
to the conditions (1.7) is the Cauchy function. The solution of equation (1.6) satisfying the homo-
geneous conditions corresponding to the conditions (1.7), has the form:

T p r p r g d
R

* , , , ,� � � � � � �� ��� � � � ��
�



2 1

0

where εα
*(p,r,ρ) is a fundamental function of the boundary value problem (1.6), (1.7) with the 

following properties:
– the function εα

*(p,r,ρ) satisfies the homogeneous equation corresponding to equation (1.6) 
and the following boundary conditions [20]:
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where Iv,α(λr), Kv,α(λr) are modified Bessel functions of the first and second kind � � � �� � � ��ia 1 1
2
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Returning to the original, it is possible to obtain:
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where a–2 is a weight function [20]. The special points of the Cauchy function ε*(p,r,ρ) are the 
branching points p = –γ2 ≤ 0 and the point p=∞.
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X R b
d
dr

C r b C r b
dI

r R
i

� � �
� �� � � � � � �

�
;

,, , ,11
11

11
1

11
1

11
1� � � � � � � � ��

RR

dr
i

sh b
dK R

dr

I R i sh bK

i

i

� �
�

� ��

�
�
�

�

�
�
�
�

� � � � �

�
�

�

� � � �

� �

� �

,

,11
1 1

ii R X R i
sh b

X R� � � ��� �
�
�

�, ; ;, ;� ��� �� � � � � � � 

11
11

12
1111

X R b
d
dr

D r b

sh b
dK

r R� �� � � �

� �
�

�

; , ,11
12

11
1

11
1

11
1 1

� � � �
�

�
�

�

�
� � � �

�

�

ii
i

R

dr
sh bK R

sh b
d
dr

K

� �
� �

�
� � � �

� � � �

,
,

� ��

�
�
�

�


�
�
� � � �

�

�

�

11
1 1

1
11
1

ii iR K R X R
sh b

� � � � �� � � �
�
�, , ;� � � � ��

�
�

�


� � � �11

1
11

12
 ; (1.8)



11

1 CONVECTIVE DRYING OF WOOD OF CYLINDRICAL SHAPE

CH
AP

TE
R 

 1





X R
dI R

dr
I R

X R

i
i�

� �
� �

�

� � �
�

� �

�

;
,

,

;

;11
11

11
1

11
1

11
12

� � � � �
� � �

� � � �� �
�

� �� �
� �11

1
11
1dK R

dr
K Ri

i
,

, .
� �

� � �
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U R sh b X R b
d
dr

K� � � �� � � � � �, ; , ,,11
12 1

11
12

11
1

11
1� � � � � � � � �

�

�
�

�

�
�

�

�� �

� �

� �

�
� �

� � �

r X R b

R
K R

r R� � � � � �

�
�

�
�

�
�

�

�
� � � �

�


,

,

,11
12

11
1

11
1

11
1 RR K R� �� �

2
1 1� � � �, .  (1.9)

Satisfying the condition (1.7), it is possible to obtain the algebraic system of equations for 
determining the coefficients A1, A2, B2:

A A I B K2 1 2 0�� � � � � � � �� � � ��� ��, , ,

A A I B K2 1 2 2 1

1
�� � � � � � � � � � � �� � � � ��� ��

��, , .

Given the relation:

I K I K� � � � � � � �

�
�� �� �� �� ��, , , , ,� � � � � � � � � � � � �� �� �� �2 1

let’s obtain:

A A K B I2 1
2

2
2�� � � � � � � � �� �� � ���

� �
�
� �, ,, .  (1.10)
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Satisfying the boundary condition for r = R, it is possible to obtain:

A U R B U R2 11
11

2 11
12 0� � � �� �, ; , ; ,� � � � � �  (1.11)

A
R

U R
K2

2 11
1

11
11

2 2 11�
� �
� � � � � ��
� ��

�
� �� �

�� � �

� �

�
� �

� � �� , ,
*

, ,
,

, ,, 11
11

11

11
11

*
, , ,

, ,

,� �� � ��

�
� � � �

� �

R U R K

U R
� � � � � � �

� �
�
�
�

��

�
�
�

��
�

� ���
�

�
��

�� � �

� �
� �

� �

�

2 11
12

11
11 2

11
12U R

U R
I B

U R

U
, ,

, ,
,

, ,

,

� �
� � � � � � � �

��

� �

� �

�

��

��

,

,

,

,

,

11
11

1
2

2

R

A
B K

I
A

� �

�
� �

� � �

 

where 

A U R R1
2

11
11 1

11
1� � �� � � �� �� � � ���

� � � �, ; , ; , ;�

U R
A U R

I r� �

� �

�
� �

�
�

� �, ;

, ;

,

;11
12 2 11

11

2� � �
� �� �
� �

�� � � � � � � � � �� � � � � �, ; , ; , , ; ,,11
1

11
11

11
12� � � � � � � � � � �R r U R K r U R I r�� �.

Then the function εα
*(p,r,ρ) due to the symmetry relative to the diagonal r = ρ has the form:

� �
�
�

� � ��
�

�

� �

� � � ��

�

� � � � �
� � � �� �

p r
U R b

I r R
, ,

,

, ,

, ;

, , ;
2

11
11

11
1 0�  rr R

I R r r R

� �

� � � � � � �

�
�
�

��
�

�

�� � � �� � � �

;

, , ., , ;� 11
1 0 

 (1.12)

The roots pn n� � �� �� �2 2  of the transcendental equation U R b� � �, ; ,11
11 0� � �  are simple 

poles of εα
*(p,r,ρ).

Let’ consider the transcendental equation:

�
� �

� � � � �� � � �11
1

11
1

11
1 2

1 1 0
�

�
�

�
�

�

�
� � � � � � �� �R
I R b RI R b, ,, , ,

where p e b ai� � �� � � �� � � � � �� � � � � ��2 2 2 2 1,  form a discrete spectrum bn n� �
�

�

1
.

Let’s denote � �� � � �� � � � � �, ; , ;
*, , , , .11

1 1
11

1R r b sh b R r b� � � � �� � ��
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Here �� � � �, ; , ,11
1 R r b� �  is the eigenfunction of the problem that satisfies equation (1.2) and 

homogeneous boundary conditions. It is possible to use it to construct a solution of the problem 
that satisfies the inhomogeneous condition at the outer surface of the cylinder, i.e., reflects the 
effect of the drying agent.

The original of the fundamental function:

� � � � � ���

� �

� � � �t r e R r b R b
t

, , , , , ,, ; , ;� � � � � � �� �� ��

�
2 2

11
1

0
11

1 2
� �

��� �
� � �

�

� �

� �

� � �

2

11
11 2

11
12 2

0

2 2d

X X
e V r V

t

; ;

, ,
� � � � �

� � � � �� �� ��

� � �� �� �d ;

� � � � � ���

� �

� � � �t r e R r b R b
t

, , , , , ,, ; , ;� � � � � � �� �� ��

�
2 2

11
1

0
11

1 2
� �

��� �
� � �

�

� �

� �

� � �

2

11
11 2

11
12 2

0

2 2d

X X
e V r V

t

; ;

, ,
� � � � �

� � � � �� �� ��

� � �� �� �d ;  (1.13)

��

�

� �

�
��

� � � �
� � �

� �� � � � �� �
2 2

11
11 2

11
12 2

X R X R; ;, ,
.

By the generalized development theorem:

� �
�

�

� � � �

�

t r e
V b r V b

V b r

n t n n

n
n

, , ,� � � � � � �
� �

� �� �
�

�

�
2 2

1

2
1

where V b rn� � �
1

2
 is the square of the norm of its own function; bn are roots of the function 

U R b� � �, ; , .11
11 � �

� �� �
� �

� �� ��
�

� ��, ; , ;, , ,11
1

11
1

2
� �� � � � � �i R i e Ri

V r R r X R D r X R� � � � �� � � � � � � � � �, , , , , ,; ; ;� � � � � � � � � � � ��1
11

11
11

12
11 �� � �C r� � �, ,  (1.14)

� �*
, ; , ;, , .1

11
1

112� �
� �

� �� �
�

� �i R i r e R ri� � � � � ��

Here V r R r� �� � � �, , ,;� � � � �� 11
1  is eigenfunction (spectral function) of the problem (1.6); 

Ωα(β) is a spectral density.
Returning in equation (1.13) to the original, it is possible to obtain a solution Todn(t,r) of the 

homogeneous parabolic Cauchy problem (1.2), (1.3):

T t r t r g a d e V r godn

R
t

, , , ,� � � � � � � � � �� �� � � �� ��

� � � � � ��
� � �

�
0

2 1 2

0

2 2

�� � � �� � � � ��
�

�� � � � � � �� � �

0

2 1 2
R

V d d a, , .�  
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T t r t r g a d e V r godn

R
t

, , , ,� � � � � � � � � �� �� � � �� ��

� � � � � ��
� � �

�
0

2 1 2

0

2 2

�� � � �� � � � ��
�

�� � � � � � �� � �

0

2 1 2
R

V d d a, , .�   (1.15)

From equation (1.15) for t = 0, it is possible to obtain the integral image:

g r V r g V d d
R

� � � � � � � � � � �
�

�� �� �
�

�� � � � �� � � �
0 0

2 1, , .�  (1.16)

From equation (1.16), it follows that the function εα(t,r,ρ) defined by equation (1.13) is a 
delta-shaped sequence with respect to t for t → 0+.

The integral image (1.16) defines a direct:

H g r g r V r r dr g
R

� �
�� � �� ��� �� � � � � � � � �� �

0

2 1, ;  (1.17)

and inverse:

H g r g V r d g r�
�

� ��� �� � � � � � � � � � ��1

0
� � �� � � �  , .�  (1.18)

Kontorovich-Lebedev transform over the interval [0, R].
Given the theorem on the basic identity of the integral transform [20] of a differential ope- 

rator Bα, i.e., if the function g(r) is such that the function f(r) = Bα[g(R)] is continuous on the  
set (0, R) and the boundary conditions hold:

lim , ,r r
dg
dr

V r g r
dV
dr

d
dr�

� � � � � ��

�
�

�

�
� � �

�

�
�

�
0

2 1
11
1

11
10�

�
�� � � 

��
� � � � � ��g r gr R R � ,  (1.19)

then for any �� �� �0, , the following equality holds:

H a B g r g
sh

gR� � �� �
��

��
�2 2

2� ��� ��
�
�

�
� � � � � � � � .  (1.20)

Therefore, based on relation (1.17), it follows:

H a B g r g r V r r dr
sh

T R
R

a� � �
�

�� � �
��

��
�2 2

0

2 1
2� ��� ��

�
�

�
� � � � � � � �� �, ,�� �.  (1.21)

From the properties of the eigenfunction Vα(r,β), it follows that:
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�
�

� � � ��
� � �11

1
11
1 2 20

dV r

dr
V r a B V r

r R

,
, , ,

� �
� � �

�

�
�
�

�

�
�
�

� �� � � � �
�

 00.

From equation (1.21), taking into account equation (1.19), it is possible to obtain:

H a B g r a B g r V r r dr r
d g
dr

R

� � � �
�� �2 2

0

2 1 2
2

2� ��� ��
�
�

�
� � � ��� �� � � �� �, �� �� ��

�
� � � � � � ��

�
� � � �

�

� �2 1
0

2 2 2 2 1

2

� � � �

�

�
�

R

r
dg
dr

r g r g r V r r dr

a r

,

22 1
0

2

0

�
� � � �� � � �� �� � � � � � � � � ��� �� � � � � ����g r V r g r V r g r a B V rR

R

, , , ��� � �� � � � � � � � � ��� �� � � ��� �
�r dr R g r V r g r V r H g rr R

2 1 2 1 2� �
� � �� � �, , �� ��.H a B g r a B g r V r r dr r

d g
dr

R

� � � �
�� �2 2

0

2 1 2
2

2� ��� ��
�
�

�
� � � ��� �� � � �� �, �� �� ��

�
� � � � � � ��

�
� � � �

�

� �2 1
0

2 2 2 2 1

2

� � � �

�

�
�

R

r
dg
dr

r g r g r V r r dr

a r

,

22 1
0

2

0

�
� � � �� � � �� �� � � � � � � � � ��� �� � � � � ����g r V r g r V r g r a B V rR

R

, , , ��� � �� � � � � � � � � ��� �� � � ��� �
�r dr R g r V r g r V r H g rr R

2 1 2 1 2� �
� � �� � �, , �� ��.

H a B g r a B g r V r r dr r
d g
dr

R

� � � �
�� �2 2

0

2 1 2
2

2� ��� ��
�
�

�
� � � ��� �� � � �� �, �� �� ��

�
� � � � � � ��

�
� � � �

�

� �2 1
0

2 2 2 2 1

2

� � � �

�

�
�

R

r
dg
dr

r g r g r V r r dr

a r

,

22 1
0

2

0

�
� � � �� � � �� �� � � � � � � � � ��� �� � � � � ����g r V r g r V r g r a B V rR

R

, , , ��� � �� � � � � � � � � ��� �� � � ��� �
�r dr R g r V r g r V r H g rr R

2 1 2 1 2� �
� � �� � �, , �� ��.H a B g r a B g r V r r dr r

d g
dr

R

� � � �
�� �2 2

0

2 1 2
2

2� ��� ��
�
�

�
� � � ��� �� � � �� �, �� �� ��

�
� � � � � � ��

�
� � � �

�

� �2 1
0

2 2 2 2 1

2

� � � �

�

�
�

R

r
dg
dr

r g r g r V r r dr

a r

,

22 1
0

2

0

�
� � � �� � � �� �� � � � � � � � � ��� �� � � � � ����g r V r g r V r g r a B V rR

R

, , , ��� � �� � � � � � � � � ��� �� � � ��� �
�r dr R g r V r g r V r H g rr R

2 1 2 1 2� �
� � �� � �, , �� ��.

where Hα[g(r)] is defined by the expression (1.17); gR=TaR(R,t) is the temperature of the  
drying agent.

Then from equation (1.21), it is possible to obtain:

g
V R

g
X R b D R b X R b CR R

�
�

�
� � �� � � �

11
1

11
1 11

11
11

12, , , ,; ;� � � �� � � � � � � � ��

� � � �

�

� � � �

R b

g C R b D R b D R b C R b
sh

R r r

,

, , , ,

� ��� �

� � � � � � � � � � � ��� �� �
��

�� � �

b
R

TaR2 2 1� .  (1.22)

The equations of thermal conductivity and boundary conditions have the following form:

�
�

� �� � � � � � � � �
�

�
�

�

�
� � � �� �

T
T T g

d
dr

T r Tr R�
� � � � � � ��

2 2
0 11

1
11
10; , , aaR �� �.

As a result of identity (1.21):

�
�

� �� � � � � � � � � ��



 



T
T

sh b
T T gaR�

� �
�

��
� � � �� �

2 2
2 0; , .  (1.23)

The solution of the Cauchy problem (1.23) is the function:



T e g e
sh bt

n
n

� � �
�

��
� �

� � � � � �
�

�,� � � � � � �
� �� � � �� � �� �

�

�

�
2 2 2 2

0
2 0

1
���

�
�

�


�

�



	
	

�

�
�
�

cos .�nt dt2  (1.24)
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Let’s apply the integral operator H�
�1  (1.18) to T � �,� � , and obtain the solution of the  

problem (1.24):

T t r e V r V d g
t

Rt

, ) , ,� � � � � � � � � � �� �� � �� ��

����
� � �

� � �� � � � � � �
2 2

000

� �� �� � �
�

��
� �� � � �

� � �� �� �� � � � � �� � �� � �� �
�2 1

0
2

2 2

d d e
sh b

T V r
t

t

a , � �� � �� �
�

� d d
0

.

T t r e V r V d g
t

Rt

, ) , ,� � � � � � � � � � �� �� � �� ��

����
� � �

� � �� � � � � � �
2 2

000

� �� �� � �
�

��
� �� � � �

� � �� �� �� � � � � �� � �� � �� �
�2 1

0
2

2 2

d d e
sh b

T V r
t

t

a , � �� � �� �
�

� d d
0

.  (1.25)

From equations (1.17), (1.18) and Steklov’s theorem, any vector-function f(r) = Bα[g(r)] 
continuous on (0,R) satisfying zero boundary conditions can be decomposed in terms of a system 
of eigenfunctions V r j j� �,� �

�

�

1
 into an absolutely and uniformly convergent Fourier series.

It is known that one eigenvector-function V r j� �,� �  corresponds to each eigenvalue βj and 
the system of spectral functions V r j j� �,� �

�

�

1
 is complete and closed. The square of the norm of 

eigenfunction V r V r r drj j

R

� �
�� � �, , .� � � � ��

�
�
�

��
2 2

2 1

0

Thus, given equation (1.17), the inverse integral operator (1.18) can be written down  
as follows:

H g r g V r V r g rj j
j

j� � �� � ��

�

� �

� ��� �� � � � � � � ��
�
�

�
�
� � � �1

0

2 1

  , , ,

and the function:

G t r e V r V d
t

�

� �

� � �� � � � � �, , , , ,� � � � � � � � �� �� ��

�
2 2

0

�  (1.26)

by taking into account the initial temperature state of the body, according to the theory of surplus-
es can be represented as calculated integral in the form:

G t r e
V r V

V r
a

j

t j j

j

j

�

� � � �

�

�
� � �

�
�, ,

, ,

,
,� � � � � � �

� ��

� � �� ��
1

2
2

2 2

where

V r R r
sh

X R D r Xj j
j

j j� � � � �� � � �
��

�
� � � �, , , , ,; ;� � � � � � � � � � ��1

11
11

11 ;; , , ;12
11 � � � ��R C rj j� � � ��

�
�
�
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as well as the Green’s function generated by the thermal regime at the boundary:

r R

W t r e V r
sh

d b a

W

t

�

� � � � � � � �
� �� ��

��

;

, , , ;�

� �

� � �

�

�
��

��
� � �

2 2

0
2

1�  

tt r e
sh V r

V r
aj t j j

j
j

,
,

,
.� � � � �

� �
� �� �

�

�

� � �

�

�

�

��

��

�

�
�

2 2

2 2
2

1

r R

W t r e V r
sh

d b a

W

t

�

� � � � � � � �
� �� ��

��

;

, , , ;�

� �

� � �

�

�
��

��
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Then the solution will take the form:
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Here �� � �t  is a delta-function concentrated at the point 0+. 
According to equation (1.28), taking into account the properties of delta-function and equa- 
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Let’s determine the effect of initial conditions and temperature of the drying agent on the

drying process. Given equation (1.16), the initial condition g r g r
j

j
j� � ��

�
��

�

�
��

�
�

0

2

0  is chosen. Then:



18

DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY
CH

AP
TE

R 
 1

g
a

g r X R sh K rj
j

j

R

i� � � � �� ��
� � �� � � � �� � � �� �

�

���
1
2 0

2 1

0

2

0
11

11 1
; ,, ��� � � � � � � � � �� �� ��

��
�
��

�X R I r i sh K r dri i� � � � �� � � � �� �11
12 1

; , ,, .

g
a

g r X R sh K rj
j

j

R

i� � � � �� ��
� � �� � � � �� � � �� �

�

���
1
2 0

2 1

0

2

0
11

11 1
; ,, ��� � � � � � � � � �� �� ��

��
�
��

�X R I r i sh K r dri i� � � � �� � � � �� �11
12 1

; , ,, .

Given expressions for the Bessel functions:

I I K K� �

�

� � �

�

��� �� �� �� �� ��, ,, .� � � � � � � � � � � � � �� �

Let’s determine:

g
a

X R sh g r K r dr
j

R

j
j

i

�

� � � �� ��
�

�

� � �

� � � � � � ��

�

� ���
1
2

11
11 1

0

2

0
0

1
; ,

�� � � � � � � �

� �

�

� ���X R g r I r dr

iX R

j

R

j
j

i�
�

�

�

� � �

� �

11
12

0

2

0
0

1

11
12

;

;

,

, �� � � � �

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
��

�

� ���� �� ��
�

1

0

2

0
0

1sh g r K r dr
j

R

j
j

i ��

�

�
� � � � �� �


� � �� �

�1
2

11
11

11
12 1 2

0

2

a

X R iX R sh j

j
� �

�� � � � � �� �; ;, , ���

��

� �

� �� �

�

� � � � �

� � �
0

0
1

11
12 2

0

2

0

�
�

�

�
�

�

�

� � �

R

j
j

i

j

j

R

g r K r dr

X R; , gg r I r drj
j

i0
1� �� � � �

�

�

�
�

�

�
�

�

�

�
�

�

�
�

�
�

.

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �

�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �

�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �

�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �

�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �

�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �

�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �

�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �

�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �

�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .

T e
a

U R sh ggo j
j

j� � � � ���
�

� � �

�
�

�, ,� � � � � �
� �� � � �

�
��

2 2 1 1
2 11

11 1
0

0

2 22

2
1

2
2

1

1 2

i
j ii

j i
R F

j i
i

j i�
� ��

� �
�

� �
�

� ��
� �� �

� �

�
�
�

��
� � � �

�
� � ��

; ; ,
��

�

� �
�

� ��
� �

R

i

j i
R F

j i
i

i
j i

� �

�

�
�




	

�
�
�

�� �
� �

� � � �
�

� �
� �

2

1

1 2

4

2

2
1

�
; ��

� � �
� �

�
�

�

; , ,;

j i R
X R

a

gj
j

� � � � �

�

�
�




	

�
�

�
�
�

��
� � � �

�

�

�

2
2 4

2

11
12

2

0
00

2

1 2

1 1
2 1 2� �

� �

� �� � �� � � �
�
�
�

��

� � � �
� � � �

�
� � �

� �

� �

j i

j i

j i i
R F

j i j
�

;
ii

i
R�

�
��

�
� �

�

�
�




	

�
�

�
�
�

��

2
2

1
4

2

, ; .;



19

1 CONVECTIVE DRYING OF WOOD OF CYLINDRICAL SHAPE
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Comparing the expressions for Φ2 and Φ3, it is possible to see that Φ2 = Φ3. Let’s consider 
the expressions of the first three coefficients of each of these generalized hypergeometric func-
tions. Let’s determine the real and imaginary parts in them. Let’s consider the function:
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For the functions Φ2, Φ3, the representation of the coefficients A1, A2, A3… remain the same:
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Thus, recurrent relations are obtained for real and imaginary parts of generalized hypergeo-
metric functions of complex arguments, which allows to determine the temperature distribution 
depending on the parameters of the structure of wood and other porous materials.
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(1.31)

The solution of a Cauchy problem is the function:
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Let’s apply to the function T � �,� �  the integral operator H� � �� � �1 , . 
For non-stationary case:
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Numerical analysis. Based on the obtained formulas for determining the temperature at any 
point of the radius of wooden cylindrical beam at any time of drying depending on the effect of 
thermal diffusion, initial values of temperature and moisture, thermophysical characteristics of the 
material and parameters of the drying agent on the temperature of phase transitions, a software 
program is designed, the work of which is demonstrated for solving a specific application problem 
of wood drying. 

To implement the numerical experiment, the characteristics of the thermophysical properties 
of wood were used. The dependence of the hydro conductivity of wood on temperature and mois-
ture was derived on the basis of experimental data [6].

Numerical simulation of drying of a sample of a cylindrical pine timber beam of a circular 
cross-section of the temperature T0 with a 50 % moisture content was carried out. The following  
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basic parameters of the problem were accepted: ambient temperature Ta, which is determined 
by the temperature of the steam-air mixture measured by a dry bulb thermometer. The drying 
process lasted until the temperature of the beam reached the ambient temperature T1 = 289 K. 
Drying agent velocity υ = 2 m/s; saturated vapor density ρv = 0.013188 kg/m3; air density 
ρa0 =1.29 kg/m3. Physical parameters of wood: the radius of cross-section of a beam R = 0.25 m; 
density 500 kg/m3; moisture 0.7 kg/kg; porosity Π = 0.672. Thermal parameters of wood: initial 
temperature T0 = 290 K, thermal conductivity coefficient λ = 0.14 W/(m∙K).

Computer simulation of the drying of a cylindrical beam was carried out for soft (≈ 300 K) 
and hard regimes (≈ 370 K), which were determined by the control functions of temperature and 
moisture of the steam-air mixture, which is fed into the drying chamber.

In Fig. 1.3 and 1.4, the temperature distributions in the structural elements of the cylindrical 
beam are presented. Fig. 1.3 characterizes the change in temperature in the wooden beam during 
drying at 300 K; and so, does Fig. 1.4 at 370 K, respectively. 

 Fig. 1.3 Temperature distributions on the surface and inside the cylindrical 
beam at a drying agent temperature of 302 K (soft regime)
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Here, the curve 1 corresponds to a unit value of dimensionless radius r = 1, i.e., it shows 
the temperature on the surface of the cylinder; curve 2: r = 0 8. ;  curve 3: r = 0 6. ; curve 4: 
r = 0 4. ;  curve 5: r = 0 2. ;  curve 6 corresponds to zero value of dimensionless radius: r = 0.

Analyzing the graphical dependences, it is possible to see that in the process of drying cylindri-
cal wood with the specified initial parameters, three characteristic stages are observed: heating, 
stabilization, and cooling. 

The graphical analysis of the drying process for wood with a circular cross-section (ρ = 500 kg/m3)  
and an initial moisture content 0.7 kg/kg reveals several key insights for both hard and soft 
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drying regimes. Throughout the entire drying process, the temperature of the wood’s surface 
layer is consistently higher than that of the inner layers for both drying regimes. By the end 
of the first drying period, the surface layer reaches a maximum temperature. The inner layers 
experience different heating patterns: in the hard drying regime, they experience more rapid tem-
perature increases, indicating quicker heat penetration and more aggressive moisture removal 
leading to faster vaporization within the wood. In contrast, for the soft drying regime, the bulk 
of the wood remains within the 294–295 K range for a significant portion of the first period, 
only beginning to increase in temperature two-thirds of the way through this period. During the 
second drying period, the temperature growth stabilizes across the layers, attributed to the ab-
sorption of heat for internal vaporization. The onset of the constant drying rate period varies with 
depth, showing significant delays in the wood’s inner layers. For hard drying regimes, maximum 
temperatures are achieved mid-way through this period, followed by a gradual decline. During 
the period of decreasing drying rate, a noticeable temperature rise occurs throughout the entire 
material volume until the central layer’s temperature matches the surface layer’s temperature. 
This period is dominated by the release of bound moisture, which dictates the duration of the  
drying process. 

It should be noted that the temperature distributions in the cross-sectional layers of wood 
for the two considered drying regimes differ qualitatively and quantitatively. The temperature of 
the outer layer of the cylindrical beam during the entire drying period is much higher than the 
temperature of the middle layers, and, here, the maximum residual pressure is maintained until the  
end of τ1. A temperature gradient appears, which causes the flow of moisture to move towards low 
temperatures, and its place is filled by steam.

 Fig. 1.4 Temperature distributions on the surface and inside the cylindrical 
beam at a drying agent temperature of 370 K (hard regime)
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At hot drying modes during the second period of stabilization we observe a significant differ-
ence in the values of the temperature of wood layers in depth, sometimes up to 10 K (Fig. 1.4, 
measurement time 0.5 τ2, layers r = 0 2 0 4 0 6. , . , .  ). Just at this time it is possible to observe 
the maximum values of internal residual pressures in these layers. In mild regime, an increase in the 
temperature of the central part of the beam is observed at the time 2/3 τ2 and a corresponding de-
crease in moisture content in its core layers (Fig. 1.3, time curve 0.7 τ2). From the third period τ3,  
the rate of moisture removal decreases until the state of equilibrium moisture content.

In conclusion, the hard drying regime leads to a quicker internal temperature rise, suggesting 
faster drying but potentially greater risk of stress and cracking. The soft drying regime offers a 
gentler approach, with slower internal temperature increases, potentially reducing stress and main-
taining structural integrity. This analysis underscores the importance of selecting an appropriate 
drying regime based on the desired balance between drying speed and material quality preservation.

1.2 Solving Stefan's linear problem for drying cylindrical beam under  
quasi-averaged formulation

When solving the problem of drying objects with a capillary-porous structure, in particular 
wood, they usually are described in terms of a quasi-homogeneous medium [22–25] with effective 
coefficients, which are chosen so that the solution to the problem in a homogeneous medium 
would coincide with the solution of the problem in a porous medium. The effect of the porous 
structure is taken into account by introducing the effective coefficients of binary interaction into 
the Stefan-Maxwell equation. The problem of mutual distribution of phases is solved according to 
the principle of local equilibrium of phases [26–31]. The given properties of the material, namely: 
heat capacity, density, thermal conductivity coefficients are functions of material porosity, density 
and heat capacity of body components.

The plain problem of drying of a cylindrical timber beam in average statement is considered. The 
thermal diffusivity coefficients are expressed in terms of the porosity of the timber, the density of the 
components of vapor, air, and timber skeleton. The problem of mutual phase distribution during drying 
of timber has been solved using the energy balance equation. The indicators of the drying process of the 
material depend on the correct choice and observance of the parameters of the drying medium [32].

In stationary mode, the relationship between temperature and moisture gradients is deter-
mined by the formula:

�
�

� �
�
�

�
U
r a

U
T
r a

Up

� � �
,

where δ  is the thermogradient coefficient; b is the mass transfer coefficient; a is the thermal 
diffusivity coefficient. In this dependence, the rate of moisture transfer is affected by the rate of 
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heat transfer and by the equilibrium moisture content Up [19]. The relationship between the dis-
tribution of moisture content and temperature fields depends on the geometric dimensions of the 
timber material in length and radius. Since the length of the beam of material is much larger than 
the cross-sectional size and the coefficient of moisture conductivity is much larger along the fibers 
than this coefficient across the fibers and due to the great complexity of the structure of timber 
material, consider the plane average problem of heat conduction.

When the hot air of the drying agent contacts with the moisture of the dried material, the 
moisture particles disintegrate and multiply, turning into steam and rarefied moisture particles, 
the number of which increases [7]. Thus, there is a multiplying of particles of a two-phase zone. 
At the same time there occurs a gradual deepening of the front of moisture evaporation. Heat is 
supplied to the evaporation front by heat conduction from the drying agent across the dried layer 
of material. Excess pressure is formed in the front zone, under the action of which the vapor is 
filtered to the outer surface. The total rate of moisture removal depends on the thermal and filtra-
tion resistance. The vapor pressure and the temperature at the front are related as parameters 
of saturated vapor. The slow movement of the front into depth allows to consider the fields of 
temperature and excess pressure in the dried material to be quasi-stationary. The drying process 
with a variable phase transition boundary is described by the equation [19]:

�
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� � �� �( )
 is averaged thermal diffusivity coefficient.

Let’s solve (1.33) under the initial condition:

T r g r r R� �, , ,� � � � � �� ��0 0 , (1.34)

and under the boundary conditions on r = 0 and r = R, which express heat exchange in the cylinder 
and between the surface of the cylinder and the drying agent:
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The process of penetration of hot air, the rate of which is proportional to the concentration, leads 
to the problem of phase transition if γ2 < 0 (diffusion with decomposition), the indices of a series:
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obtained by expansion in terms of eigenvalues functions υn(M), are less than the indices of a series 
if not to take into account changes in temperature over time without a phase transition. In the 
case γ2 > 0 (penetration with multiplication), if at least one of the indices (γ2 –a2λ) > 0, then 
there is an increase by the exponential law. The value γ2 is a characteristics of the material (multi-

plication factor), λ significantly depends on the shape and size of the area (pores). If �
�

�
2

2a
,

then the area where the phase transition occurs has critical dimensions. For a plane problem, 
the smallest value of λ corresponds to the eigenfunction, which has radial symmetry and is equal

to �
�

�1
1
0

1
0 2 4048� �

� �
� �

R
, .  [19].

For the critical diameter, the formula d
a a

kp � �
� �2 4 801
0�
� �

.
 is obtained [29].

When solving the problem of drying objects with a capillary-porous structure, in particular 
wood, in order not to consider the porous body in all its complexity, it is described in terms of a 
quasi-homogeneous medium with effective coefficients, which are chosen so that the solution of 
the problem in a homogeneous medium coincides with the solution in a porous medium. The influ-
ence of the porous structure is taken into account by introducing the effective binary interaction 
coefficients into the Stefan-Maxwell equation. The problem of mutual phase distribution is solved 
using the principle of local phase equilibrium. It is possible to consider that the averaged properties 
of the material, namely: heat capacity C, density ρ, and thermal conductivity coefficients λ are 
functions of porosity of material, densities and heat capacities of body components.

Problem statement. Let’s consider the problem of drying a wet long wooden beam of cylin-
drical cross section in a drying plant. In solving this problem, it is possible to neglect the discrete 
structure of the material at the molecular level and come to the equation of heat conduction:

�
�
� � � � �

T
a T T

�
� � � �, , .� 2 2 0

Here, a is the thermal diffusivity coefficient, γ is a variable equivalent to the presence of sources 
of diffusing substance in the pores, T is the body temperature. The higher the temperature is the 
higher the rate of drying. The temperature in the drying chamber is the temperature in the vapor-gas 
mixture, which is determined by a dry bulb thermometer. The temperature determined by a wet bulb 
thermometer is the temperature at the boundary of the phase transition, which moves inside the 
material. The difference between the readings of dry and wet bulb thermometers is used to determine 
the relative humidity. For successful air drying, a continuous flow of air throughout the beam must be 
ensured. In the drying chambers, unsaturated air is used as a drying agent. Successful operation of 
drying chambers is achieved by regulating the temperature and humidity at the right time [33–37].
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The volume of the dried area is a function of time. In the this case, the body to be dried is a 
cylindrical beam, the outer surface of which F(r,τ) = 0 is described by the equation:

F r r, , .� �� � � � � �1 0 0  (1.36)

At the time moment τ = 0, the temperature T0(τ) is applied to the outer surface of the cylin-
der and from this time the drying process begins, and at the interface of the phase transition the 
curve of separation of dry and wet zones is the temperature Tc(τ) curve.

In the process of drying, this curve moves, forming a closed curve Fk(r,τ) = 0, which is an iso-
therm T = Tc. In the zone where the drying has already taken place, the temperature is described 
by the equation of heat conduction and by boundary conditions, these boundary conditions can be 
written as: 

– on the outer contour of the cylinder Fk(r,τ) = 0:

T = Tc, (1.37)

– and the following initial conditions:

T = T0, F0 = Fk, τ = 0. (1.38)

Let V(Fk, F0) be the volume of the dried area at the time t per unit length of the beam in the 
direction of the axis Oz. Then, over a period of time Δt, the volume will increase by ΔV(Fk, F0), and 
the amount of heat spent is:

� �Q c T T V F Fk k c k� �� � � �� , .0  (1.39)

Determine this amount of heat through the flow on the surface Fk(r,τ) = 0:
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Passing in (1.40) to the limit at �t � 0, given (1.39), let’s obtain:
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If to pass to the variables:

� �
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then dimensionless coefficients will satisfy the equation of heat conduction and the boundary con-
ditions (1.37), (1.38):

at F0 = 0,

η = 1;

at Fk = 0,

η = 0; (1.44)

η = 1, τ = 0. (1.45)

Let’s consider the equation of the Stefan’s boundary change:
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It is possible to note that at the beginning of the drying process:

F x y F x y tk , , , , .� �� � � � � � � ��
0 0  (1.48)

Over a short period of time, the contour of the boundary of the dried and wet zones will be 
as follows:

F x y t F x y tk , , , ,� � � � � � � ��
0 1 1 �  (1.49)

where ε*(t) is the thickness of the layer of the dried area (1.49). From the symmetry of the 
problem it follows that the contours F0, Fk are concentric circles, the equations of which in a 
dimensionless polar system are:
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 (1.50)

With this ε(τ) = 0 for τ = 0.
From (1.50) it follows that at the time of complete drying of the beam ε*(t) = R, and, respec-

tively, ε(τ) = 1.
Write the equation of heat balance for the area bounded by the contours F0, Fk(t). In integral 

form, this equation can be written as:
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where F0l, Fkl are contours of cross-sections of surfaces F0 = 0, Fk = 0, respectively.
If to take into account the boundary condition (1.46), it is possible to obtain:
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Equation (1.52) is the main one, which takes into account the factor of the moving boundary.
Introduce the function η*(r,τ) so that it satisfies the initial and boundary conditions (1.45). 

This function will establish the relationship between the relative saturation and temperature in the 
cross section in time.
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Let’s take η*(r,τ) as an approximate solution, which at a certain value ε(τ) must satisfy (1.51). 
There is a relationship between it and ε:
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From (1.52) it is possible to obtain:
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or 
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The solution of (1.56) is:
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From (1.46) and (1.58), taking into account (1.47) and (1.50), it is possible to obtain the 
equation describing the change in the unit of length of the volume of the dried zone over time: 
V Rd � � � ��� ��� � �2 21  and, thus, now it is possible to calculate the relative moisture of the timber 

beam during drying W
V V

V
d�

�
. Simple formulae for approximation of the experimental data allow

to calculate the total duration of the drying process from the initial to the final moisture content 
of the material.

Numerical experiment. Based on the obtained solutions, the numerical simulation of dry-
ing of samples of timber circular beams of pine, spruce, and birch of the same size has been 
carried out. The material after preliminary natural drying had been brought to 15 % of moisture 
content. The following basic parameters of the problem have been accepted: the ambient tem-
perature Tc = 313 K; the velocity of the drying agent υ = 2m/s; the saturated vapor density 
ρn = 0.013188 kg/m3; the air density ρa0 = 1.29 kg/m3. Physical parameters of timber: the radius 
of a circular beam R = 0,07 m; wood density: spruce 450 kg/m3, pine 500 kg/m3, birch 750 kg/m3;  
the porosity: pine Π = 0.672, spruce Π = 0.654, birch Π = 0.591. Thermal parameters of 
wood: the initial temperature T0 = 293 K, the thermal conductivity coefficient at moisture of 
15 % across fibers: spruce λ = 0.11 W/(m∙K), pine λ = 0.14 W/(m∙K), birch λ = 0.14 W/(m∙K).

Fig. 1.5 shows the changes in the thickness of the layer of the dried area ε in time of drying τ.
In Fig. 1.6, the distributions of relative moisture of wood in time are presented. 
The analysis of the relative moisture content for different species of wood: spruce, pine, and 

birch, during the drying process reveals distinct drying dynamics for each wood type. 
It is possible to observe that the samples with greater porosity and lower density lose mois-

ture faster (Fig. 1.6, curves 1, 2); the moisture from wood with less porosity is removed more 
slowly (Fig. 1.6, curve 3). The obtained results correspond to the experimental data given in the 
literature [38–40].
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 Fig. 1.5 The dependence of thickness of layer of the dried area on time of drying 
(curves 1–3 correspond to sort of materials: spruce, pine, birch, respectively)
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 Fig. 1.6 Change in relative moisture of beam skeleton in time (curves 1–3 
correspond to materials: spruce, pine, birch, respectively)
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CONCLUSIONS

The two problems of convective drying of wood of the circular cross-section in nonstationary 
and quasi-stationary formulations have been solved taking into account given properties of the 
material: heat capacity, density, thermal diffusivity coefficients, which are expressed as functions 
of the porosity of the material, densities, and heat capacities of the components. 

In the first problem, a nonlinear mathematical model for forecasting the drying behavior of 
cylindrical beams of capillary-porous material under convective conditions is constructed, enabling 
more accurate control and optimization of the drying process in industrial applications. The gov-
erning equations for heat transfer are formulated, which are discretized using finite difference 
approximations for derivatives. The Kontorovich-Lebedev transform is used to simplify the complex 
differential equations that arise due to the cylindrical symmetry of the wood. Green’s functions 
are employed to address the inhomogeneous differential equations representing the system’s re-
sponse to initial and boundary conditions. Analytical dependences are obtained for determining the 
temperature based on the thermophysical characteristics of the material and the parameters of 
the drying agent in non-isothermal conditions. The solution to Bessel equations involved Bessel 
functions of the first and the second kinds, which were computed using their series expansions 
as well as numerical libraries of special functions in Python. When approximating series solutions, 
Pochhammer’s polynomials are utilized, making it easier to capture the behaviors of heat distri-
bution in the wood profile. Steklov’s theorem ensures that the series solutions used in the model 
are convergent and orthogonal. The resulting system of algebraic equations is solved iteratively to 
obtain the temperature distributions within the wood. Boundary conditions are applied to simulate 
real drying conditions, ensuring that the model accurately reflects the physical processes involved.

For the second problem about mutual phase distribution, the relationship is established be-
tween the drying time and the average parameters of porous cylindrical timber, in particular the 
relative saturation of moisture, the thermal conductivity of timber, which take into account the 
factor of movement of the transient boundary of the dried zone. It has been established that in the 
process of drying timber materials, the movable surface of the phase transition, which separates 
the dried and wet zones, depends on the properties of the material and temperature, which is a 
function of coordinates and time. The results are in good agreement with experimental data and 
results of other research.

The study bridges the gap between theoretical models and practical applications by providing a 
robust framework that accommodates the complex interactions involved in wood drying.
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