DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY

Authors

Veronika Dmytruk
Lviv Polytechnic National University
https://orcid.org/0000-0002-3692-7110
Bogdana Gayvas
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
https://orcid.org/0000-0003-0788-506X
Bogdan Markovych
Lviv Polytechnic National University
https://orcid.org/0000-0002-8813-9108
Anatolii Dmytruk
Lviv Polytechnic National University
https://orcid.org/0000-0002-2393-0193
Yevhen Chaplya
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
https://orcid.org/0000-0002-5504-0419

Keywords:

Mathematical model, drying, electroosmotic drying, unilateral drying, bilateral drying, isothermal drying, drying kinetics, convection, diffusion, heat and mass transfer, capillary-porous material, capillary effects, continuum thermodynamics, moisture, moisture transport, multi-component system, phase, phase transition, structural model, ponderomotive force, sustainable technology, dispersed materials, gas-suspended state, fluidization, stress, optimization, deformation, anisotropy, numerical methods

Synopsis

This monograph explores the mathematical modeling of heat and moisture transfer processes in the drying of capillary-porous materials. It presents advanced models that account for the dynamics of moisture evaporation, convective and conductive drying, and the influence of external factors such as airflow, temperature gradients, and electric fields. Special attention is given to thermodynamic principles, diffusion mechanisms, and mechanical stresses that arise during drying, providing a comprehensive framework for understanding and optimizing drying technologies.

A significant portion of the monograph is devoted to the development of nonstationary and quasi-stationary mathematical models that describe the behavior of moisture and temperature fields over time. These models incorporate the effects of phase transitions, electroosmotic forces, and capillary interactions, allowing for a detailed analysis of drying kinetics under various conditions. Numerical simulations and experimental validation are employed to assess the accuracy and applicability of the proposed approaches, offering valuable insights for both theoretical research and industrial implementation.

The monograph also addresses the structural characteristics and mechanical properties of drying materials, highlighting the role of material deformation, shrinkage, and potential stress accumulation that may lead to cracking. Empirical criteria such as the Kirpichov, Nusselt, and Postnov numbers are examined as key parameters for evaluating drying efficiency and ensuring material integrity. Additionally, optimization strategies for industrial drying processes are discussed, incorporating mathematical and experimental methodologies to enhance energy efficiency and product quality.

By bridging the gap between fundamental research and industrial applications, this work provides engineers, researchers, and professionals in material science and heat transfer with a solid foundation for improving and innovating drying processes. The insights presented in this book contribute to the development of more efficient, sustainable, and cost-effective drying technologies, fostering advancements in industries such as wood processing, food production, pharmaceuticals, and materials engineering.

Chapters

Author Biographies

Veronika Dmytruk, Lviv Polytechnic National University

PhD, Associate Professor
Department of Applied Mathematics

Bogdana Gayvas, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine

Doctor of Technical Sciences, Leading Researcher
Laboratory of Mathematical Modeling of Nonequilibrium Processes

Bogdan Markovych, Lviv Polytechnic National University

Doctor of Physical and Mathematical sciences, Professor
Department of Applied Mathematics

Anatolii Dmytruk, Lviv Polytechnic National University

Department of Applied Mathematics

Yevhen Chaplya, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine

Doctor of Physical and Mathematical Sciences, Professor
Department No. 20 Mathematical Problems of Mechanics of Heterogeneous Bodies

References

Burak, Ya. Y., Chaplia, Ye. Ya., Chernukha, O. Yu. (2006). Kontynualno-termodynamichni modeli mekhaniky tverdykh rozchyniv. Kyiv: Naukova dumka, 272.

Sokolovskyy, Y., Levkovych, M., Mysyk, M. (2023). Matrix Approach to Numerical Modeling of Heat-and-Moisture Transfer Processes in a Medium with a Fractal Structure. 2023 17th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), 44–48. https://doi.org/10.1109/cadsm58174.2023.10076519

Lykov, A. V. (1968). Teoriia sushki. Moscow: Energiia, 472.

Hachkevych, O. R., Kushnir, R. M., Terletskii, R. F. (2022). Mathematical Problems of Thermomechanics for Deformable Bodies Subjected to Thermal Irradiation. Ukrainian Mathematical Journal, 73 (10), 1522–1536. https://doi.org/10.1007/s11253-022-02011-7

Kheifitc, L. I., Neimark, A. V. (1982). Mnogofaznye protcessy v poristykh sredakh. Moscow: Khimiia, 320.

Pyanylo, Y. (2022). Analysis of Filtration Processes in Porous Environments Taking Into Aaccount the Movement of Capillaries. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT), 9–12. https://doi.org/10.1109/acit54803.2022.9913087

Gayvas, B., Markovych, B., Dmytruk, A., Havran, M., Dmytruk, V. (2024). The methods of optimization and regulation of the convective drying process of materials in drying installations. Mathematical Modeling and Computing, 11 (2), 546–554. https://doi.org/10.23939/mmc2024.02.546

Hayvas, B., Dmytruk, V., Torskyy, A., Dmytruk, A. (2017). On methods of mathematical modeling of drying dispersed materials. Mathematical Modeling and Computing, 4 (2), 139–147. https://doi.org/10.23939/mmc2017.02.139

Baranovsky, S. V., Bomba, A. Ya. (2024). The diffusion scattering parameters identification for a modified model of viral infection in the conditions of logistic dynamics of immunological cells. Mathematical Modeling and Computing, 11 (1), 59–69. https://doi.org/10.23939/mmc2024.01.059

Mozhaev, A. P. (2001). Chaotic homogeneous porous media. 1. Theorems about structure. Engineering-Physical Journal, 74 (5), 196–201.

Lutcyk, P. P. (1988). Issledovanie protcessov teplomassoperenosa pri sushke kapilliarno-poristykh tel s uchetom vnutrennikh napriazhenii. Teplomassoobmen. Minsk: Institut teplo- i massoobmena im. A. V. Lykova, 184–197.

Khoroshun, L. P., Maslov, B. P., Leshchenko, P. V. (1989). Prognozirovanie effektivnykh svoistv pezoaktivnykh kompozitcionnykh materialov. Kyiv: Naukova dumka, 208.

Burak, Y., Kondrat, V., Gayvas, B. (2002). On the mathematical modeling of drying processes of porous bodies. Informational-Mathematical Modeling of Complex Systems. Lviv: CMM IPPMM named after Y. S. Pidstryhach NAS of Ukraine, Akhil Publishing House, 153–159.

Dibagar, N., Kowalski, S. J., Chayjan, R. A., Figiel, A. (2020). Accelerated convective drying of sunflower seeds by high-power ultrasound: Experimental assessment and optimization approach. Food and Bioproducts Processing, 123, 42–59. https://doi.org/10.1016/j.fbp.2020.05.014

Shlikhting, G. (1974). Teoriia pogranichnogo sloia. Moscow: Nauka, 690.

Gayvas, B. I., Dmytruk, V. A., Semerak, M. M., Rymar, T. I. (2021). Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation. Mathematical Modeling and Computing, 8 (2), 150–156. https://doi.org/10.23939/mmc2021.02.150

Gayvas, B. I., Dmytruk, V. A. (2022). Investigation of drying the porous wood of a cylindrical shape. Mathematical Modeling and Computing, 9 (2), 399–415. https://doi.org/10.23939/mmc2022.02.399

Gayvas, B. I., Markovych, B. M., Dmytruk, A. A., Havran, M. V., Dmytruk, V. A. (2023). Numerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying. Mathematical Modeling and Computing, 10 (2), 387–399. https://doi.org/10.23939/mmc2023.02.387

Gera, B., Kovalchuk, V., Dmytruk, V. (2022). Temperature field of metal structures of transport facilities with a thin protective coating. Mathematical Modeling and Computing, 9 (4), 950–958. https://doi.org/10.23939/mmc2022.04.950

Gayvas, B., Markovych, B., Dmytruk, A., Dmytruk, V., Kushka, B., Senkovych, O. (2023). Study of Contact Drying Granular Materials in Fluidized Bed Dryers. 2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 238–241. https://doi.org/10.1109/diped59408.2023.10269464

Alaa, K., Atounti, M., Zirhem, M. (2021). Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing, 8 (3), 549–559. https://doi.org/10.23939/mmc2021.03.549

Alaa, H., Alaa, N. E., Aqel, F., Lefraich, H. (2022). A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement. Mathematical Modeling and Computing, 9 (2), 187–202. https://doi.org/10.23939/mmc2022.02.187

Baala, Y., Agmour, I., Rachik, M. (2022). Optimal control of tritrophic reaction–diffusion system with a spatiotemporal model. Mathematical Modeling and Computing, 9 (3), 647–662. https://doi.org/10.23939/mmc2022.03.647

Bounkaicha, C., Allali, K., Tabit, Y., Danane, J. (2023). Global dynamic of spatio-temporal fractional order SEIR model. Mathematical Modeling and Computing, 10 (2), 299–310. https://doi.org/10.23939/mmc2023.02.299

Gouasnouane, O., Moussaid, N., Boujena, S., Kabli, K. (2022). A nonlinear fractional partial differential equation for image inpainting. Mathematical Modeling and Computing, 9 (3), 536–546. https://doi.org/10.23939/mmc2022.03.536

Najm, F., Yafia, R., Aziz Alaoui, M. A., Aghriche, A., Moussaoui, A. (2023). A survey on constructing Lyapunov functions for reaction-diffusion systems with delay and their application in biology. Mathematical Modeling and Computing, 10 (3), 965–975. https://doi.org/10.23939/mmc2023.03.965

Suganya, G., Senthamarai, R. (2022). Mathematical modeling and analysis of Phytoplankton–Zooplankton–Nanoparticle dynamics. Mathematical Modeling and Computing, 9 (2), 333–341. https://doi.org/10.23939/mmc2022.02.333

Ben-Loghfyry, A., Hakim, A. (2022). Time-fractional diffusion equation for signal and image smoothing. Mathematical Modeling and Computing, 9 (2), 351–364. https://doi.org/10.23939/mmc2022.02.351

Kostrobij, P. P., Markovych, B. M., Ryzha, I. A., Tokarchuk, M. V. (2021). Statistical theory of catalytic hydrogen oxidation processes. Basic equations. Mathematical Modeling and Computing, 8 (2), 267–281. https://doi.org/10.23939/mmc2021.02.267

Kostrobij, P. P., Ivashchyshyn, F. O., Markovych, B. M., Tokarchuk, M. V. (2021). Microscopic theory of the influence of dipole superparamagnetics (Type 〈β −CD〈FeSO4〉〉) on current flow in semiconductor layered structures (type gase, inse). Mathematical Modeling and Computing, 8 (1), 89–105. https://doi.org/10.23939/mmc2021.01.089

Aberqi, A., Elmassoudi, M., Hammoumi, M. (2021). Discrete solution for the nonlinear parabolic equations with diffusion terms in Museilak-spaces. Mathematical Modeling and Computing, 8 (4), 584–600. https://doi.org/10.23939/mmc2021.04.584

Bazirha, Z., Azrar, L. (2024). DDFV scheme for nonlinear parabolic reaction-diffusion problems on general meshes. Mathematical Modeling and Computing, 11 (1), 96–108. https://doi.org/10.23939/mmc2024.01.096

Baranovsky, S., Bomba, A., Lyashko, S., Pryshchepa, O. (2024). Diffusion Perturbations in Models of the Dynamics of Infectious Diseases Taking into Account the Concentrated Effects. Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1, 273–303. https://doi.org/10.1002/9781394284344.ch11

El Hassani, A., Bettioui, B., Hattaf, K., Achtaich, N. (2024). Global dynamics of a diffusive SARS-CoV-2 model with antiviral treatment and fractional Laplacian operator. Mathematical Modeling and Computing, 11 (1), 319–332. https://doi.org/10.23939/mmc2024.01.319

Tokarchuk, M. V. (2023). Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids far from equilibrium. Mathematical Modeling and Computing, 10 (2), 272–287. https://doi.org/10.23939/mmc2023.02.272

Belhachmi, Z., Mghazli, Z., Ouchtout, S. (2022). A coupled compressible two-phase flow with the biological dynamics modeling the anaerobic biodegradation process of waste in a landfill. Mathematical Modeling and Computing, 9 (3), 483–500. https://doi.org/10.23939/mmc2022.03.483

Pukach, P. Y., Chernukha, Y. A. (2024). Mathematical modeling of impurity diffusion process under given statistics of a point mass sources system. I. Mathematical Modeling and Computing, 11 (2), 385–393. https://doi.org/10.23939/mmc2024.02.385

Laham, M. F., Ibrahim, S. N. I. (2023). Penalty method for pricing American-style Asian option with jumps diffusion process. Mathematical Modeling and Computing, 10 (4), 1215–1221. https://doi.org/10.23939/mmc2023.04.1215

Dmytryshyn, L. I., Dmytryshyn, M. I., Olejnik, A. (2023). Model of money income diffusion in the European integration context. Mathematical Modeling and Computing, 10 (2), 583–592. https://doi.org/10.23939/mmc2023.02.583

Patil, J. V., Vaze, A. N., Sharma, L., Bachhav, A. (2021). Study of calcium profile in neuronal cells with respect to temperature and influx due to potential activity. Mathematical Modeling and Computing, 8 (2), 241–252. https://doi.org/10.23939/mmc2021.02.241

Burak, Ya., Chaplia, Ye., Nahirnyi, T. et al. (2004). Fizyko-matematychne modeliuvannia skladnykh system. Lviv: SPOLOM, 264.

Haivas, B. I. (2004). Pro vplyv elektroosmosu na dvostoronnie konvektyvne osushennia porystoho sharu. Volynskyi matematychnyi visnyk. Seriia prykladna matematyka, 2 (11), 74–85.

Chaplya, Ye., Hayvas, B., Torskyy, A. (2015). Construction of the solution of the thermal-convective drying problem for porous solids in drying plants. Mathematical Modeling and Computing, 2 (1), 1–15. https://doi.org/10.23939/mmc2015.01.001

Sokolovskyy, Y., Drozd, K., Samotii, T., Boretska, I. (2024). Fractional-Order Modeling of Heat and Moisture Transfer in Anisotropic Materials Using a Physics-Informed Neural Network. Materials, 17 (19), 4753. https://doi.org/10.3390/ma17194753

Hachkevych, O., Musii, R., Melnyk, N. (2023). Problems of Thermomechanics of Multilayered Electroconductive Bodies Under the Action of the Pulsed Electromagnetic Fields with Modulation of Amplitude. Advances in Mechanics, 185–206. https://doi.org/10.1007/978-3-031-37313-8_11

Zhuravchak, L. M. (2007). Matematychne modeliuvannia protsesiv poshyrennia teplovoho ta elektromahnitnoho poliv u neodnoridnykh seredovyshchakh metodamy pryhranychnykh elementiv ta skinchennykh riznyts. [Extended abstract of doctors thesis].

Dukhin, S. S. (1975). Elektroprovodnost y elektrokynetycheskye svoistva dyspersnikh system. Kyiv: Naukova dumka, 246.

Decker, Ž., Tretjakovas, J., Drozd, K., Rudzinskas, V., Walczak, M., Kilikevičius, A. et al. (2023). Material’s Strength Analysis of the Coupling Node of Axle of the Truck Trailer. Materials, 16(9), 3399. https://doi.org/10.3390/ma16093399

Tokarchuk, M. V. (2024). Kinetic coefficients of ion transport in a porous medium based on the Enskog – Landau kinetic equation. Mathematical Modeling and Computing, 11 (4), 1013–1024. https://doi.org/10.23939/mmc2024.04.1013

Sokolovskyy, Ya. I., Boretska, I. B., Gayvas, B. I., Kroshnyy, I. M., Nechepurenko, A. V. (2021). Mathematical modeling of convection drying process of wood taking into account the boundary of phase transitions. Mathematical Modeling and Computing, 8 (4), 830–841. https://doi.org/10.23939/mmc2021.04.830

Borovytskyi, M. Y., Lysenko, L. L., Rynda, O. F., Mishchuk, N. O. (2014). Rehuliuvannia vlastyvostei dyspersii dlia yikh elektrokinetychnoi obrobky. Naukovi visti NTUU "KPI", (3), 100–106.

Barinova, N. O. (2016). Neliniini elektroforez ta elektroosmos dlia odynychnykh chastynok ta skladnykh system. [Extended abstract of Candidate’s thesis; Institute of Colloid Chemistry and Water Chemistry, NAS of Ukraine].

Malyarenko, V. V., Makarov, A. S. (2000). Elektropoverkhnostnye svoystva vspenennykh kontsentrirovannykh suspenziy kremnezema i uglya. Ukrainskyi khimichnyi zhurnal, 66 (9-10), 84–87.

Myshchuk, N. A., Lysenko, L. L., Kornilovych, B. Y., Barinova, N. O. (2002). Teoreticheskiy analiz zakonomernostey elektroosmoticheskogo transporta zhidkosti cherez diafragmu. Khimia i tekhnologiya vody, 24 (4), 328–351.

Berezniak, O. O. (1999). Zastosuvannia yavyshcha elektroosmosu pry znevodnenni kaolinu. Zbahachennia korys. kopalyn, 4 (45), 100–104.

Lysenko, L. L. (2002). Intensyfikatsiia masoperenosu pry elektrokinetychnii ochystsi hruntu. [Extended abstract of Candidate’s thesis; Institute of Colloid Chemistry and Water Chemistry, NAS of Ukraine].

Shevchenko, R. O. (2012). Upravlinnia elektrokinetychnymy protsesamy dlia poperedzhennia i podolannia avarii pry burinni sverdlovyn na naftu ta haz [Extended abstract of Candidate’s thesis; National Technical University "Kharkiv Polytechnic Institute"].

Pushkarov, O., Zubko, O., Sevruk, I., Dolin, V. (2022). Use of mineral proton-conductive membranes for electroosmotic fractionation of the hydrogen isotopes. Geochemistry of Technogenesis, 35, 65–68. https://doi.org/10.32782/geotech2022.35.12

Musii, R., Melnyk, N., Dmytruk, V. (2024). Thermal stresses in bimetallic plate under induction heating by nonstationary electromagnetic field. Journal of Thermal Stresses, 47 (11), 1539–1551. https://doi.org/10.1080/01495739.2024.2415030

Musii, R., Dmytruk, V., Oryshchyn, O., Kushka, B., Shayner, H., Huk, L. (2024). Analysis of Thermal Modes of a Bimetallic Tube Under Short-Term Induction Heating. 2024 IEEE 19th International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), 16–19. https://doi.org/10.1109/memstech63437.2024.10620050

Musii, R., Dmytruk, V., Voloshyn, M. M., Kushka, B., Nakonechny, R., Huk, L. (2023). Computer Analysis of Nonstationary Thermoelastic Processes in an Electrically Conductive Plate during Pulse Electromagnetic Treatment. 2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 221–224. https://doi.org/10.1109/diped59408.2023.10269468

Gayvas, B., Burak, Y., Kondrat, V. (2005). Do matematychnoho modeliuvannia ta vyvchennia protsesu osushennia porystykh til. Fiz.-mat. modeliuvannia ta inform. tekhnolohii, 1, 20–29.

Severyn, O. A. (2008). Rozrobka protsesu ta aparaturnoho osnashchennia kombinovanoho heliosushinnia plodovoi syrovyny z avtonomnym enerhopostachanniam. [Extended abstract of Candidate’s thesis; Kharkiv State University of Food and Trade].

Fariseev, A. G. (2014). Rozrobka aparata dlia zharenia miasa v umovakh elektroosmosu. [Extended abstract of Candidate’s thesis; Kharkiv State University of Food and Trade].

Drachov, V. I. (2000). Tekhnolohiia zbahachennia ta kompleksnoho vykorystannia vidkhodiv staleplavylnoho vyrobnytstva. [Extended abstract of Candidate’s thesis; Kryvyi Rih Technical University].

Kostyuk, G. Ya., Kostyuk, O. G., Burkov, M. V, Golubovsky, I. A., Bulko, M. P., Bandura, L. O. et al. (2020). Pancreatic secretion and pressure biomechanics in pancreatic acinus. Clinical Anatomy and Operative Surgery, 19 (1), 6–12. https://doi.org/10.24061/1727-0847.19.1.2020.1

Burak, Ya., Kondrat, V., Haivas, B. (2002). Do matematychnoho modeliuvannia protsesiv sushky porystykh til. Informatychno-matematychne modeliuvannia skladnykh system – MIMUZ2002. Lviv: TsMM IPPMM im. Ya. S. Pidstryhacha NAN Ukrainy, Vyd-vo Akhil, 153–159.

Kondrat, V. F., Kubik, Yu., Chaplia, Ye. Ya. (2000). Vzaiemodiia mekhanotermoelektrodyfuziinykh protsesiv v porystomu nasychenomu seredovyshchi. Mashynoznavstvo, 8, 3–9.

Gayvas, B., Dmytruk, V., Kaminska, O., Pastyrska, I., Dmytruk, A., Nezgoda, S. (2020). Simulation of Crack Resistance of Mustard in Pulsed Drying Mode. 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), 91–94. https://doi.org/10.1109/csit49958.2020.9321941

Gayvas, B. I. (2004). On the influence of electroosmosis on two-sided convective drying of a porous layer. Volyn Mathematical Bulletin, 2 (11), 74–85.

Polos, A. V. (2006). Pіdvyschennia efektyvnosti konvektyvnoho sushinnia pylomaterialiv (na prykladi umovnoho material). [Dissertation].

Dmytruk, A. (2024). Modeling mass transfer processes in multicomponent capillary-porous bodies under mixed boundary conditions. Mathematical Modeling and Computing, 11 (4), 978–986. https://doi.org/10.23939/mmc2024.04.978

Gayvas, B. I. (2003). Dynamika vologosti porystogo sharu pry osushuvanni z odniyeyi poverkhni. Konferentsiia profesorsko-vykladatskoho skladu DU "Lvivska politekhnika". Lviv, 7–9.

Grinchik, N. N. (1991). Protcessy perenosa v poristykh sredakh, elektrolitakh i membranakh. Minsk: ITMO im. A.V. Lykova AN BSSR, 310.

Nigmatulin, R. I. (1978). Osnovy mekhaniki geterogennykh sred. Moscow: Nauka, 336.

Gamaiunov, S. N., Misnikov, O. S. (1988). Usadochnye iavleniia pri sushke prirodnykh organomineralnykh dispersii. Inzhenerno-fizicheskii zhurnal, 71 (2), 233–236.

Mushtaev, V. I.; Planovskii, A. N. (Ed.) (1971). Osnovnye teoreticheskie polozheniia konvektivnoi sushki i utochnennyi metod rascheta sushilnykh apparatov. Moscow: MIKhM, 81.

Mushtaev, V. I., Ulianov, V. M. (1988). Sushka dispersnykh materialov. Moscow: Khimiia, 352.

Likov, A. V. (1968). Teoriia sushki. Moscow: Energiia, 472.

Sazhin, B. S. (1984). Osnovy tekhniki sushki. Moscow: Khimiia, 320.

Laitfud, U. (1977). Iavleniia perenosa v zhivykh sistemakh. Moscow: Mir, 210.

Tutova, E. G., Grinchik, N. N. (1984). Mekhanizm massoperenosa pri obezvozhivanii slozhnykh biologicheskikh sistem. Teplomassoobmen – 6. Vol. 7. Minsk: ITMO AN BSSR, 25–28.

Lutcik, L. P., Litevchuk, D. P. (1984). Vliianie porovoi struktury na pronitcaemost kapilliarno-poristykh tel. Teplomassoobmen – 6. Vol. 7. Minsk: ITMO AN BSSR, 74–77.

Likov, A. V. (1970). Metody resheniia nelineinykh uravnenii nestatcionarnoi teploprovodnosti. Izv. AN SSSR, Energetika i transport, 25, 109.

Zhuravleva, V. P. (1972). Masso-teploperenos pri termoobrabotke i sushke kapilliarno-poristykh stroitelnykh materialov. Minsk, 189.

Zhuravleva, V. P. (1971). Issledovanie protcessa obrazovaniia dispersnykh struktur. Minsk, 5, 35–40.

Kutc, P. S., Grinchik, N. N. (1984). Teplo- i massoperenos v kapilliarno-poristykh telakh pri intensivnom paroobrazovanii s uchetom dvizheniia fronta ispareniia. Teplomassoobmen – 6. Vol. 7. Minsk: ITMO AN BSSR, 93–96.

Lutcik, P. P. (1985). Uravneniia teorii sushki deformiruemykh tverdykh tel. Promyshlennaia teplotekhnika, 7 (6), 20.

Lutcik, P. P. (1984). Massotermicheskoe deformirovanie kapilliarno-poristykh kolloidnykh tel v protcessakh sushki. Teplomassoobmen – VII. Vol. 6. Minsk: ITMO AN BSSR, 90.

Haivas, B. I. (2010). Pro opys lokalnoho stanu kapiliarno-porystykh ta shchilno upakovanykh zernystykh materialiv v protsesi sushinnia. Chastyna I. Modeliuvannia ta informatsiini tekhnolohii. Kyiv: Instytut problem modeliuvannia v enerhetytsi im. H.Ie. Pukhova NAN Ukrainy, 57, 95–104.

Haivas, B. I. (2010). Kliuchova systema rivnian dlia doslidzhennia protsesu sushinnia porystykh til. Chastyna 2. Modeliuvannia ta informatsiini tekhnolohii. Kyiv: Instytut problem modeliuvannia v enerhetytsi im. H. Ye. Pukhova NAN Ukrainy, 58, 116–125.

Haivas, B. (2010). Matematychne modeliuvannia konvektyvnoho sushinnia materialiv z urakhuvanniam mekhanotermodyfuziinykh protsesiv. Fizyko-matematychne modeliuvannia ta informatsiini tekhnolohii. Lviv: TsMM IPPMM im. Ya.S. Pidstryhacha NAN Ukrainy, 12, 9–37.

Hayvas, B., Torskyy, A., Chapla, Y. (2012). On an approach to solution of problems of porous bodies drying. Fizyko-matematychne modeliuvannia ta informatsiini tekhnolohii. Lviv: TsMM IPPMM im. Ya.S. Pidstryhacha NAN Ukrainy, 16, 42–51.

Haivas, B., Boretska, I. (2011). Vplyv rezhymu sushylnoho ahenta na osushennia porystykh til. Kompiuterni tekhnolohii drukarstva, 26, 231–240.

Romankov, P. G., Rashkovskaia, N. B. (1968). Sushka vo vzveshennom sostoianii. Lvіv: Khimiia, 360.

Teplitckii, Iu. S. (2002). Diagramma fazovogo sostoianiia dispersnoi sistemy s voskhodiashchim potokom gaza. Inzhenerno-fizicheskii zhurnal, 75 (1), 117–121.

Kalenderian, V. A., Karnaraki, V. V. (1982). Teploobmen i sushka v dvizhushchemsia plotnom sloe. Kyiv: Vishcha shkola, 160.

Buevich, Iu. A., Bugkov, V. V. (1978). O sluchainykh pulsatciiakh v grubodispersnom psevdoozhizhennom sloe. Inzhenerno-fizicheskii zhurnal, 35 (6), 1089–1097.

Buevich, Iu. A., Korolev, V. N. (1991). Obtekanie tel i vneshnii teploobmen v psevdoozhizhennom sloe. Sverdlovsk: Izd. Uralskogo universiteta, 188.

Nagornov, S. A. (2002). Upravlenie protcessami perenosa teploty v neodnorodnykh psevdoozhizhennykh i vibrotcirkuliatcionnykh sredakh. Tambov: GNU VIITKN, 101.

Razumov, I. M. (1972). Psevdoozhizhenie i pnevmotransport sypuchikh materialov. Moscow: Khimiia, 240.

Antonishin, N. V., Geller, L. A., Ivaniutenko, I. I. (1982). Teploperedacha v psevdoturbulentnom sloe dispersnogo materiala. Inzhenerno-fizicheskii zhurnal, 43 (3), 360–364.

Kheifetc, L. I., Neimark, F. M. (1982). Mnogofaznye protcessy v poristykh sredakh. Moscow: Khimiia, 320.

Akulich, P. V., Milittcer, K. U. (1998). Modelirovanie neizotermicheskogo vlagoperenosa i napriazhenii v drevesine pri sushke. Inzhenerno-fizicheskii zhurnal, 71 (3), 404–411.

Shubin, G.S. (1985). Sushka i teplovaia obrabotka drevesiny. [Extended abstract of Doctoral thesis].

Shimanskii, V. M. (2015). Matematichne modeliuvannia neіzotermіchnogo vologoperenesennia ta v’iazkopruzhnogo deformuvannia u seredovishchakh z fraktalnoiu strukturoiu. [Extended abstract of PhD thesis].

Sokolovskii, Ia. І., Shimanskii, V. M. (2011). Dvovimіrna matematichna model vologoperenosu u kapіliarno-poristikh materіalakh z fraktalnoiu strukturoiu. Naukovii vіsnik NLTU Ukraini, 21 (2), 341–348.

Voronov, V. G., Mikhailetckii, Z. N. (1982). Avtomaticheskoe upravlenie protcessami sushki. Kyiv: Tekhnika, 109.

Dmytruk, A. (2024). Modeling mass transfer processes in multicomponent capillary-porous bodies under mixed boundary conditions. Mathematical Modeling and Computing, 11 (4), 978–986. https://doi.org/10.23939/mmc2024.04.978

Downloads

Published

March 31, 2025

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-09-2

How to Cite

Dmytruk, V. (Ed.). (2025). DRYING PROCESSES: APPROACHES TO IMPROVE EFFICIENCY. Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-09-2